Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nanoimprinted patterned sapphire with silica array for efficient InGaN-based green mini-LEDs

Not Accessible

Your library or personal account may give you access

Abstract

Here, we propose nanoimprinted patterned sapphire with a silica array (PSSA) with the aim to promote the efficiency of InGaN-based green (∼520 nm) mini-LEDs. According to x-ray diffraction measurements, the threading dislocation density of GaN epitaxial layers grown on nanoimprinted PSSA demonstrates a pronounced reduction compared with the epilayers on the conventional patterned sapphire substrate (PSS). Consequently, a mini-LED on PSSA exhibits a significantly boosted light output power (LOP) in comparison to a mini-LED on PSS. At 10 mA, the LOP of the mini-LED on PSS is 6.0 mW, and this is further improved to 6.8 mW for the mini-LED on PSSA. Moreover, the peak external quantum efficiencies of the mini-LEDs on PSS and PSSA are 41% and 47%, respectively. A three-dimensional (3D) finite-difference time-domain simulation demonstrates that the PSSA contributes enhanced light extraction for photons emitted from the active region. It is also highly feasible to use this nanoimprinted PSSA technology in red and blue mini-LEDs for the realization of full-color displays.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
High-efficiency InGaN-based LEDs grown on patterned sapphire substrates

Xiao-Hui Huang, Jian-Ping Liu, Jun-Jie Kong, Hui Yang, and Huai-Bing Wang
Opt. Express 19(S4) A949-A955 (2011)

High external quantum efficiency (6.5%) InGaN V-defect LEDs at 600 nm on patterned sapphire substrates

Jacob J. Ewing, Cheyenne Lynsky, Matthew S. Wong, Feng Wu, Yi Chao Chow, Pavel Shapturenka, Michael Iza, Shuji Nakamura, Steven P. Denbaars, and James S. Speck
Opt. Express 31(25) 41351-41360 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.