M. Shabaninezhad, A. Kayani, and G. Ramakrishna, “Theoretical investigation of optical properties of embedded plasmonic nanoparticles,” Chem. Phys. 541, 111044 (2021).
[Crossref]
O. I. Shipilova, S. P. Gorbunov, V. L. Paperny, A. A. Chernykh, V. P. Dresvyansky, E. F. Martynovich, and A. L. Rakevich, “Fabrication of metal-dielectric nanocomposites using a table-top ion implanter,” Surf. Coat. Tech. 393, 125742 (2020).
[Crossref]
C. Pang, R. Li, Z. Li, N. Dong, F. Ren, J. Wang, and F. Chen, “A novel hierarchical nanostructure for enhanced optical nonlinearity based on scattering mechanism,” Small 16(39), 2003172 (2020).
[Crossref]
Y. Sun, G. Wang, T. Zhang, C. Liu, and J. Wang, “Periodically alternated metallic/dielectric nanocomposites and dielectric films for the fabrication of high-efficiency Bragg reflectors: a case study,” Appl. Phys. Express 13(7), 072001 (2020).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
D. Qi, F. Chen, X. Wang, H. Luo, Y. Cheng, X. Niu, and R. Gong, “Effective strategy for visible-infrared compatible camouflage: surface graphical one-dimensional photonic crystal,” Opt. Lett. 43(21), 5323–5326 (2018).
[Crossref]
K. D. Devi, S. Ojha, and F. Singh, “Influence of thermal annealing and radiation enhanced diffusion processes on surface plasmon resonance of gold implanted dielectric matrices,” Radiat. Phys. Chem. 144, 141–148 (2018).
[Crossref]
Y. Niu, Y. Wang, G. Wang, T. Zhang, and C. Liu, “Enhanced optical linearity and nonlinearity of Nd:YAG crystal embedded with Ag nanoparticles by prior Zn ion implantation,” Opt. Mater. Express 8(12), 3666–3675 (2018).
[Crossref]
J. Wang, X. Mu, G. Wang, and C. Liu, “Two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers and their vertical input coupling properties,” Opt. Mater. 73, 466–472 (2017).
[Crossref]
E. A. Sarduy, S. Callegari, D. G. F. del Valle, A. Desii, I. Kriegel, and F. Scotognella, “Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal,” Beilstein J. Nanotechnol. 7, 1404–1410 (2016).
[Crossref]
D. Ila, J. E. E. Baglin, and R. L. Zimmerman, “Nano-crystal formation and growth from high-fluence ion implantation of Au, Ag or Cu in silica,” Phys. Procedia 66, 548–555 (2015).
[Crossref]
Z. Hu, C. Tao, F. Wang, X. Zou, and J. Wang, “Flexible metal–organic framework-based one-dimensional photonic crystals,” J. Mater. Chem. C 3(1), 211–216 (2015).
[Crossref]
R. Frank, “Non-equilibrium polaritonics-non-linear effects and optical switching,” Ann. Phys. 525(1-2), 66–73 (2013).
[Crossref]
G. von Freymann, V. Kitaev, B. V. Lotsch, and G. A. Ozin, “Bottom-up assembly of photonic crystals,” Chem. Soc. Rev. 42(7), 2528–2554 (2013).
[Crossref]
R. Frank, “Coherent control of Floquet-mode dressed plasmon polaritons,” Phys. Rev. B 85(19), 195463 (2012).
[Crossref]
S. Husaini, L. Deych, and V. M. Menon, “Plasmon-resonance-induced enhancement of the reflection band in a one-dimensional metal nanocomposite photonic crystal,” Opt. Lett. 36(8), 1368–1370 (2011).
[Crossref]
F. Singh, J. C. Pivin, D. D. Malisnovska, and J. P. Stoquert, “Swift heavy ion interaction with silver–silica nanocomposites: an experimental surface plasmon resonance study,” J. Phys. D: Appl. Phys. 44(32), 325101 (2011).
[Crossref]
P. K. Kuiri, “Size saturation in low energy ion beam synthesized nanoparticles in silica glass: 50 keV Ag− ions implantation, a case study,” J. Appl. Phys. 108(5), 054301 (2010).
[Crossref]
A. L. Stepanov, “Synthesis of silver nanoparticles in dielectric matrix by ion implantation: a review,” Rev. Adv. Mater. Sci. 26(1-2), 1–29 (2010).
M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 1–6 (2008).
[Crossref]
C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(5), 389–399 (2007).
[Crossref]
J. Dong, G. Liang, Y. Chen, and H. Wang, “Robust absorption broadband in one-dimensional metallic-dielectric quasi-periodic structure,” Opt. Express 14(5), 2014–2020 (2006).
[Crossref]
M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognetc, and B. Lounisc, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8(30), 3486–3495 (2006).
[Crossref]
I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[Crossref]
M. Patrini, M. Galli, M. Belotti, L. C. Andreani, and G. Guizzetti, “Optical response of one-dimensional (Si/SiO2)m photonic crystals,” J. Appl. Phys. 92(4), 1816–1820 (2002).
[Crossref]
D. Sotta, E. Hadji, N. Magnea, E. Delamadeleine, P. Besson, P. Renard, and H. Moriceau, “Resonant optical microcavity based on crystalline silicon active layer,” J. Appl. Phys. 92(4), 2207–2209 (2002).
