Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Online trace detection of mercury ions with enhanced fluorescence excitation within metal-lined hollow-core fiber

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, we present a portable all-fiber fluorescent detection system based on metal-lined hollow-core fiber (MLHCF) for the ultra-sensitive real-time monitoring of mercury ions (Hg2+). The system employs a rhodamine derivative as the probe. The hollow core of the MLHCF serves as both the flow channel of the liquid sample and the waveguide of the optical path. The metal coating in the intermediate layer between the capillary and the polyimide (PI) coating in the MLHCF provides good light confinement, enhancing the interaction between the sample and the incident light for better fluorescence excitation and collection efficiency. Additionally, further enhancement is achieved by placing an inserted filter along the light path to reflect the excitation light back to the MLHCF. A 3-cm length of MLHCF enables simultaneous excitation of a 40-µL sample volume and collection of most of its fluorescent signal in all directions, thereby significantly contributing to its exceptional sensitivity with a limit of detection (LOD) of 2.3 ng/L. The all-fiber fluorescence-enhanced detection device also shows rapid response time, excellent reusability, and selectivity. This system presents an online, reproducible, and portable solution for the trace detection of Hg2+ and provides a promising way for detecting other heavy metal ions.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Optofluidic in-fiber integrated surface-enhanced Raman spectroscopy detection based on a hollow optical fiber with a suspended core

Danheng Gao, Xinghua Yang, Pingping Teng, Zhihai Liu, Jun Yang, Depeng Kong, Jianzhong Zhang, Meng Luo, Zhanao Li, Fengjun Tian, and Libo Yuan
Opt. Lett. 44(21) 5173-5176 (2019)

Volumetric enhancement of Raman scattering for fast detection based on a silver-lined hollow-core fiber

Qian Chu, Zhiqiang Jin, Xingtao Yu, Caoxin Li, Weihua Zhang, Wenbing Ji, Bo Lin, Perry Ping Shum, Xuping Zhang, and Guanghui Wang
Opt. Express 27(7) 10370-10382 (2019)

All-fiber online Raman sensor with enhancement via a Fabry–Perot cavity

Xingtao Yu, Caoxin Li, Dora Juan Juan Hu, Karolina Milenko, Guanghui Wang, Ping Shum, Fei Xu, Yanqing Lu, and Xuping Zhang
Opt. Lett. 45(20) 5760-5763 (2020)

Data availability

Data underlying the results presented in this Letter are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.