Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Low-loss microwave photonic switching for satellite communication

Not Accessible

Your library or personal account may give you access

Abstract

For traditional switching architecture, packet switching performs fine granularity data packet forwarding, but its digital signal processing (DSP) has high power consumption (PC). All-optical switching provides rapid exchange of wavelength resources, which has coarse granularity. In scenarios where the PC is limited, such as broadband satcom, a switching architecture with lower PC and finer granularity than optical switching would be useful. In this paper, we propose a novel, to the best of our knowledge, low-loss microwave photonic switching architecture that can exchange subband signals across beams and frequency bands. The switching process is realized by exchanging optical carriers instead of payload signals, which does not degrade the signal power, guaranteeing the signal-to-noise ratio (SNR). We conducted a proof-of-concept experiment of 2 × 2 switching with two 1.2-GBaud quadrature phase-shift keying (QPSK) signals; an error vector magnitude (EVM) of or less than 13.87% is realized after forwarding. The proposed system has the advantages of low PC, high SNR, and fine granularity, and is very promising for flexible forwarding in future satcom systems.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Microwave photonic frequency down-conversion and channel switching for satellite communication

Sha Zhu, Xiaojie Fan, Ming Li, Ning Hua Zhu, and Wei Li
Opt. Lett. 45(18) 5000-5003 (2020)

Photonic super-resolution millimeter-wave joint radar-communication system using self-coherent detection

Wenlin Bai, Peixuan Li, Xihua Zou, Ningyuan Zhong, Wei Pan, Lianshan Yan, and Bin Luo
Opt. Lett. 48(3) 608-611 (2023)

Low latency microwave photonic RTFT processing based on bandwidth slicing and equivalent dispersion

Jilong Li, Yue Wang, Songnian Fu, Xiangzhi Xie, Meng Xiang, Feifei Yin, Yitang Dai, Jun Yang, and Yuwen Qin
Opt. Lett. 48(12) 3131-3134 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.