[Crossref]
S. Rabaste, J. Bellessa, A. Brioude, C. Bovier, J. C. Plenet, R. Brenier, O. Marty, J. Mugnier, and J. Dumas, “Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities,” Thin Solid Films 416(1-2), 242–247 (2002).
[Crossref]
G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, and A. Miotello, “Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere,” J. Appl. Phys. 92(8), 4249–4254 (2002).
[Crossref]
G. W. Pickrell, H. C. Lin, K. L. Chang, K. C. Hsieh, and K. Y. Cheng, “Fabrication of GaP/Al–oxide distributed Bragg reflectors for the visible spectrum,” Appl. Phys. Lett. 78(8), 1044–1046 (2001).
[Crossref]
F. C. Peiris, S. Lee, U. Bindley, and J. K. Furdyna, “ZnMgSe/ZnCdSe and ZnMgSe/ZnSeTe distributed Bragg reflectors grown by molecular beam epitaxy,” J. Appl. Phys. 86(2), 719–724 (1999).
[Crossref]
M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films,” Chem. Phys. Lett. 315(5-6), 313–320 (1999).
[Crossref]
K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75(6), 3075–3080 (1994).
[Crossref]
P. W. Voorhees, “The theory of Ostwald ripening,” J. Stat. Phys. 38(1-2), 231–252 (1985).
[Crossref]
J. A. Marqusee and J. Ross, “Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction,” J. Chem. Phys. 80(1), 536–543 (1984).
[Crossref]
D. R. Collins, D. K. Schroder, and C. T. Sah, “Gold diffusivities in SiO2 and Si using the MOS structure,” Appl. Phys. Lett. 8(12), 323–325 (1966).
[Crossref]
W. T. Doyle, “Absorption of light by colloids in alkali halide crystals,” Phys. Rev. 111(4), 1067–1072 (1958).
[Crossref]
J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A 203, 359–371 (1904).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
M. Patrini, M. Galli, M. Belotti, L. C. Andreani, and G. Guizzetti, “Optical response of one-dimensional (Si/SiO2)m photonic crystals,” J. Appl. Phys. 92(4), 1816–1820 (2002).
[Crossref]
D. Ila, J. E. E. Baglin, and R. L. Zimmerman, “Nano-crystal formation and growth from high-fluence ion implantation of Au, Ag or Cu in silica,” Phys. Procedia 66, 548–555 (2015).
[Crossref]
S. Rabaste, J. Bellessa, A. Brioude, C. Bovier, J. C. Plenet, R. Brenier, O. Marty, J. Mugnier, and J. Dumas, “Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities,” Thin Solid Films 416(1-2), 242–247 (2002).
[Crossref]
M. Patrini, M. Galli, M. Belotti, L. C. Andreani, and G. Guizzetti, “Optical response of one-dimensional (Si/SiO2)m photonic crystals,” J. Appl. Phys. 92(4), 1816–1820 (2002).
[Crossref]
M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognetc, and B. Lounisc, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8(30), 3486–3495 (2006).
[Crossref]
D. Sotta, E. Hadji, N. Magnea, E. Delamadeleine, P. Besson, P. Renard, and H. Moriceau, “Resonant optical microcavity based on crystalline silicon active layer,” J. Appl. Phys. 92(4), 2207–2209 (2002).
[Crossref]
F. C. Peiris, S. Lee, U. Bindley, and J. K. Furdyna, “ZnMgSe/ZnCdSe and ZnMgSe/ZnSeTe distributed Bragg reflectors grown by molecular beam epitaxy,” J. Appl. Phys. 86(2), 719–724 (1999).
[Crossref]
S. Rabaste, J. Bellessa, A. Brioude, C. Bovier, J. C. Plenet, R. Brenier, O. Marty, J. Mugnier, and J. Dumas, “Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities,” Thin Solid Films 416(1-2), 242–247 (2002).
[Crossref]
S. Rabaste, J. Bellessa, A. Brioude, C. Bovier, J. C. Plenet, R. Brenier, O. Marty, J. Mugnier, and J. Dumas, “Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities,” Thin Solid Films 416(1-2), 242–247 (2002).
[Crossref]
S. Rabaste, J. Bellessa, A. Brioude, C. Bovier, J. C. Plenet, R. Brenier, O. Marty, J. Mugnier, and J. Dumas, “Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities,” Thin Solid Films 416(1-2), 242–247 (2002).
[Crossref]
M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 1–6 (2008).
[Crossref]
E. A. Sarduy, S. Callegari, D. G. F. del Valle, A. Desii, I. Kriegel, and F. Scotognella, “Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal,” Beilstein J. Nanotechnol. 7, 1404–1410 (2016).
[Crossref]
G. W. Pickrell, H. C. Lin, K. L. Chang, K. C. Hsieh, and K. Y. Cheng, “Fabrication of GaP/Al–oxide distributed Bragg reflectors for the visible spectrum,” Appl. Phys. Lett. 78(8), 1044–1046 (2001).
[Crossref]
K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75(6), 3075–3080 (1994).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
C. Pang, R. Li, Z. Li, N. Dong, F. Ren, J. Wang, and F. Chen, “A novel hierarchical nanostructure for enhanced optical nonlinearity based on scattering mechanism,” Small 16(39), 2003172 (2020).
