Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantum generative adversarial learning in photonics

Not Accessible

Your library or personal account may give you access

Abstract

Quantum generative adversarial networks (QGANs), an intersection of quantum computing and machine learning, have attracted widespread attention due to their potential advantages over classical analogs. However, in the current era of noisy intermediate-scale quantum (NISQ) computing, it is essential to investigate whether QGANs can perform learning tasks on near-term quantum devices usually affected by noise and even defects. In this Letter, using a programmable silicon quantum photonic chip, we experimentally demonstrate the QGAN model in photonics for the first time to our knowledge and investigate the effects of noise and defects on its performance. Our results show that QGANs can generate high-quality quantum data with a fidelity higher than 90%, even under conditions where up to half of the generator’s phase shifters are damaged, or all of the generator and discriminator’s phase shifters are subjected to phase noise up to 0.04π. Our work sheds light on the feasibility of implementing QGANs on the NISQ-era quantum hardware.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Experimental quantum natural gradient optimization in photonics

Yizhi Wang, Shichuan Xue, Yaxuan Wang, Jiangfang Ding, Weixu Shi, Dongyang Wang, Yong Liu, Yingwen Liu, Xiang Fu, Guangyao Huang, Anqi Huang, Mingtang Deng, and Junjie Wu
Opt. Lett. 48(14) 3745-3748 (2023)

Efficient option pricing with a unary-based photonic computing chip and generative adversarial learning

Hui Zhang, Lingxiao Wan, Sergi Ramos-Calderer, Yuancheng Zhan, Wai-Keong Mok, Hong Cai, Feng Gao, Xianshu Luo, Guo-Qiang Lo, Leong Chuan Kwek, José Ignacio Latorre, and Ai Qun Liu
Photon. Res. 11(10) 1703-1712 (2023)

All-photonic quantum repeater for multipartite entanglement generation

Chen-Long Li, Yao Fu, Wen-Bo Liu, Yuan-Mei Xie, Bing-Hong Li, Min-Gang Zhou, Hua-Lei Yin, and Zeng-Bing Chen
Opt. Lett. 48(5) 1244-1247 (2023)

Supplementary Material (1)

NameDescription
Supplement 1       Supplement 1

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.