Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

1024-ary composite OAM shift keying for free-space optical communication system decoded by a two-step neural network

Not Accessible

Your library or personal account may give you access

Abstract

The demand for high-dimensional encoding techniques for communication systems is increasing. Vortex beams carrying orbital angular momentum (OAM) provide new degrees of freedom for optical communication. In this study, we propose an approach for increasing the channel capacity of free-space optical communication systems by integrating superimposed orbital angular momentum (OAM) states and deep learning techniques. We generate composite vortex beams with topological charges ranging from −4 to 8 and radial coefficients ranging from 0 to 3. A phase difference among each OAM state is introduced to significantly increase the number of available superimposed states, achieving up to 1024-ary codes with distinct features. To accurately decode the high-dimensional codes, we propose a two-step convolutional neural network (CNN). The first step is to make a coarse classification of the codes, while the second step is to finely identify the code and achieve decoding. Our proposed method demonstrates 100% accuracy achieved for the coarse classification after 7 epochs, 100% accuracy achieved for the fine identification after 12 epochs, and 99.84% accuracy achieved for testing, which is much faster and more accurate than one-step decoding. To demonstrate the feasibility of our method, we successfully transmitted a 24-bit true-color Peppers image once with a resolution of 64 × 64 in the laboratory, yielding a bit error rate of 0.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
65,536-ary orbital angular momentum–shift keying free-space optical communication based on few-shot learning

Wenhui Chen, Qian Lin, Weicheng Chen, Zhishen Zhang, Zikuan Zhuang, Zhikun Su, and Li Zhang
Opt. Lett. 48(7) 1886-1889 (2023)

768-ary Laguerre-Gaussian-mode shift keying free-space optical communication based on convolutional neural networks

Haitao Luan, Dajun Lin, Keyao Li, Weijia Meng, Min Gu, and Xinyuan Fang
Opt. Express 29(13) 19807-19818 (2021)

Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator

Qinghua Tian, Zhe Li, Kang Hu, Lei Zhu, Xiaolong Pan, Qi Zhang, Yongjun Wang, Feng Tian, Xiaoli Yin, and Xiangjun Xin
Opt. Express 26(21) 27849-27864 (2018)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.