[Crossref]
D. Qi, F. Chen, X. Wang, H. Luo, Y. Cheng, X. Niu, and R. Gong, “Effective strategy for visible-infrared compatible camouflage: surface graphical one-dimensional photonic crystal,” Opt. Lett. 43(21), 5323–5326 (2018).
[Crossref]
G. W. Pickrell, H. C. Lin, K. L. Chang, K. C. Hsieh, and K. Y. Cheng, “Fabrication of GaP/Al–oxide distributed Bragg reflectors for the visible spectrum,” Appl. Phys. Lett. 78(8), 1044–1046 (2001).
[Crossref]
O. I. Shipilova, S. P. Gorbunov, V. L. Paperny, A. A. Chernykh, V. P. Dresvyansky, E. F. Martynovich, and A. L. Rakevich, “Fabrication of metal-dielectric nanocomposites using a table-top ion implanter,” Surf. Coat. Tech. 393, 125742 (2020).
[Crossref]
M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognetc, and B. Lounisc, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8(30), 3486–3495 (2006).
[Crossref]
D. R. Collins, D. K. Schroder, and C. T. Sah, “Gold diffusivities in SiO2 and Si using the MOS structure,” Appl. Phys. Lett. 8(12), 323–325 (1966).
[Crossref]
G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, and A. Miotello, “Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere,” J. Appl. Phys. 92(8), 4249–4254 (2002).
[Crossref]
E. A. Sarduy, S. Callegari, D. G. F. del Valle, A. Desii, I. Kriegel, and F. Scotognella, “Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal,” Beilstein J. Nanotechnol. 7, 1404–1410 (2016).
[Crossref]
D. Sotta, E. Hadji, N. Magnea, E. Delamadeleine, P. Besson, P. Renard, and H. Moriceau, “Resonant optical microcavity based on crystalline silicon active layer,” J. Appl. Phys. 92(4), 2207–2209 (2002).
[Crossref]
E. A. Sarduy, S. Callegari, D. G. F. del Valle, A. Desii, I. Kriegel, and F. Scotognella, “Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal,” Beilstein J. Nanotechnol. 7, 1404–1410 (2016).
[Crossref]
K. D. Devi, S. Ojha, and F. Singh, “Influence of thermal annealing and radiation enhanced diffusion processes on surface plasmon resonance of gold implanted dielectric matrices,” Radiat. Phys. Chem. 144, 141–148 (2018).
[Crossref]
C. Pang, R. Li, Z. Li, N. Dong, F. Ren, J. Wang, and F. Chen, “A novel hierarchical nanostructure for enhanced optical nonlinearity based on scattering mechanism,” Small 16(39), 2003172 (2020).
[Crossref]
W. T. Doyle, “Absorption of light by colloids in alkali halide crystals,” Phys. Rev. 111(4), 1067–1072 (1958).
[Crossref]
O. I. Shipilova, S. P. Gorbunov, V. L. Paperny, A. A. Chernykh, V. P. Dresvyansky, E. F. Martynovich, and A. L. Rakevich, “Fabrication of metal-dielectric nanocomposites using a table-top ion implanter,” Surf. Coat. Tech. 393, 125742 (2020).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
S. Rabaste, J. Bellessa, A. Brioude, C. Bovier, J. C. Plenet, R. Brenier, O. Marty, J. Mugnier, and J. Dumas, “Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities,” Thin Solid Films 416(1-2), 242–247 (2002).
[Crossref]
I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[Crossref]
I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[Crossref]
R. Frank, “Non-equilibrium polaritonics-non-linear effects and optical switching,” Ann. Phys. 525(1-2), 66–73 (2013).
[Crossref]
R. Frank, “Coherent control of Floquet-mode dressed plasmon polaritons,” Phys. Rev. B 85(19), 195463 (2012).
[Crossref]
K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75(6), 3075–3080 (1994).
[Crossref]
K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75(6), 3075–3080 (1994).
[Crossref]
F. C. Peiris, S. Lee, U. Bindley, and J. K. Furdyna, “ZnMgSe/ZnCdSe and ZnMgSe/ZnSeTe distributed Bragg reflectors grown by molecular beam epitaxy,” J. Appl. Phys. 86(2), 719–724 (1999).
[Crossref]
M. Patrini, M. Galli, M. Belotti, L. C. Andreani, and G. Guizzetti, “Optical response of one-dimensional (Si/SiO2)m photonic crystals,” J. Appl. Phys. 92(4), 1816–1820 (2002).
[Crossref]
M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films,” Chem. Phys. Lett. 315(5-6), 313–320 (1999).
[Crossref]
O. I. Shipilova, S. P. Gorbunov, V. L. Paperny, A. A. Chernykh, V. P. Dresvyansky, E. F. Martynovich, and A. L. Rakevich, “Fabrication of metal-dielectric nanocomposites using a table-top ion implanter,” Surf. Coat. Tech. 393, 125742 (2020).
[Crossref]
M. Patrini, M. Galli, M. Belotti, L. C. Andreani, and G. Guizzetti, “Optical response of one-dimensional (Si/SiO2)m photonic crystals,” J. Appl. Phys. 92(4), 1816–1820 (2002).
