Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fully integrated on-chip FBG interrogator for high-accuracy measurement of wavelengths

Not Accessible

Your library or personal account may give you access

Abstract

We present the design and fabrication of an on-chip FBG interrogator based on arrayed waveguide grating (AWG) technology. The spectral overlap between adjacent channels in the integrated AWG is significantly enhanced through a combination approach involving the reduction of the output waveguide spacing and an increase in the input waveguide width. As a result of these design choices, our AWG demonstrates excellent spectral consistency, with spectral cross talk exceeding 30 dB. The interrogator seamlessly combining optical and circuitry components achieves full integration and enables a wide range of interrogation wavelengths, including C-band and L-band. With an interrogation range extending up to 80 nm, it theoretically has the capacity to simultaneously interrogate the wavelengths of 20 FBG sensors. Experimental findings demonstrate an absolute interrogation accuracy of less than 2 pm for the fully integrated interrogator. With its compact size, cost-effectiveness, exceptional precision, and ease of integration, the proposed interrogator holds a substantial promise for widespread application in the realm of FBG sensing.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
High-performance interrogator with bilateral input MMI-based AWG

Shufeng Li, Pei Yuan, Ting Li, Bingxiang Li, Ran Xu, Yiyao Yang, and Lianqing Zhu
Opt. Lett. 49(3) 454-457 (2024)

Monolithic integrated chip of AWG and PD for an FBG interrogation system

Ting Li, Pei Yuan, Shufeng Li, Ran Xu, Bingxiang Li, Yiyao Yang, and Lianqing Zhu
Opt. Express 32(9) 15827-15839 (2024)

Chip-scale demonstration of hybrid III–V/silicon photonic integration for an FBG interrogator

Hongqiang Li, Xiangdong Ma, Beibei Cui, Youxi Wang, Cheng Zhang, Junfa Zhao, Zanyun Zhang, Chunxiao Tang, and Enbang Li
Optica 4(7) 692-700 (2017)

Supplementary Material (1)

NameDescription
Supplement 1       Related simulations and supplementary experiments on the wavelength interrogation capability of the interrogator

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.