Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Full Stokes polarimetry based on an inverse-designed multi-foci metalens

Not Accessible

Your library or personal account may give you access

Abstract

In the realm of metasurface-based polarimetry, well-known for its remarkable compactness and integration capabilities, previous attempts have been hindered by limitations such as the restricted choices of target polarization states and the inefficient focusing of light. To address these problems, this study introduces and harnesses a novel, to our knowledge, forward-solving model, grounded in the equivalence principle and dyadic Green’s function, to inversely optimize the vectorial focusing patterns of metalenses. Leveraging this methodology, we develop and experimentally validate a single multi-foci metalens-based polarimeter, capable of simultaneously separating and concentrating four distinct elliptical polarization states at a wavelength of 10.6 µm. Rigorous experimental evaluations, involving the assessment of 18 scalar polarized beams, reveal an average error of 5.92% and a high contrast ratio of 0.92, which demonstrates the efficacy of the polarimeter. The results underscore the potential of our system in diverse sectors, including military defense, healthcare, and autonomous vehicle technology.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
On-chip multi-trap optical tweezers based on a guided wave-driven metalens

Gang Yu, Jiaqi Guo, Jianwei Shi, Xu Mao, Hongsheng Ding, Houzhi Zheng, and Chao Shen
Opt. Lett. 49(5) 1225-1228 (2024)

Terahertz metalens for generating multi-polarized focal points and images with uniform intensity distributions

Binbin Lu, Yefei Fu, Teng Zhang, Zuanming Jin, Xiaofei Zang, and Yiming Zhu
Opt. Lett. 49(9) 2241-2244 (2024)

Multi-foci metalens for terahertz polarization detection

Ruoxing Wang, Jin Han, Jianlong Liu, Hao Tian, Weimin Sun, Li Li, and Xianzhong Chen
Opt. Lett. 45(13) 3506-3509 (2020)

Supplementary Material (1)

NameDescription
Supplement 1       supplementary material

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.