Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Enhancing tissue imaging contrast in photoacoustic tomography using the ultrasound thermal effect

Not Accessible

Your library or personal account may give you access

Abstract

Photoacoustic imaging is a powerful technique for obtaining high-resolution images of vascular distribution and physiological information about blood by utilizing the light absorption coefficient as an imaging contrast. However, visualizing weakly light-absorbing components without specific contrast agents or multi-wavelength techniques presents a challenge due to significant differences in light absorption between these components and blood. In this study, we propose a novel method that leverages the thermal effect of ultrasound to induce temperature differences and enhance the contrast of photoacoustic imaging. We conducted phantom experiments to verify the feasibility of our method. Our method effectively highlighted weakly light-absorbing components with strong acoustic absorption, even in the presence of highly light-absorbing components such as blood or melanin. Furthermore, it enabled the differentiation of components with similar light absorption but different acoustic absorption.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Data-driven method of super-resolution image recovery for speckle-illumination photoacoustic computed tomography

Tianhua Zhou, Boyi Li, Xin Liu, and Dean Ta
Opt. Lett. 49(8) 1949-1952 (2024)

Thermal-tagging photoacoustic remote sensing flowmetry

Yun Lu, Yunxu Sun, Zhousheng Shen, Xiaochuan Xu, Ting Ma, Chang Peng, Fenfang Li, Chengqing Ning, Jiawei Wang, Shutian Liu, Zhengjun Liu, Lingji Xu, and Wei Liu
Opt. Lett. 49(7) 1725-1728 (2024)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.