Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Inverse design of ultra-narrowband selective thermal emitters designed by artificial neural networks

Open Access Open Access

Abstract

The inverse design of photonic devices through the training of artificial neural networks (ANNs) has been proven as an invaluable tool for researchers to uncover interesting structures and designs that produce optical devices with enhanced performance. Here, we demonstrate the inverse design of ultra-narrowband selective thermal emitters that operate in the wavelength regime of 2-8 µm using ANNs. By training the network on a dataset of around 200,000 samples, wavelength-selective thermal emitters are designed with an average mean squared error of less than 0.006. Q-factors as high as 109.2 are achieved, proving the ultra-narrowband properties of the thermal emitters. We further investigate the physical mechanisms of the designed emitters and characterize their angular responses to verify their use as thermal emitters for practical applications such as thermophotovoltaics, IR sensing and imaging, and infrared heating.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

As the quest for sustainable sources of energy is ever present, methods of effectively utilizing the power of the sun are paramount. Photovoltaic techniques use sunlight to excite electron-hole pairs in semiconductors to produce a usable flow of electrons [1]. This is then generally used to power electrical equipment or to charge a battery to store the energy to use later. A second well-known method is to use the heat from the sunlight to drive mechanical heat engines [2]. Photonic devices can be integrated into both strategies in order to increase the efficiency and generated power by engineering the optical properties in a way to enhance the absorption at the desired wavelengths [35]. Furthermore, according to Kirchhoff’s law of thermal radiation, the emissivity of an arbitrary body in thermodynamic equilibrium is equal to the absorptivity. Therefore, the design of broad and narrowband absorbers/emitters is of great interest for use in energy applications such as thermophotovoltaics [6,7] and radiative cooling [812], as well as in sensing [1316], infrared heating [17,18], and thermal imaging [19,20].

Metamaterials have been proven as particularly exciting candidates to produce tailored optical responses through the careful design of multiple subwavelength sized elements to produce optical properties that are not found in naturally occurring materials [21,22]. Metamaterials have already been proven in applications such as negative refraction [23,24], super-resolution imaging [2527], sensing [28,29], optical displays [3033], and artificial chirality [34,35]. Work on absorbers/emitters based on metamaterials has been plentiful [3639]. The desired response is achieved through the manipulation of the permittivity and permeability by the careful engineering of the constituent materials and their relative geometric parameters. Metals have been used to produce plasmonic absorbers [4044], while devices based on all-dielectric materials have also been demonstrated [45,46]. This type of design usually depends on some form of subwavelength structure in order to induce the required impedance matching conditions. Although these devices have proven their applicability as absorbers/emitters, the reliance on subwavelength structures means that the fabrication process generally includes etching or lithography which limits the overall footprint and scalability [22,47]. On the other hand, simple multilayer structures only require the control of the thickness of the individual layers in order to produce the desired optical properties [48]. The important properties of reflection (R), transmission (T), and absorption (A) are related by the equation: 1 = R + T + A. By using a metallic mirror, transmission is completely suppressed to 0, therefore, A can be manipulated through the control of R. By designing the interference due to the multilayer structure, R can be completely suppressed at specific wavelengths, leading to the design of narrow and broadband absorbers/emitters.

Although the interference of multilayer structures is well understood, the design of the thickness and material of each layer to produce a desired response at a desired wavelength is still an arduous task. Recently, computational techniques have been used to inversely design metamaterials [49], with deep learning proving a valuable tool for the inverse design of photonic devices for various applications [5060]. Among them, artificial neural networks (ANNs) have provided an extremely powerful way to generalize the relationships between the physical dimensions of meta-atoms and their optical properties, allowing for the efficient inverse design of photonic devices [5860]. Here, we report an ANN that is trained for the inverse design of multilayer structures for narrowband thermal emitters. After training, the network is able to almost instantaneously produce high quality designs that closely match arbitrarily drawn Lorentzian-like functions to represent narrowband absorption spectra for wavelengths between 2 and 8 $\mu$m.