[Crossref]
M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 1–6 (2008).
[Crossref]
D. Sotta, E. Hadji, N. Magnea, E. Delamadeleine, P. Besson, P. Renard, and H. Moriceau, “Resonant optical microcavity based on crystalline silicon active layer,” J. Appl. Phys. 92(4), 2207–2209 (2002).
[Crossref]
K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75(6), 3075–3080 (1994).
[Crossref]
K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75(6), 3075–3080 (1994).
[Crossref]
G. W. Pickrell, H. C. Lin, K. L. Chang, K. C. Hsieh, and K. Y. Cheng, “Fabrication of GaP/Al–oxide distributed Bragg reflectors for the visible spectrum,” Appl. Phys. Lett. 78(8), 1044–1046 (2001).
[Crossref]
Z. Hu, C. Tao, F. Wang, X. Zou, and J. Wang, “Flexible metal–organic framework-based one-dimensional photonic crystals,” J. Mater. Chem. C 3(1), 211–216 (2015).
[Crossref]
I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[Crossref]
D. Ila, J. E. E. Baglin, and R. L. Zimmerman, “Nano-crystal formation and growth from high-fluence ion implantation of Au, Ag or Cu in silica,” Phys. Procedia 66, 548–555 (2015).
[Crossref]
M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 1–6 (2008).
[Crossref]
K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75(6), 3075–3080 (1994).
[Crossref]
M. Shabaninezhad, A. Kayani, and G. Ramakrishna, “Theoretical investigation of optical properties of embedded plasmonic nanoparticles,” Chem. Phys. 541, 111044 (2021).
[Crossref]
G. von Freymann, V. Kitaev, B. V. Lotsch, and G. A. Ozin, “Bottom-up assembly of photonic crystals,” Chem. Soc. Rev. 42(7), 2528–2554 (2013).
[Crossref]
M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 1–6 (2008).
[Crossref]
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
E. A. Sarduy, S. Callegari, D. G. F. del Valle, A. Desii, I. Kriegel, and F. Scotognella, “Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal,” Beilstein J. Nanotechnol. 7, 1404–1410 (2016).
[Crossref]
P. K. Kuiri, “Size saturation in low energy ion beam synthesized nanoparticles in silica glass: 50 keV Ag− ions implantation, a case study,” J. Appl. Phys. 108(5), 054301 (2010).
[Crossref]
M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognetc, and B. Lounisc, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8(30), 3486–3495 (2006).
[Crossref]
F. C. Peiris, S. Lee, U. Bindley, and J. K. Furdyna, “ZnMgSe/ZnCdSe and ZnMgSe/ZnSeTe distributed Bragg reflectors grown by molecular beam epitaxy,” J. Appl. Phys. 86(2), 719–724 (1999).
[Crossref]
C. Pang, R. Li, Z. Li, N. Dong, F. Ren, J. Wang, and F. Chen, “A novel hierarchical nanostructure for enhanced optical nonlinearity based on scattering mechanism,” Small 16(39), 2003172 (2020).
[Crossref]
C. Pang, R. Li, Z. Li, N. Dong, F. Ren, J. Wang, and F. Chen, “A novel hierarchical nanostructure for enhanced optical nonlinearity based on scattering mechanism,” Small 16(39), 2003172 (2020).
[Crossref]
G. W. Pickrell, H. C. Lin, K. L. Chang, K. C. Hsieh, and K. Y. Cheng, “Fabrication of GaP/Al–oxide distributed Bragg reflectors for the visible spectrum,” Appl. Phys. Lett. 78(8), 1044–1046 (2001).
[Crossref]
M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognetc, and B. Lounisc, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8(30), 3486–3495 (2006).
[Crossref]
Y. Sun, G. Wang, T. Zhang, C. Liu, and J. Wang, “Periodically alternated metallic/dielectric nanocomposites and dielectric films for the fabrication of high-efficiency Bragg reflectors: a case study,” Appl. Phys. Express 13(7), 072001 (2020).
[Crossref]
Y. Niu, Y. Wang, G. Wang, T. Zhang, and C. Liu, “Enhanced optical linearity and nonlinearity of Nd:YAG crystal embedded with Ag nanoparticles by prior Zn ion implantation,” Opt. Mater. Express 8(12), 3666–3675 (2018).
[Crossref]
J. Wang, X. Mu, G. Wang, and C. Liu, “Two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers and their vertical input coupling properties,” Opt. Mater. 73, 466–472 (2017).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films,” Chem. Phys. Lett. 315(5-6), 313–320 (1999).
[Crossref]
M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 1–6 (2008).
[Crossref]
G. von Freymann, V. Kitaev, B. V. Lotsch, and G. A. Ozin, “Bottom-up assembly of photonic crystals,” Chem. Soc. Rev. 42(7), 2528–2554 (2013).
[Crossref]
M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognetc, and B. Lounisc, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8(30), 3486–3495 (2006).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
D. Sotta, E. Hadji, N. Magnea, E. Delamadeleine, P. Besson, P. Renard, and H. Moriceau, “Resonant optical microcavity based on crystalline silicon active layer,” J. Appl. Phys. 92(4), 2207–2209 (2002).
