Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dispersion engineering of spoof plasmonic metamaterials via interdigital capacitance structures

Not Accessible

Your library or personal account may give you access

Abstract

This work presents an approach to realize the dispersion engineering of spoof plasmonic metamaterials with controllable cutoff frequencies. Interdigital capacitance structures are applied to construct the unit cells. Dispersion properties are firstly analyzed to investigate the effects of interdigital capacitance, and the influence of the geometrical parameters of the proposed unit cell on the cutoff frequencies is studied. Then, a spoof surface plasmon polariton (SSPP) transmission line (TL) is developed based on the proposed unit cell together with a smooth transition. The matching principles of the transition are explained by the dispersion curves and the normalized impedance of the corresponding matching unit cells. Finally, the transmission characteristics of the TL are simulated and measured to validate the feasibility of the proposed strategy. Both the lower and upper cutoff frequencies can be tuned jointly by the extra degrees of freedom provided by the interdigital capacitance structures. In comparison with designs based on a substrate-integrated waveguide (SIW), the proposed strategy can reduce the transversal dimension by a factor of two under the same conditions. This work can greatly accelerate the development of versatile microwave integrated circuits and systems based on spoof plasmonic metamaterials.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Short-circuited stub-loaded spoof surface plasmon polariton transmission lines with flexibly controllable lower out-of-band rejections

Dawei Zhang, Yaxiu Sun, Kuang Zhang, Qun Wu, and Tao Jiang
Opt. Lett. 46(17) 4354-4357 (2021)

Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency

Dawei Zhang, Kuang Zhang, Qun Wu, Ruiwei Dai, and Xuejun Sha
Opt. Lett. 43(13) 3176-3179 (2018)

High-efficiency broadband excitation and propagation of second-mode spoof surface plasmon polaritons by a complementary structure

Dawei Zhang, Kuang Zhang, Qun Wu, Guohui Yang, and Xuejun Sha
Opt. Lett. 42(14) 2766-2769 (2017)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.