2. Method

2.1 Preparation of the dataset

To generate the dataset required to train the network, rigorous coupled-wave analysis (RCWA) simulations were performed using a home-built code. Several multilayer structures have been previously reported for narrowband thermal emitters, such as Fabry-Perot resonators [61], one-dimensional photonic crystals [62], and Tamm plasmon polaritons (TPPs) [48,63]. TPPs are formed at the interface between a metal and a distributed Bragg reflector (DBR). Therefore, we have set up the following basic structures of interest to excite TPPs to produce ultra-narrowband thermal emitter, each structure consists of a functional layer made up of silicon (Si) and three pairs of alternating multilayers of the chosen material and silicon dioxide ($\textrm {SiO}_2$), all on top of a 500 nm thick silver (Ag) metallic mirror (Fig. 1(a)). The top three pairs of high- and low- refractive index materials are designed as a DBR. To this end, three candidate materials of Si, germanium (Ge), and silicon nitride ($\textrm {Si}_{3}\textrm {N}_{4}$) are chosen due to their high refractive indices. This structure considers not only the general TPPs of the DBR, but also the function of the spacer between the DBR and the metal mirror [64,65]. The variables of the design of the ultra-narrowband emitters are the selection of the material (Mat) for use in the DBR and its thickness (t$_{\textrm {Mat}}$), the thickness of the $\textrm {SiO}_{2}$ (t$_{\textrm {SiO}_{2}}$) in the DBR, and finally the thickness of the functional Si layer (t$_{\textrm {Si}}$). Table 1 shows the order of the layers, the material candidates, and the range of thickness used to create the dataset. For the thin film thickness less than 100 nm, a smaller step size is desirable for more accurate prediction, whereas for larger thicknesses, smaller differences have little effect on the emissivity. Therefore, we only collected relatively dense data for thicknesses less than 100 nm in order to allow for a higher accuracy over large design space, while managing the size of the dataset to be within reasonable levels. The refractive indices of the materials were obtained from the following literature [6669]. A total of 243,675 simulations were performed to prepare the dataset, with 300 equidistant spectral points over the wavelengths of interest (2-8 $\mu$m) were obtained for the input emissivity spectra.

 figure: Fig. 1.

Fig. 1. (a) Schematic illustration of the multilayer structure. The design parameters of the material type (Mat) and layer thicknesses ($\textrm {t}_{\textrm {Mat}}$, $\textrm {t}_{\textrm {SiO}_{2}}$, $\textrm {t}_{\textrm {Si}}$) are indicated. (b) The architecture of the ANN. The ANN is composed of an input layer that corresponds to 300 spectral points, four hidden layers, and an output layer that corresponds to the design parameters. The number of neurons in the hidden layers are shown.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Details of multilayer structures used to create the dataset

2.2 Training the artificial neural network

The ANN takes the 300 emissivity spectral points as the input ($X$) and provides 6 parameters as the output ($Y$ in Eq. (1)). The ANN is completed with four hidden layers that use Rectified Linear Unit (ReLU) activation functions (Fig. 1(b)).

