Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-Q localized surface plasmon resonance based on bound states in the continuum for enhanced refractive index sensing

Not Accessible

Your library or personal account may give you access

Abstract

Nanophotonics based on localized surface plasmon resonance (LSPR) has emerged as a vibrant arena for research into enhanced light–matter interactions with potential applications in imaging, sensing, and computing. However, the low quality (Q) factor of LSPR is a significant barrier to comprehensive device applications. Here, we demonstrate that coupling the LSPR of a gold nanowire array with the optical bound states in the continuum (BIC) of a dielectric double-layer grating can significantly increase the Q factor of LSPR. We realize two hybrid modes with Q factors of up to 111 at 558 nm and 83 at 582 nm, which are about 14 and 10 times larger than those of an uncoupled gold nanowire array. Based on temporal coupled-mode theory, we further show that the resonance frequencies and Q factors of the hybrid modes can be modulated and optimized by varying relevant structural parameters. This coupled system provides a new platform for improving the figures of merit (FoMs) of LSPR-based refractive index sensors, and the concept of LSPR–BIC coupling can be extended to other similar nanosystems.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Coexistence of surface lattice resonances and bound states in the continuum in a plasmonic lattice

Quoc Trung Trinh, Sy Khiem Nguyen, Dinh Hai Nguyen, Gia Khanh Tran, Viet Hoang Le, Hai-Son Nguyen, and Quynh Le-Van
Opt. Lett. 47(6) 1510-1513 (2022)

Merging bound states in the continuum in all-dielectric metasurfaces for ultrahigh-Q resonances

Xueyang Zong, Lixia Li, and Yufang Liu
Opt. Lett. 48(19) 5045-5048 (2023)

Topologically enabled ultrahigh-Q chiroptical resonances by merging bound states in the continuum

Shun Wan, Keda Wang, Fatian Wang, Chunying Guan, Wenjia Li, Jianlong Liu, Andrey Bogdanov, Pavel A. Belov, and Jinhui Shi
Opt. Lett. 47(13) 3291-3294 (2022)

Data availability

Data underlying the results presented in this Letter are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.