A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]
A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]
A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]
D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1 ⩽ ω ⩽ 4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]
A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref]
D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]
T. Badloe, I. Kim, and J. Rho, “Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide,” Sci. Rep. 10(1), 4522 (2020).
[Crossref]
S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
[Crossref]
T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22(4), 2337–2342 (2020).
[Crossref]
I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation from dielectric nanostructures using reinforcement learning,” Opt. Express 27(4), 5874 (2019).
[Crossref]
B. Ko, D. Lee, T. Badloe, and J. Rho, “Metamaterial-based radiative cooling: towards energy-free all-day cooling,” Energies 12(1), 89 (2018).
[Crossref]
T. Badloe, J. Mun, and J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 1–18 (2017).
[Crossref]
J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]
D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]
D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]
D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]
V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]
D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]
H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]
S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
[Crossref]
D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]
Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]
D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
[Crossref]
D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]
D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]
V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]
I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]
V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]
D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1 ⩽ ω ⩽ 4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]
J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” Nat. Rev. Mater. 20201–22 (2020).
[Crossref]
B. Yang, H. Cheng, S. Chen, and J. Tian, “Structural colors in metasurfaces: principle, design and applications,” Mater. Chem. Front. 3(5), 750–761 (2019).
[Crossref]
T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
[Crossref]
D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]
D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]
E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]
W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]
W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]
B. Yang, H. Cheng, S. Chen, and J. Tian, “Structural colors in metasurfaces: principle, design and applications,” Mater. Chem. Front. 3(5), 750–761 (2019).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]
D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]
A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, and J.-J. Delaunay, “Hot-electron photodetector with wavelength selectivity in near-infrared via tamm plasmon,” Nanoscale 11(37), 17407–17414 (2019).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]
A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]
H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]
T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]
Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, and J.-J. Delaunay, “Hot-electron photodetector with wavelength selectivity in near-infrared via tamm plasmon,” Nanoscale 11(37), 17407–17414 (2019).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]
K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]
A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]
K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]
J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” Nat. Rev. Mater. 20201–22 (2020).
[Crossref]
X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref]
K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]
A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]
A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]
E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]
K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]
F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]
J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]
V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]
I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]
J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]
A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]
A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]
N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]
D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]
D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]
D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]
F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]
D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]
A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]
A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]
K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]
K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]
N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, and J.-J. Delaunay, “Hot-electron photodetector with wavelength selectivity in near-infrared via tamm plasmon,” Nanoscale 11(37), 17407–17414 (2019).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]
Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]
D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]
I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” Nat. Rev. Mater. 20201–22 (2020).
[Crossref]
S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]
V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1(3), 198–210 (2019).
[Crossref]
D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]
I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]
G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]
D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]
Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]
D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
[Crossref]
T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22(4), 2337–2342 (2020).
[Crossref]
T. Badloe, I. Kim, and J. Rho, “Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide,” Sci. Rep. 10(1), 4522 (2020).
[Crossref]
I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
[Crossref]
I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]
G. Yoon, I. Kim, and J. Rho, “Challenges in fabrication towards realization of practical metamaterials,” Microelectronic Eng. 163, 7–20 (2016).
[Crossref]
D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]
D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]
D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]
M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]
G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]
K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]
A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]
A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]
B. Ko, D. Lee, T. Badloe, and J. Rho, “Metamaterial-based radiative cooling: towards energy-free all-day cooling,” Energies 12(1), 89 (2018).
[Crossref]
A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]
B. Kongtragool and S. Wongwises, “A review of solar-powered stirling engines and low temperature differential stirling engines,” Renew. Sustain. Energy rev. 7(2), 131–154 (2003).
[Crossref]
F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]
M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]
D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]
D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
B. Ko, D. Lee, T. Badloe, and J. Rho, “Metamaterial-based radiative cooling: towards energy-free all-day cooling,” Energies 12(1), 89 (2018).
[Crossref]
D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]
D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]
M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
S. So, Y. Yang, T. Lee, and J. Rho, “On-demand design of spectrally sensitive multiband absorbers using an artificial neural network,” Photonics Res. 9(4), B153 (2021).
[Crossref]
Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]
A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]
A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]
D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]
V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]
A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]
Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]
G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]
K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]
K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]
D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]
T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]
J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]
S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]
D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]
A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]
A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]
N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]
T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]
X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref]
K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]
C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]
E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]
W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]
W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]
Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]
Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]
D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
[Crossref]
D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref]
A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]
D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref]
D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]
Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]
G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]
W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]
W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]
I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
[Crossref]
D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]
N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]
M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1(3), 198–210 (2019).