$$Y = [Y_1,Y_2,Y_3,Y_4,Y_5,Y_6] = [p(\textrm{Si}), p(\textrm{Ge}), p(\textrm{Si}_{3}\textrm{N}_{4}), \textrm{t}_{\textrm{Si}}, \textrm{t}_{\textrm{SiO}_{2}}, \textrm{t}_{\textrm{Mat}}] \\$$
The choice of material was setup as a classification problem where the ANN was trained to minimize the binary cross entropy loss ($l_{\textrm {material loss}}$). Therefore, the materials were encoded as a one-hot vector ($[Y_1,Y_2,Y_3]$) in Eq. (1), so the selection can be undertaken by selecting the material that has the highest probability ($p$). On the other hand, the thicknesses of the layers is a regression problem where the ANN was trained to minimize the mean squared error (MSE) ($l_{\textrm {thickness loss}}$). Due to the mismatch in dimensions between the classification and regression problems that need to be simultaneously learned, a custom loss function ($l$) Eq. (2) was designed to measure the discrepancy between the design parameters predicted by the ANN ($\hat {Y}_{\textrm {designed}}$) and the target design parameters ($Y_{\textrm {target}}$). A weight factor of $\alpha = 0.1$ was introduced to balance the different ranges between the two loss functions.
$$\begin{aligned} l & = \alpha \cdot l_{\textrm{material loss}} + (1-\alpha) \cdot l_{\textrm{thickness loss}}, \\ l_{\textrm{material loss}} & ={-}\frac{1}{n} \sum_{i=1}^{n} {(Y_{i}\cdot \log(\sigma(\hat{Y}_{i})) + (1-Y_{i})\cdot \log(\sigma(1-\hat{Y}_{i}))}, \\ l_{\textrm{thickness loss}} & = \frac{1}{n} \sum_{i=1}^{n} {(Y_{i} -\hat{Y}_{i})^2},\\ \sigma(x) & = \frac{1}{1+\exp^{{-}x}} \end{aligned}$$
The total dataset of 243,675 samples was divided into three subsets: 80% for training, 10% for validation, and 10% for testing. In every epoch, the network was fitted on the training set, and the performance was evaluated on the validation set. After 5,000 epochs of training had been completed, the network that provided the minimum validation loss was selected and was evaluated on the unseen test dataset. The detailed network parameters are listed in Table 2.

Tables Icon

Table 2. Hyperparameters used for training the network

3. Results and discussion

The training of the ANN converged to a loss of around 0.06 after 5,000 epochs (Fig. 2(a)). After training, the ANN was used to design structures for the simulated emissivity spectra in the test dataset. For the given inputs, the ANN provided design parameters which were then used for RCWA simulations to obtain the emissivity of the designed structures. To quantitatively evaluate the discrepancy between the designed and target emissivity spectra, the spectral MSE between the two was calculated. For the 31,838 samples in the test dataset, an average spectral MSE of 0.001 was obtained. A histogram of this data is shown in Fig. 2(b), for 6 bins with an error interval of 0.001. 93% of the total test data have a spectral MSE of less than 0.005. Figure 2(c) shows eight random examples from the test dataset. When target spectra were input to the trained ANN, the design parameters were retrieved, and then used in RCWA and finite-difference time-domain (FDTD) simulations to obtain the emissivity spectra. RCWA is widely known for its fast simulation speed, but it can be less accurate when dealing with high refractive index contrasts or complex structures. Therefore, the commercially available FDTD solver from Lumerical Inc., Ansys. was used to perform additional validation of the RCWA results. As shown in Fig. 2(c), all examples show an excellent agreement between the target and designed emissivity spectra obtained from both RCWA and FDTD simulations. These results prove that the ANN has successfully learned to design structures that produce the desired emissivity spectra over target wavelengths.

 figure: Fig. 2.

Fig. 2. (a) Learning curves for the training (black) and validation (red) losses over 5,000 epochs. A logarithmic scale is used on the x-axis. (b) Histogram of the spectral MSE for the test set. The values above each bar represent the percentage of the data that falls within that loss range. (c) Examples of test results. The solid black line shows the target emissivity spectra, and dotted red lines and blue dots show the designed emissivity spectra obtained from RCWA and FDTD simulation, respectively.

Download Full Size | PPT Slide | PDF

3.1 Inverse design of ultra-narrowband thermal emitters

To demonstrate the inverse design of ultra-narrowband selective thermal emitters using the trained ANN, Lorentzian-like functions were used as the target emissivity spectra ($\epsilon _{\textrm {target}}$) as given by

