Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Full-day profiling of a beam attenuation coefficient using a single-photon underwater lidar with a large dynamic measurement range

Not Accessible

Your library or personal account may give you access

Abstract

A compact underwater lidar system, utilizing a single-photon detection technology, is proposed to effectively eliminate interference from the sea–air interface and enhance the accuracy of water optical property measurements. However, the high sensitivity of the single-photon detector poses challenges, including daytime operation difficulties due to strong solar radiation noise and detector saturation from near-field lidar signals. To address these issues, the laser and optical receiver of the lidar are optimized to suppress solar radiation noise, and a dual-telescope structure is introduced to improve the dynamic measurement range beyond 70 dB. In addition, a Monte Carlo simulation establishes the relationship between beam attenuation coefficients (c) and lidar attenuation coefficients (Klidar), enabling the retrieval of c profiles from Klidar. A field experiment conducted in the South China Sea, spanning from inshore to offshore waters, demonstrates the effectiveness of the lidar. The results highlight its potential applications, including the assessment of subsurface particulate organic carbon (POC).

© 2024 Optica Publishing Group

Full Article  |  PDF Article

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.