[Crossref]
K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]
G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]
S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
T. Badloe, J. Mun, and J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 1–18 (2017).
[Crossref]
G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]
Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]
I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]
A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]
A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]
D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]
S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]
X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref]
C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]
I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]
S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]
E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]
A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref]
Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]
F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]
K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]
K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]
D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]
D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
[Crossref]
A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]
I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
[Crossref]
H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]
A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]
D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]
M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]
D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]
S. So, Y. Yang, T. Lee, and J. Rho, “On-demand design of spectrally sensitive multiband absorbers using an artificial neural network,” Photonics Res. 9(4), B153 (2021).
[Crossref]
T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22(4), 2337–2342 (2020).
[Crossref]
S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
[Crossref]
T. Badloe, I. Kim, and J. Rho, “Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide,” Sci. Rep. 10(1), 4522 (2020).
[Crossref]
S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).
[Crossref]
S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8(7), 1255–1261 (2019).
[Crossref]
I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation from dielectric nanostructures using reinforcement learning,” Opt. Express 27(4), 5874 (2019).
[Crossref]
I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
[Crossref]
H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]
B. Ko, D. Lee, T. Badloe, and J. Rho, “Metamaterial-based radiative cooling: towards energy-free all-day cooling,” Energies 12(1), 89 (2018).
[Crossref]
T. Badloe, J. Mun, and J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 1–18 (2017).
[Crossref]
D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]
G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]
G. Yoon, I. Kim, and J. Rho, “Challenges in fabrication towards realization of practical metamaterials,” Microelectronic Eng. 163, 7–20 (2016).
[Crossref]
V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]
S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]
V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]
D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]
S. So, Y. Yang, T. Lee, and J. Rho, “On-demand design of spectrally sensitive multiband absorbers using an artificial neural network,” Photonics Res. 9(4), B153 (2021).
[Crossref]
S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
[Crossref]
S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8(7), 1255–1261 (2019).
[Crossref]
S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).
[Crossref]
I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
[Crossref]
G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]
D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]
V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]
D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]
M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref]
T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
[Crossref]
Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]
H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]
D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]
K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]
A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]
B. Yang, H. Cheng, S. Chen, and J. Tian, “Structural colors in metasurfaces: principle, design and applications,” Mater. Chem. Front. 3(5), 750–761 (2019).
[Crossref]
Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]
A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]
A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]
A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]
E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]
H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]
J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]
R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7(10), 2703–2712 (2020).
[Crossref]
J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]
M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1(3), 198–210 (2019).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]
S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]
W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]
D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]
V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]
J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]
T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]
J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]
K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]
J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, and J.-J. Delaunay, “Hot-electron photodetector with wavelength selectivity in near-infrared via tamm plasmon,” Nanoscale 11(37), 17407–17414 (2019).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]
C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]
M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1(3), 198–210 (2019).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]
W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]
D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]
Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]
B. Kongtragool and S. Wongwises, “A review of solar-powered stirling engines and low temperature differential stirling engines,” Renew. Sustain. Energy rev. 7(2), 131–154 (2003).
[Crossref]
D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]
K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]
A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]
W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref]
J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]
T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]
W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]
W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]
D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]
B. Yang, H. Cheng, S. Chen, and J. Tian, “Structural colors in metasurfaces: principle, design and applications,” Mater. Chem. Front. 3(5), 750–761 (2019).
[Crossref]
H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]
M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]
S. So, Y. Yang, T. Lee, and J. Rho, “On-demand design of spectrally sensitive multiband absorbers using an artificial neural network,” Photonics Res. 9(4), B153 (2021).
[Crossref]
K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]
Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]
K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]
R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7(10), 2703–2712 (2020).
[Crossref]
K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]
V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]
A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]
W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]
Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]
D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]
I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]
G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]
G. Yoon, I. Kim, and J. Rho, “Challenges in fabrication towards realization of practical metamaterials,” Microelectronic Eng. 163, 7–20 (2016).
[Crossref]
J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]
D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]
K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]
G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]
J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]
G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]
J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]
T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]
K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]
K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]
Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]
J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref]
D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]
Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]
E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]
G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]
R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7(10), 2703–2712 (2020).
[Crossref]
D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]
T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]
T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]
D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
[Crossref]
A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]
J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]