$$\epsilon_{\textrm{target}} = \frac{w}{(\lambda-\lambda_{\textrm{peak}})^2+w^2},$$
where $w=0.05$ was used to produce functions with ultra-narrow bandwidths. Some examples of the inversely designed structures are shown in Fig. 3 for target emissivity spectra with $\lambda _{\textrm {peak}}$ gradually changing from $3.5~\mu \textrm {m} - 6.0 ~\mu \textrm {m}$. In particular, the designed parameters of $\textrm {t}_{\textrm {Mat}}$ (Fig. 3(a)) and the $\textrm {t}_{\textrm {Si}}$ (Fig. 3(b)) clearly show the tendency of an increase of the thickness with increasing $\lambda _{\textrm {peak}}$. Figure 3(c-f) show the target emissivity spectra and the corresponding designed spectra with $\lambda _{\textrm {peak}}$ of (c) 3.5 $\mu$m, (d) 4 $\mu$m, (e) 4.5 $\mu$m, (f) 5 $\mu$m, (g) 5.5 $\mu$m, and (h) 6 $\mu$m, respectively. For all examples, the target and the designed emissivity spectra show good agreements with a spectral MSE of less than 0.006. To further quantify spectral accuracy, we also calculated the spectral percentage error of the peak wavelengths as
$$\% \textrm{ Error of the }\lambda_{\textrm{peak}} = \frac{|\lambda_{\textrm{peak, target}} -\lambda_{\textrm{peak, designed}}|} {\lambda_{\textrm{peak, target}}}\times 100 (\%).$$

 figure: Fig. 3.

Fig. 3. Designed parameters of (a) $\textrm {t}_{\textrm {Mat}}$ and (b) $\textrm {t}_{\textrm {Si}}$ for given input spectra. Design results of ultra-narrowband thermal emitter aimed at $\lambda _{\textrm {peak}}$ of (c) 3.5 $\mu$m, (d) 4 $\mu$m, (e) 4.5 $\mu$m, (f) 5 $\mu$m, (g) 5.5 $\mu$m, and (h) 6 $\mu$m.

Download Full Size | PPT Slide | PDF

The calculated error of the peak wavelengths are (c) 0.6%, (d) 3.5%, (e) 1.3%, (f) 0.8%, (g) 5%, and (h) 0%, respectively, which all represent reasonable peak wavelength percentage errors within 5%. The Q-factors of the designed structures are 93.2, 104.1, 87.4, 104.1, 109.2, and 103.9 for $\lambda _{\textrm {peak}}$ = 3.5 $\mu$m, 4 $\mu$m, 4.5 $\mu$m, 5 $\mu$m, 5.5 $\mu$m, and 6 $\mu$m, respectively, proving the ability of the trained ANN to inversely design arbitrary spectrally selective ultra-narrowband thermal emitters in the designated wavelength regime.

The designed parameters for these examples are summarized in Table 3. For arbitrarily drawn Lorentzian-like functions, the all design results of the materials used for DBR were Ge, which has the highest refractive index among the all three candidates. However, we observe that the two other materials are also able to produce high-Q emitters with similar target emissivity spectra (Fig. 4). This is a typical challenge that arises due to the non-uniqueness of solutions in photonic inverse design problems, where several different designs can have similar optical properties. The non-uniqueness in inverse design problem is known to cause networks to be difficult to converge or to converge between ground truth solutions [59,60,70,71]. In our case, the network returned a single solution somewhere in the ground truth design spaces among the several possible solutions, and accordingly, only materials of Ge were chosen for high-Q emitters drawn with Lorentzian-like functions. This problem could be alleviated by utilizing probabilistic models, where multiple possible candidates can be designed for a single target optical property [56,71].

 figure: Fig. 4.

Fig. 4. Design result of ultra-narrowband thermal emitters with three different materials of (a) Si, (b) Ge, and (c) $\textrm {Si}_{3}\textrm {N}_{4}$. The text boxes indicate the design parameters of [Mat, $\textrm {t}_{\textrm {Si}}$(nm), $\textrm {t}_{\textrm {SiO}_{2}}$(nm), $\textrm {t}_{\textrm {Mat}}$(nm)]

Download Full Size | PPT Slide | PDF

Tables Icon

Table 3. Design parameters of structures in Fig. 3

To understand the mechanism behind the ultra-narrowband thermal emitters produced by the ANN, we conducted full-wave simulations using the FDTD method. Figure 5(a-c) show the calculated electric field profiles that are normalized by the incident fields for $\lambda _{\textrm {peak}}$ = 4 $\mu$m, 5 $\mu$m, and 6 $\mu$m, respectively. It can be clearly seen that the electric field is strongly localized in the bottom Ge-SiO2 layers, where the fields decay exponentially at the interfaces of the Si and metal layer due to the excitation of Tamm plasmon polaritons.

 figure: Fig. 5.

