Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

On-chip ytterbium-doped lithium niobate microdisk lasers with high conversion efficiency

Not Accessible

Your library or personal account may give you access

Abstract

Integrated optical systems based on lithium niobate on insulator (LNOI) have attracted the interest of researchers. Recently, erbium-doped LNOI lasers have been realized. However, the reported lasers have a relatively lower conversion efficiency and only operate in the 1550 nm band. In this paper, we demonstrate an LNOI laser operating in the 1060 nm band based on a high Q factor ytterbium-doped LNOI microdisk cavity. The threshold and the conversion efficiency of the laser are 21.19 µW and 1.36%, respectively. To our knowledge, the conversion efficiency is the highest among the reported rare-earth-doped LNOI lasers. This research extends the operating band of LNOI lasers and shows the potential in realizing high-power LNOI lasers.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Integrated ytterbium-doped lithium niobate microring lasers

Qiang Luo, Chen Yang, Zhenzhong Hao, Ru Zhang, Rui Ma, Dahuai Zheng, Hongde Liu, Xuanyi Yu, Feng Gao, Fang Bo, Yongfa Kong, Guoquan Zhang, and Jingjun Xu
Opt. Lett. 47(6) 1427-1430 (2022)

On-chip erbium–ytterbium-co-doped lithium niobate microdisk laser with an ultralow threshold

Qiang Luo, Chen Yang, Zhenzhong Hao, Ru Zhang, Rui Ma, Dahuai Zheng, Hongde Liu, Xuanyi Yu, Feng Gao, Fang Bo, Yongfa Kong, Guoquan Zhang, and Jingjun Xu
Opt. Lett. 48(13) 3447-3450 (2023)

On-chip erbium-doped lithium niobate microring lasers

Qiang Luo, Chen Yang, Ru Zhang, Zhenzhong Hao, Dahuai Zheng, Hongde Liu, Xuanyi Yu, Feng Gao, Fang Bo, Yongfa Kong, Guoquan Zhang, and Jingjun Xu
Opt. Lett. 46(13) 3275-3278 (2021)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.