Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Kernel-attentive weight modulation memory network for optical blur kernel-aware image super-resolution

Not Accessible

Your library or personal account may give you access

Abstract

Recently, imaging systems have exhibited remarkable image restoration performance through optimized optical systems and deep-learning-based models. Despite advancements in optical systems and models, severe performance degradation occurs when the predefined optical blur kernel differs from the actual kernel while restoring and upscaling the images. This is because super-resolution (SR) models assume that a blur kernel is predefined and known. To address this problem, various lenses could be stacked, and the SR model could be trained with all available optical blur kernels. However, infinite optical blur kernels exist in reality; thus, this task requires the complexity of the lens, substantial model training time, and hardware overhead. To resolve this issue by focusing on the SR models, we propose a kernel-attentive weight modulation memory network by adaptively modulating SR weights according to the shape of the optical blur kernel. The modulation layers are incorporated into the SR architecture and dynamically modulate the weights according to the blur level. Extensive experiments reveal that the proposed method improves peak signal-to-noise ratio performance, with an average gain of 0.83 dB for blurred and downsampled images. An experiment with a real-world blur dataset demonstrates that the proposed method can handle real-world scenarios.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Registration-free 3D super-resolution generative deep-learning network for fluorescence microscopy imaging

Hang Zhou, Yuxin Li, Bolun Chen, Hao Yang, Maoyang Zou, Wu Wen, Yayu Ma, and Min Chen
Opt. Lett. 48(23) 6300-6303 (2023)

Single-shot image restoration via a model-enhanced network with unpaired supervision in an optical sparse aperture system

Ju Tang, Jiawei Zhang, Zhenbo Ren, Jianglei Di, Xiaoyan Wu, and Jianlin Zhao
Opt. Lett. 48(18) 4849-4852 (2023)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental Document

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.