Fig. 5. Normalized electric field distribution at the peak wavelengths of the structures designed to target (a) 4 $\mu$m, (b) 5 $\mu$m, and (c) 6 $\mu$m, respectively.

Download Full Size | PPT Slide | PDF

For the practical application of thermal emitters, angle-independent thermal emission is preferred. Therefore, we analyzed the angular dependence of one of the inversely designed structures. Figure 6 shows the spectral directional emissivity of the structure targeting $\lambda _{\textrm {peak}}$ = 6 $\mu$m. It can be seen that the designed structure maintains the ultra-narrowband thermal emissivity properties in both TE and TM modes. However, the structure has an angular dependence due to the localized mode, where $\lambda _{\textrm {peak}}$ changes depending on the incident angle. This is especially obvious in TM mode. However, for small angles of incidence up to around $25^\circ$ in both modes, the peak wavelength change is minimal, proving the applicability of the inversely designed ultra-narrowband thermal emitters for practical uses.

 figure: Fig. 6.

Fig. 6. Directional and spectral emissivity of the designed structure targeting 6 $\mu$m for (a) TE mode and (B) TM mode.

Download Full Size | PPT Slide | PDF

4. Conclusion

In this study, we demonstrated the inverse design of multilayer structures for ultra-narrowband thermal emitters using an ANN. The trained ANN was able to successfully design ultra-narrowband thermal emitters that operate at target wavelengths between 2-8 $\mu$m with an average spectral MSE of less than 0.006. Using the ANN, we designed a thermal emitter with a high Q-factor of 109.2 at the wavelength of $\lambda _{\textrm {peak}}$ = 5 $\mu$m. The calculated electric fields inside the thermal emitters show strong light fields in the multilayer structure. We also calculated the spectral directional emissivity which proved the angular independence of the designed thermal emitters within a small angle of incidence of around $25^\circ$. In this study, only four design parameters of the thermal emitter were designed, but this could be easily expanded to a larger parameter space. The designed thermal emitters can be realized in a lithography-free manner, making them promising candidates for many practical applications, such as infrared heaters, sensing, imaging, and thermophotovoltaics.

Funding

National Research Foundation of Korea (CAMM2019M3A6B3030637, NRF-2018M3D1A1058997, NRF-2019R1A2C3003129, NRF-2019R1A5A8080290).

Acknowledgments

S.S. acknowledges the NRF Global Ph.D. fellowship (NRF-2017H1A2A1043322) funded by the Ministry of Education of the Korean government. D.L. acknowledges the PIURI fellowship funded by POSTECH.

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012). [CrossRef]  

2. B. Kongtragool and S. Wongwises, “A review of solar-powered stirling engines and low temperature differential stirling engines,” Renew. Sustain. Energy rev. 7(2), 131–154 (2003). [CrossRef]  

3. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014). [CrossRef]  

4. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014). [CrossRef]  

5. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008). [CrossRef]  

6. D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016). [CrossRef]  

7. D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018). [CrossRef]  

8. A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014). [CrossRef]  

9. T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019). [CrossRef]  

10. D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021). [CrossRef]  

11. B. Ko, D. Lee, T. Badloe, and J. Rho, “Metamaterial-based radiative cooling: towards energy-free all-day cooling,” Energies 12(1), 89 (2018). [CrossRef]  

12. M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021). [CrossRef]  

13. A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019). [CrossRef]  

14. A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018). [CrossRef]  

15. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef]  