[Crossref]
F. Singh, J. C. Pivin, D. D. Malisnovska, and J. P. Stoquert, “Swift heavy ion interaction with silver–silica nanocomposites: an experimental surface plasmon resonance study,” J. Phys. D: Appl. Phys. 44(32), 325101 (2011).
[Crossref]
J. A. Marqusee and J. Ross, “Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction,” J. Chem. Phys. 80(1), 536–543 (1984).
[Crossref]
S. Rabaste, J. Bellessa, A. Brioude, C. Bovier, J. C. Plenet, R. Brenier, O. Marty, J. Mugnier, and J. Dumas, “Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities,” Thin Solid Films 416(1-2), 242–247 (2002).
[Crossref]
O. I. Shipilova, S. P. Gorbunov, V. L. Paperny, A. A. Chernykh, V. P. Dresvyansky, E. F. Martynovich, and A. L. Rakevich, “Fabrication of metal-dielectric nanocomposites using a table-top ion implanter,” Surf. Coat. Tech. 393, 125742 (2020).
[Crossref]
M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 1–6 (2008).
[Crossref]
G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, and A. Miotello, “Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere,” J. Appl. Phys. 92(8), 4249–4254 (2002).
[Crossref]
J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A 203, 359–371 (1904).
[Crossref]
G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, and A. Miotello, “Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere,” J. Appl. Phys. 92(8), 4249–4254 (2002).
[Crossref]
C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(5), 389–399 (2007).
[Crossref]
G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, and A. Miotello, “Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere,” J. Appl. Phys. 92(8), 4249–4254 (2002).
[Crossref]
K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75(6), 3075–3080 (1994).
[Crossref]
D. Sotta, E. Hadji, N. Magnea, E. Delamadeleine, P. Besson, P. Renard, and H. Moriceau, “Resonant optical microcavity based on crystalline silicon active layer,” J. Appl. Phys. 92(4), 2207–2209 (2002).
[Crossref]
J. Wang, X. Mu, G. Wang, and C. Liu, “Two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers and their vertical input coupling properties,” Opt. Mater. 73, 466–472 (2017).
[Crossref]
S. Rabaste, J. Bellessa, A. Brioude, C. Bovier, J. C. Plenet, R. Brenier, O. Marty, J. Mugnier, and J. Dumas, “Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities,” Thin Solid Films 416(1-2), 242–247 (2002).
[Crossref]
K. D. Devi, S. Ojha, and F. Singh, “Influence of thermal annealing and radiation enhanced diffusion processes on surface plasmon resonance of gold implanted dielectric matrices,” Radiat. Phys. Chem. 144, 141–148 (2018).
[Crossref]
M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognetc, and B. Lounisc, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8(30), 3486–3495 (2006).
[Crossref]
G. von Freymann, V. Kitaev, B. V. Lotsch, and G. A. Ozin, “Bottom-up assembly of photonic crystals,” Chem. Soc. Rev. 42(7), 2528–2554 (2013).
[Crossref]
M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films,” Chem. Phys. Lett. 315(5-6), 313–320 (1999).
[Crossref]
C. Pang, R. Li, Z. Li, N. Dong, F. Ren, J. Wang, and F. Chen, “A novel hierarchical nanostructure for enhanced optical nonlinearity based on scattering mechanism,” Small 16(39), 2003172 (2020).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
O. I. Shipilova, S. P. Gorbunov, V. L. Paperny, A. A. Chernykh, V. P. Dresvyansky, E. F. Martynovich, and A. L. Rakevich, “Fabrication of metal-dielectric nanocomposites using a table-top ion implanter,” Surf. Coat. Tech. 393, 125742 (2020).
[Crossref]
M. Patrini, M. Galli, M. Belotti, L. C. Andreani, and G. Guizzetti, “Optical response of one-dimensional (Si/SiO2)m photonic crystals,” J. Appl. Phys. 92(4), 1816–1820 (2002).
[Crossref]
F. C. Peiris, S. Lee, U. Bindley, and J. K. Furdyna, “ZnMgSe/ZnCdSe and ZnMgSe/ZnSeTe distributed Bragg reflectors grown by molecular beam epitaxy,” J. Appl. Phys. 86(2), 719–724 (1999).
[Crossref]
G. W. Pickrell, H. C. Lin, K. L. Chang, K. C. Hsieh, and K. Y. Cheng, “Fabrication of GaP/Al–oxide distributed Bragg reflectors for the visible spectrum,” Appl. Phys. Lett. 78(8), 1044–1046 (2001).
[Crossref]
F. Singh, J. C. Pivin, D. D. Malisnovska, and J. P. Stoquert, “Swift heavy ion interaction with silver–silica nanocomposites: an experimental surface plasmon resonance study,” J. Phys. D: Appl. Phys. 44(32), 325101 (2011).
[Crossref]
S. Rabaste, J. Bellessa, A. Brioude, C. Bovier, J. C. Plenet, R. Brenier, O. Marty, J. Mugnier, and J. Dumas, “Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities,” Thin Solid Films 416(1-2), 242–247 (2002).
[Crossref]
S. Rabaste, J. Bellessa, A. Brioude, C. Bovier, J. C. Plenet, R. Brenier, O. Marty, J. Mugnier, and J. Dumas, “Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities,” Thin Solid Films 416(1-2), 242–247 (2002).
