Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Resolution enhancement for interrogating fiber Bragg grating sensor network using dilated U-Net

Not Accessible

Your library or personal account may give you access

Abstract

In the fiber Bragg grating (FBG) sensor network, the signal resolution of the reflected spectrum is correlated with the network's sensing accuracy. The interrogator determines the signal resolution limits, and a coarser resolution results in an enormous uncertainty in sensing measurement. In addition, the multi-peak signals from the FBG sensor network are often overlapped; this increases the complexity of the resolution enhancement task, especially when the signals have a low signal-to-noise ratio (SNR). Here, we show that deep learning with U-Net architecture can enhance the signal resolution for interrogating the FBG sensor network without hardware modifications. The signal resolution is effectively enhanced by 100 times with an average root mean square error (RMSE) < 2.25 pm. The proposed model, therefore, allows the existing low-resolution interrogator in the FBG setup to function as though it contains a much higher-resolution interrogator.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Dilated convolutional neural networks for fiber Bragg grating signal demodulation

Baocheng Li, Zhi-Wei Tan, Perry Ping Shum, Chenlu Wang, Yu Zheng, and Liang jie Wong
Opt. Express 29(5) 7110-7123 (2021)

Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform

Yiping Wang, Jiejun Zhang, Olympio Coutinho, and Jianping Yao
Opt. Lett. 40(21) 4923-4926 (2015)

Plasmonic biosensing with tilted fiber Bragg gratings interrogated using a 512-pixel spectrometer

Maxime Lobry, Corentin Guyot, Damien Kinet, Karima Chah, and Christophe Caucheteur
Opt. Lett. 48(4) 976-979 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.