Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-photon microscopy with enhanced resolution and signal-to-background ratio using hollow Gaussian beam excitation

Not Accessible

Your library or personal account may give you access

Abstract

Two-photon microscopy (TPM) offers deeper imaging depth inside the scattering medium, however, it suffers from limited resolution owing to the longer excitation wavelength. We demonstrate the use of a hollow Gaussian beam (HGB) at the therapeutic window to improve the resolution and signal-to-background ratio (SBR). The HGB was produced by omitting the azimuthal phase term from the vortex mode, and the excitation point spread function (PSF) can be readily tuned by the mode order. The performance of the TPM with HGB was evaluated by experimentally imaging 100 nm fluorescent beads to estimate the PSF. The HGB improved the lateral resolution of the TPM by 36% in contrast to the conventional TPM. The HGB also furnishes an improvement of SBR by eliminating the out-of-focus light owing to its ring shape. Furthermore, we have used a translating lens-based module for additional lateral resolution tuning and reduced the resolution further down to 44% with respect to conventional TPM. Finally, we have performed imaging with merely two-dimensional scanning of a 50 µm thick mouse brain slice (Thy-YFP H-line) using the developed TPM with HGB. Our compact, robust, and low-cost design of the HGB generation scheme can easily be integrated into the commercial TPM to accommodate the improvements.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Resolution enhancement in an extended depth of field for volumetric two-photon microscopy

Hongsen He, Cihang Kong, Ka Yan Chan, W. L. So, Hiu Ka Fok, Yu-Xuan Ren, Cora S. W. Lai, Kevin K. Tsia, and Kenneth K. Y. Wong
Opt. Lett. 45(11) 3054-3057 (2020)

Exploiting the potential of commercial objectives to extend the field of view of two-photon microscopy by adaptive optics

Jing Yao, Yufeng Gao, Yixuan Yin, Puxiang Lai, Shiwei Ye, and Wei Zheng
Opt. Lett. 47(4) 989-992 (2022)

Volumetric two-photon microscopy with a non-diffracting Airy beam

Xiao-Jie Tan, Cihang Kong, Yu-Xuan Ren, Cora S. W. Lai, Kevin K. Tsia, and Kenneth K. Y. Wong
Opt. Lett. 44(2) 391-394 (2019)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.