16. A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017). [CrossRef]  

17. K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020). [CrossRef]  

18. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009). [CrossRef]  

19. A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015). [CrossRef]  

20. K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015). [CrossRef]  

21. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011). [CrossRef]  

22. M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1(3), 198–210 (2019). [CrossRef]  

23. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef]  

24. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef]  

25. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef]  

26. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012). [CrossRef]  

27. Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021). [CrossRef]  

28. T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012). [CrossRef]  

29. W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017). [CrossRef]  

30. I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018). [CrossRef]  

31. W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016). [CrossRef]  

32. B. Yang, H. Cheng, S. Chen, and J. Tian, “Structural colors in metasurfaces: principle, design and applications,” Mater. Chem. Front. 3(5), 750–761 (2019). [CrossRef]  

33. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015). [CrossRef]  

34. E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009). [CrossRef]  

35. H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018). [CrossRef]  

36. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef]  

37. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012). [CrossRef]  

38. T. Badloe, J. Mun, and J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 1–18 (2017). [CrossRef]  

39. T. Badloe, I. Kim, and J. Rho, “Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide,” Sci. Rep. 10(1), 4522 (2020). [CrossRef]  

40. I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018). [CrossRef]  

41. G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017). [CrossRef]  

42. D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017). [CrossRef]  

43. D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018). [CrossRef]  

44. D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021). [CrossRef]  

45. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017). [CrossRef]  

46. K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017). [CrossRef]  

47. G. Yoon, I. Kim, and J. Rho, “Challenges in fabrication towards realization of practical metamaterials,” Microelectronic Eng. 163, 7–20 (2016). [CrossRef]  

48. Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017). [CrossRef]  

49. S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018). [CrossRef]  

50. S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020). [CrossRef]  

51. S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019). [CrossRef]  

52. S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8(7), 1255–1261 (2019). [CrossRef]  

53. S. So, Y. Yang, T. Lee, and J. Rho, “On-demand design of spectrally sensitive multiband absorbers using an artificial neural network,” Photonics Res. 9(4), B153 (2021). [CrossRef]  

54. T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22(4), 2337–2342 (2020). [CrossRef]  

55. I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation from dielectric nanostructures using reinforcement learning,” Opt. Express 27(4), 5874 (2019). [CrossRef]  

56. W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019). [CrossRef]  

57. D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021). [CrossRef]  

58. T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019). [CrossRef]  

59. W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018). [CrossRef]  

60. D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018). [CrossRef]  

61. D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014). [CrossRef]  

62. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005). [CrossRef]  

63. Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018). [CrossRef]  

64. J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020). [CrossRef]  

65. Z. Wang, J. K. Clark, Y.-L. Ho, and J.-J. Delaunay, “Hot-electron photodetector with wavelength selectivity in near-infrared via tamm plasmon,” Nanoscale 11(37), 17407–17414 (2019). [CrossRef]  

66. H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015). [CrossRef]  

67. D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm1 ⩽ ω ⩽ 4000 cm1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005). [CrossRef]  

68. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012). [CrossRef]  

69. H. Icenogle, B. C. Platt, and W. L. Wolfe, “Refractive indexes and temperature coefficients of germanium and silicon,” Appl. Opt. 15(10), 2348–2351 (1976). [CrossRef]  

70. J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” Nat. Rev. Mater. 20201–22 (2020). [CrossRef]  

71. R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7(10), 2703–2712 (2020). [CrossRef]  

References

  • View by:

