Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Bistable response and quasi-periodicity excitation of the internal dynamics of soliton molecules

Not Accessible

Your library or personal account may give you access

Abstract

Soliton molecules, a frequently observed phenomenon in most mode-locked lasers, have intriguing characteristics comparable to their matter molecule counterparts. However, there are rare explorations of the deterministic control of the underlying physics within soliton molecules. Here, we demonstrate the bistable response of intramolecular motion to external stimuli and identify a general approach to excite their quasi-periodic oscillations. By introducing frequency-swept gain modulation, the intrinsic resonance frequency of the soliton molecule is observed in the simulation model. Applying stronger modulation, the soliton molecule exhibits divergent response susceptibility to up- and down-sweeping, accompanied by a jump phenomenon. Quasi-periodic intramolecular oscillations appear at the redshifted resonance frequency. Given the leading role of bistability and quasi-periodic dynamics in nonlinear physics, our research provides insights into the complex nonlinear dynamics within dissipative soliton molecules. It may pave the way to related experimental studies on synchronization and chaos at an ultrafast time scale.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Collision dynamics between soliton molecules and a single soliton: exploding soliton pair and periodic soliton explosions

Runmin Liu, Defeng Zou, Youjian Song, and Minglie Hu
Opt. Lett. 49(8) 1985-1988 (2024)

Synchronization of the internal dynamics of optical soliton molecules

Defeng Zou, Youjian Song, Omri Gat, Minglie Hu, and Philippe Grelu
Optica 9(11) 1307-1313 (2022)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental Document

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.