Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dispersed fringe cophasing method based on principal component analysis

Not Accessible

Your library or personal account may give you access

Abstract

With the success of the Webb telescope, dispersed fringe sensing (DFS), with the significant merit of a large capture range, is proving to be a promising cophasing approach for a large-aperture segmented telescope. In this Letter, a novel, to the best of our knowledge, piston error extraction method based on principal component analysis (PCA) technology is proposed. In this method, all the one-dimension intensity distributions along the dispersion axis for different interference positions are regarded as a set of random phase-shifted interference signals. PCA technology is utilized to obtain its corresponding continuous principal phase and the piston error could be directly estimated proportionally from the slope of the phase–wavenumber line. This method avoids nonlinear operations, similar to Shi’s traditional framework; no active move is needed for fine cophasing, and the method is also free of characteristic constant calibration in sidelobe peak displacement- and slope-based methods. Preliminary simulations of the method’s coarse-then-fine cophasing ability with high accuracy are presented here to show its potential.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Optimal principal component analysis-based numerical phase aberration compensation method for digital holography

Jiasong Sun, Qian Chen, Yuzhen Zhang, and Chao Zuo
Opt. Lett. 41(6) 1293-1296 (2016)

Model-based large-dynamic iterative piston correction using extended objects

Zexia Zhang and Bing Dong
Opt. Lett. 48(14) 3681-3684 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.