Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser cooling experiments to measure the quantum efficiency of Yb-doped silica fibers

Abstract

A detailed investigation into the wavelength-dependent cooling efficiencies of two ultra-pure large core diameter ytterbium-doped silica fibers is carried out by means of the laser-induced thermal modulation spectroscopy (LITMoS) method. From these measurements, an external quantum efficiency of 0.99 is obtained for both fibers. Optimal cooling is seen for pump wavelengths between 1032 and 1035 nm. The crossover wavelength from heating to cooling is identified to be between 1018 and 1021 nm. The fiber with higher Yb3+ ion density exhibits better cooling, seen by the input power normalized temperature differential.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Laser cooling of a Yb doped silica fiber by 18 Kelvin from room temperature

Brian Topper, Mostafa Peysokhan, Alexander R. Albrecht, Angel S. Flores, Stefan Kuhn, Denny Hässner, Sigrun Hein, Christian Hupel, Johannes Nold, Nicoletta Haarlammert, Thomas Schreiber, Mansoor Sheik-Bahae, and Arash Mafi
Opt. Lett. 46(22) 5707-5710 (2021)

Experimental comparison of silica fibers for laser cooling

Jennifer Knall, Magnus Engholm, John Ballato, Peter D. Dragic, Nanjie Yu, and Michel J. F. Digonnet
Opt. Lett. 45(14) 4020-4023 (2020)

Laser cooling in a silica optical fiber at atmospheric pressure

Jennifer Knall, Pierre-Baptiste Vigneron, Magnus Engholm, Peter D. Dragic, Nanjie Yu, John Ballato, Martin Bernier, and Michel J. F. Digonnet
Opt. Lett. 45(5) 1092-1095 (2020)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.