[Crossref]
O. I. Shipilova, S. P. Gorbunov, V. L. Paperny, A. A. Chernykh, V. P. Dresvyansky, E. F. Martynovich, and A. L. Rakevich, “Fabrication of metal-dielectric nanocomposites using a table-top ion implanter,” Surf. Coat. Tech. 393, 125742 (2020).
[Crossref]
M. Shabaninezhad, A. Kayani, and G. Ramakrishna, “Theoretical investigation of optical properties of embedded plasmonic nanoparticles,” Chem. Phys. 541, 111044 (2021).
[Crossref]
M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 1–6 (2008).
[Crossref]
C. Pang, R. Li, Z. Li, N. Dong, F. Ren, J. Wang, and F. Chen, “A novel hierarchical nanostructure for enhanced optical nonlinearity based on scattering mechanism,” Small 16(39), 2003172 (2020).
[Crossref]
D. Sotta, E. Hadji, N. Magnea, E. Delamadeleine, P. Besson, P. Renard, and H. Moriceau, “Resonant optical microcavity based on crystalline silicon active layer,” J. Appl. Phys. 92(4), 2207–2209 (2002).
[Crossref]
J. A. Marqusee and J. Ross, “Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction,” J. Chem. Phys. 80(1), 536–543 (1984).
[Crossref]
G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, and A. Miotello, “Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere,” J. Appl. Phys. 92(8), 4249–4254 (2002).
[Crossref]
D. R. Collins, D. K. Schroder, and C. T. Sah, “Gold diffusivities in SiO2 and Si using the MOS structure,” Appl. Phys. Lett. 8(12), 323–325 (1966).
[Crossref]
K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75(6), 3075–3080 (1994).
[Crossref]
E. A. Sarduy, S. Callegari, D. G. F. del Valle, A. Desii, I. Kriegel, and F. Scotognella, “Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal,” Beilstein J. Nanotechnol. 7, 1404–1410 (2016).
[Crossref]
K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75(6), 3075–3080 (1994).
[Crossref]
D. R. Collins, D. K. Schroder, and C. T. Sah, “Gold diffusivities in SiO2 and Si using the MOS structure,” Appl. Phys. Lett. 8(12), 323–325 (1966).
[Crossref]
E. A. Sarduy, S. Callegari, D. G. F. del Valle, A. Desii, I. Kriegel, and F. Scotognella, “Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal,” Beilstein J. Nanotechnol. 7, 1404–1410 (2016).
[Crossref]
M. Shabaninezhad, A. Kayani, and G. Ramakrishna, “Theoretical investigation of optical properties of embedded plasmonic nanoparticles,” Chem. Phys. 541, 111044 (2021).
[Crossref]
O. I. Shipilova, S. P. Gorbunov, V. L. Paperny, A. A. Chernykh, V. P. Dresvyansky, E. F. Martynovich, and A. L. Rakevich, “Fabrication of metal-dielectric nanocomposites using a table-top ion implanter,” Surf. Coat. Tech. 393, 125742 (2020).
[Crossref]
K. D. Devi, S. Ojha, and F. Singh, “Influence of thermal annealing and radiation enhanced diffusion processes on surface plasmon resonance of gold implanted dielectric matrices,” Radiat. Phys. Chem. 144, 141–148 (2018).
[Crossref]
F. Singh, J. C. Pivin, D. D. Malisnovska, and J. P. Stoquert, “Swift heavy ion interaction with silver–silica nanocomposites: an experimental surface plasmon resonance study,” J. Phys. D: Appl. Phys. 44(32), 325101 (2011).
[Crossref]
D. Sotta, E. Hadji, N. Magnea, E. Delamadeleine, P. Besson, P. Renard, and H. Moriceau, “Resonant optical microcavity based on crystalline silicon active layer,” J. Appl. Phys. 92(4), 2207–2209 (2002).
[Crossref]
A. L. Stepanov, “Synthesis of silver nanoparticles in dielectric matrix by ion implantation: a review,” Rev. Adv. Mater. Sci. 26(1-2), 1–29 (2010).
F. Singh, J. C. Pivin, D. D. Malisnovska, and J. P. Stoquert, “Swift heavy ion interaction with silver–silica nanocomposites: an experimental surface plasmon resonance study,” J. Phys. D: Appl. Phys. 44(32), 325101 (2011).
[Crossref]
Y. Sun, G. Wang, T. Zhang, C. Liu, and J. Wang, “Periodically alternated metallic/dielectric nanocomposites and dielectric films for the fabrication of high-efficiency Bragg reflectors: a case study,” Appl. Phys. Express 13(7), 072001 (2020).
[Crossref]
Z. Hu, C. Tao, F. Wang, X. Zou, and J. Wang, “Flexible metal–organic framework-based one-dimensional photonic crystals,” J. Mater. Chem. C 3(1), 211–216 (2015).
[Crossref]
M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognetc, and B. Lounisc, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8(30), 3486–3495 (2006).
[Crossref]
M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognetc, and B. Lounisc, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8(30), 3486–3495 (2006).
[Crossref]
C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(5), 389–399 (2007).
