Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Pulse-width-dependent critical power for self-focusing of ultrashort laser pulses in bulk dielectrics

Not Accessible

Your library or personal account may give you access

Abstract

Microscale filamentation of 0.25 NA-focused, linearly and circularly polarized 1030 nm and 515 nm ultrashort laser pulses of variable pulse widths in fused silica, fluorite, and natural and synthetic diamonds demonstrates the Raman–Kerr effect in the form of critical pulse power magnitudes, proportional to squared wavelength and inversely proportional to laser pulse width of 0.3–10 ps. The first trend represents the common spectral relationship between the quantities, while the second indicates its time-integrated inertial contribution of Raman-active lattice polarization, appearing in transmission spectra via ultrafast optical-phonon Raman scattering. The optical-phonon contribution to the nonlinear polarization could come from laser field-induced spontaneous/stimulated Raman scattering and coherent optical phonons generated by electron–hole plasma with its clamped density in the nonlinear focus. Almost constant product value of the (sub)picosecond laser pulse widths and corresponding critical pulse powers for self-focusing and filamentation in the dielectrics (“critical pulse energy”) apparently implies constant magnitude of the nonlinear polarization and other “clamped” filamentation parameters at the given wavelength.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Critical power for self-focusing in bulk media and in hollow waveguides

Gadi Fibich and Alexander L. Gaeta
Opt. Lett. 25(5) 335-337 (2000)

Temperature-dependent second-harmonic generation from color centers in diamond

Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase
Opt. Lett. 47(7) 1693-1696 (2022)

IR femtosecond laser micro-filaments in diamond visualized by inter-band UV photoluminescence

S. I. Kudryashov, A. O. Levchenko, P. A. Danilov, N. A. Smirnov, and A. A. Ionin
Opt. Lett. 45(7) 2026-2029 (2020)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.