Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Controllable atomic collision in a tight optical dipole trap

Not Accessible

Your library or personal account may give you access

Abstract

Single atoms are interesting candidates for studying quantum optics and quantum information processing. Recently, trapping and manipulation of single atoms using tight optical dipole traps has generated considerable interest. Here we report an experimental investigation of the dynamics of atoms in a modified optical dipole trap with a backward propagating dipole trap beam, where a change in the two-atom collision rate by six times has been achieved. The theoretical model presented gives a prediction of high probabilities of few-atom loading rates under proper experimental conditions. This work provides an alternative approach to the control of the few-atom dynamics in a dipole trap and the study of the collective quantum optical effects of a few atoms.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Dipole force free optical control and cooling of nanofiber trapped atoms

Christoffer Østfeldt, Jean-Baptiste S. Béguin, Freja T. Pedersen, Eugene S. Polzik, Jörg H. Müller, and Jürgen Appel
Opt. Lett. 42(21) 4315-4318 (2017)

Resonator-enhanced optical dipole trap for fermionic lithium atoms

A. Mosk, S. Jochim, H. Moritz, Th. Elsässer, M. Weidemüller, and R. Grimm
Opt. Lett. 26(23) 1837-1839 (2001)

Magneto-optical trapping and ultracold collisions of potassium atoms

R. S. Williamson and T. Walker
J. Opt. Soc. Am. B 12(8) 1393-1397 (1995)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.