[Crossref]
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
G. von Freymann, V. Kitaev, B. V. Lotsch, and G. A. Ozin, “Bottom-up assembly of photonic crystals,” Chem. Soc. Rev. 42(7), 2528–2554 (2013).
[Crossref]
P. W. Voorhees, “The theory of Ostwald ripening,” J. Stat. Phys. 38(1-2), 231–252 (1985).
[Crossref]
Z. Hu, C. Tao, F. Wang, X. Zou, and J. Wang, “Flexible metal–organic framework-based one-dimensional photonic crystals,” J. Mater. Chem. C 3(1), 211–216 (2015).
[Crossref]
Y. Sun, G. Wang, T. Zhang, C. Liu, and J. Wang, “Periodically alternated metallic/dielectric nanocomposites and dielectric films for the fabrication of high-efficiency Bragg reflectors: a case study,” Appl. Phys. Express 13(7), 072001 (2020).
[Crossref]
Y. Niu, Y. Wang, G. Wang, T. Zhang, and C. Liu, “Enhanced optical linearity and nonlinearity of Nd:YAG crystal embedded with Ag nanoparticles by prior Zn ion implantation,” Opt. Mater. Express 8(12), 3666–3675 (2018).
[Crossref]
J. Wang, X. Mu, G. Wang, and C. Liu, “Two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers and their vertical input coupling properties,” Opt. Mater. 73, 466–472 (2017).
[Crossref]
C. Pang, R. Li, Z. Li, N. Dong, F. Ren, J. Wang, and F. Chen, “A novel hierarchical nanostructure for enhanced optical nonlinearity based on scattering mechanism,” Small 16(39), 2003172 (2020).
[Crossref]
Y. Sun, G. Wang, T. Zhang, C. Liu, and J. Wang, “Periodically alternated metallic/dielectric nanocomposites and dielectric films for the fabrication of high-efficiency Bragg reflectors: a case study,” Appl. Phys. Express 13(7), 072001 (2020).
[Crossref]
J. Wang, X. Mu, G. Wang, and C. Liu, “Two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers and their vertical input coupling properties,” Opt. Mater. 73, 466–472 (2017).
[Crossref]
Z. Hu, C. Tao, F. Wang, X. Zou, and J. Wang, “Flexible metal–organic framework-based one-dimensional photonic crystals,” J. Mater. Chem. C 3(1), 211–216 (2015).
[Crossref]
M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 1–6 (2008).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
Y. Sun, G. Wang, T. Zhang, C. Liu, and J. Wang, “Periodically alternated metallic/dielectric nanocomposites and dielectric films for the fabrication of high-efficiency Bragg reflectors: a case study,” Appl. Phys. Express 13(7), 072001 (2020).
[Crossref]
Y. Niu, Y. Wang, G. Wang, T. Zhang, and C. Liu, “Enhanced optical linearity and nonlinearity of Nd:YAG crystal embedded with Ag nanoparticles by prior Zn ion implantation,” Opt. Mater. Express 8(12), 3666–3675 (2018).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
D. Ila, J. E. E. Baglin, and R. L. Zimmerman, “Nano-crystal formation and growth from high-fluence ion implantation of Au, Ag or Cu in silica,” Phys. Procedia 66, 548–555 (2015).
[Crossref]
Z. Hu, C. Tao, F. Wang, X. Zou, and J. Wang, “Flexible metal–organic framework-based one-dimensional photonic crystals,” J. Mater. Chem. C 3(1), 211–216 (2015).
[Crossref]
G. Du, X. Zhou, C. Pang, K. Zhang, Y. Zhao, G. Lu, F. Liu, A. Wu, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient modulation of photonic bandgap and defect modes in all-dielectric photonic crystals by energetic ion beams,” Adv. Opt. Mater. 8(19), 2000426 (2020).
[Crossref]
M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 1–6 (2008).
[Crossref]
R. Frank, “Non-equilibrium polaritonics-non-linear effects and optical switching,” Ann. Phys. 525(1-2), 66–73 (2013).
[Crossref]
Y. Sun, G. Wang, T. Zhang, C. Liu, and J. Wang, “Periodically alternated metallic/dielectric nanocomposites and dielectric films for the fabrication of high-efficiency Bragg reflectors: a case study,” Appl. Phys. Express 13(7), 072001 (2020).
[Crossref]
G. W. Pickrell, H. C. Lin, K. L. Chang, K. C. Hsieh, and K. Y. Cheng, “Fabrication of GaP/Al–oxide distributed Bragg reflectors for the visible spectrum,” Appl. Phys. Lett. 78(8), 1044–1046 (2001).
[Crossref]
D. R. Collins, D. K. Schroder, and C. T. Sah, “Gold diffusivities in SiO2 and Si using the MOS structure,” Appl. Phys. Lett. 8(12), 323–325 (1966).
[Crossref]
E. A. Sarduy, S. Callegari, D. G. F. del Valle, A. Desii, I. Kriegel, and F. Scotognella, “Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal,” Beilstein J. Nanotechnol. 7, 1404–1410 (2016).
[Crossref]
M. Shabaninezhad, A. Kayani, and G. Ramakrishna, “Theoretical investigation of optical properties of embedded plasmonic nanoparticles,” Chem. Phys. 541, 111044 (2021).
[Crossref]
M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films,” Chem. Phys. Lett. 315(5-6), 313–320 (1999).
[Crossref]
G. von Freymann, V. Kitaev, B. V. Lotsch, and G. A. Ozin, “Bottom-up assembly of photonic crystals,” Chem. Soc. Rev. 42(7), 2528–2554 (2013).
[Crossref]
G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, and A. Miotello, “Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere,” J. Appl. Phys. 92(8), 4249–4254 (2002).
[Crossref]
K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75(6), 3075–3080 (1994).
[Crossref]
F. C. Peiris, S. Lee, U. Bindley, and J. K. Furdyna, “ZnMgSe/ZnCdSe and ZnMgSe/ZnSeTe distributed Bragg reflectors grown by molecular beam epitaxy,” J. Appl. Phys. 86(2), 719–724 (1999).
[Crossref]
M. Patrini, M. Galli, M. Belotti, L. C. Andreani, and G. Guizzetti, “Optical response of one-dimensional (Si/SiO2)m photonic crystals,” J. Appl. Phys. 92(4), 1816–1820 (2002).
[Crossref]
D. Sotta, E. Hadji, N. Magnea, E. Delamadeleine, P. Besson, P. Renard, and H. Moriceau, “Resonant optical microcavity based on crystalline silicon active layer,” J. Appl. Phys. 92(4), 2207–2209 (2002).
[Crossref]
P. K. Kuiri, “Size saturation in low energy ion beam synthesized nanoparticles in silica glass: 50 keV Ag− ions implantation, a case study,” J. Appl. Phys. 108(5), 054301 (2010).
[Crossref]
J. A. Marqusee and J. Ross, “Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction,” J. Chem. Phys. 80(1), 536–543 (1984).
[Crossref]
Z. Hu, C. Tao, F. Wang, X. Zou, and J. Wang, “Flexible metal–organic framework-based one-dimensional photonic crystals,” J. Mater. Chem. C 3(1), 211–216 (2015).
[Crossref]
F. Singh, J. C. Pivin, D. D. Malisnovska, and J. P. Stoquert, “Swift heavy ion interaction with silver–silica nanocomposites: an experimental surface plasmon resonance study,” J. Phys. D: Appl. Phys. 44(32), 325101 (2011).
[Crossref]
P. W. Voorhees, “The theory of Ostwald ripening,” J. Stat. Phys. 38(1-2), 231–252 (1985).
[Crossref]
C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(5), 389–399 (2007).
[Crossref]
I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[Crossref]
S. Husaini, L. Deych, and V. M. Menon, “Plasmon-resonance-induced enhancement of the reflection band in a one-dimensional metal nanocomposite photonic crystal,” Opt. Lett. 36(8), 1368–1370 (2011).
[Crossref]
D. Qi, F. Chen, X. Wang, H. Luo, Y. Cheng, X. Niu, and R. Gong, “Effective strategy for visible-infrared compatible camouflage: surface graphical one-dimensional photonic crystal,” Opt. Lett. 43(21), 5323–5326 (2018).
[Crossref]
J. Wang, X. Mu, G. Wang, and C. Liu, “Two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers and their vertical input coupling properties,” Opt. Mater. 73, 466–472 (2017).
[Crossref]
J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A 203, 359–371 (1904).
[Crossref]
M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognetc, and B. Lounisc, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8(30), 3486–3495 (2006).
[Crossref]
D. Ila, J. E. E. Baglin, and R. L. Zimmerman, “Nano-crystal formation and growth from high-fluence ion implantation of Au, Ag or Cu in silica,” Phys. Procedia 66, 548–555 (2015).
[Crossref]
W. T. Doyle, “Absorption of light by colloids in alkali halide crystals,” Phys. Rev. 111(4), 1067–1072 (1958).
[Crossref]
R. Frank, “Coherent control of Floquet-mode dressed plasmon polaritons,” Phys. Rev. B 85(19), 195463 (2012).
[Crossref]
K. D. Devi, S. Ojha, and F. Singh, “Influence of thermal annealing and radiation enhanced diffusion processes on surface plasmon resonance of gold implanted dielectric matrices,” Radiat. Phys. Chem. 144, 141–148 (2018).
[Crossref]
A. L. Stepanov, “Synthesis of silver nanoparticles in dielectric matrix by ion implantation: a review,” Rev. Adv. Mater. Sci. 26(1-2), 1–29 (2010).
C. Pang, R. Li, Z. Li, N. Dong, F. Ren, J. Wang, and F. Chen, “A novel hierarchical nanostructure for enhanced optical nonlinearity based on scattering mechanism,” Small 16(39), 2003172 (2020).
[Crossref]
O. I. Shipilova, S. P. Gorbunov, V. L. Paperny, A. A. Chernykh, V. P. Dresvyansky, E. F. Martynovich, and A. L. Rakevich, “Fabrication of metal-dielectric nanocomposites using a table-top ion implanter,” Surf. Coat. Tech. 393, 125742 (2020).
[Crossref]
S. Rabaste, J. Bellessa, A. Brioude, C. Bovier, J. C. Plenet, R. Brenier, O. Marty, J. Mugnier, and J. Dumas, “Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities,” Thin Solid Films 416(1-2), 242–247 (2002).
[Crossref]
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).