  1. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
    [Crossref]
  2. B. Kongtragool and S. Wongwises, “A review of solar-powered stirling engines and low temperature differential stirling engines,” Renew. Sustain. Energy rev. 7(2), 131–154 (2003).
    [Crossref]
  3. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
    [Crossref]
  4. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
    [Crossref]
  5. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
    [Crossref]
  6. D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
    [Crossref]
  7. D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
    [Crossref]
  8. A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref]
  9. T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
    [Crossref]
  10. D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
    [Crossref]
  11. B. Ko, D. Lee, T. Badloe, and J. Rho, “Metamaterial-based radiative cooling: towards energy-free all-day cooling,” Energies 12(1), 89 (2018).
    [Crossref]
  12. M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
    [Crossref]
  13. A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
    [Crossref]
  14. A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
    [Crossref]
  15. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref]
  16. A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
    [Crossref]
  17. K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
    [Crossref]
  18. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
    [Crossref]
  19. A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
    [Crossref]
  20. K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
    [Crossref]
  21. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [Crossref]
  22. M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1(3), 198–210 (2019).
    [Crossref]
  23. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref]
  24. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref]
  25. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref]
  26. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
    [Crossref]
  27. Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
    [Crossref]
  28. T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
    [Crossref]
  29. W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
    [Crossref]
  30. I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
    [Crossref]
  31. W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
    [Crossref]
  32. B. Yang, H. Cheng, S. Chen, and J. Tian, “Structural colors in metasurfaces: principle, design and applications,” Mater. Chem. Front. 3(5), 750–761 (2019).
    [Crossref]
  33. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref]
  34. E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
    [Crossref]
  35. H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
    [Crossref]
  36. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  37. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [Crossref]
  38. T. Badloe, J. Mun, and J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 1–18 (2017).
    [Crossref]
  39. T. Badloe, I. Kim, and J. Rho, “Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide,” Sci. Rep. 10(1), 4522 (2020).
    [Crossref]
  40. I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
    [Crossref]
  41. G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
    [Crossref]
  42. D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
    [Crossref]
  43. D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
    [Crossref]
  44. D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
    [Crossref]
  45. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
    [Crossref]
  46. K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
    [Crossref]
  47. G. Yoon, I. Kim, and J. Rho, “Challenges in fabrication towards realization of practical metamaterials,” Microelectronic Eng. 163, 7–20 (2016).
    [Crossref]
  48. Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
    [Crossref]
  49. S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
    [Crossref]
  50. S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
    [Crossref]
  51. S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).
    [Crossref]
  52. S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8(7), 1255–1261 (2019).
    [Crossref]
  53. S. So, Y. Yang, T. Lee, and J. Rho, “On-demand design of spectrally sensitive multiband absorbers using an artificial neural network,” Photonics Res. 9(4), B153 (2021).
    [Crossref]
  54. T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22(4), 2337–2342 (2020).
    [Crossref]
  55. I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation from dielectric nanostructures using reinforcement learning,” Opt. Express 27(4), 5874 (2019).
    [Crossref]
  56. W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
    [Crossref]
  57. D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
    [Crossref]
  58. T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
    [Crossref]
  59. W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
    [Crossref]
  60. D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
    [Crossref]
  61. D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
    [Crossref]
  62. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
    [Crossref]
  63. Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
    [Crossref]
  64. J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
    [Crossref]
  65. Z. Wang, J. K. Clark, Y.-L. Ho, and J.-J. Delaunay, “Hot-electron photodetector with wavelength selectivity in near-infrared via tamm plasmon,” Nanoscale 11(37), 17407–17414 (2019).
    [Crossref]
  66. H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
    [Crossref]
  67. D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1 ⩽ ω ⩽ 4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
    [Crossref]
  68. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref]
  69. H. Icenogle, B. C. Platt, and W. L. Wolfe, “Refractive indexes and temperature coefficients of germanium and silicon,” Appl. Opt. 15(10), 2348–2351 (1976).
    [Crossref]
  70. J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” Nat. Rev. Mater. 20201–22 (2020).
    [Crossref]
  71. R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7(10), 2703–2712 (2020).
    [Crossref]

2021 (6)

M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]

D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]

Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]

S. So, Y. Yang, T. Lee, and J. Rho, “On-demand design of spectrally sensitive multiband absorbers using an artificial neural network,” Photonics Res. 9(4), B153 (2021).
[Crossref]

D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
[Crossref]

2020 (7)

T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22(4), 2337–2342 (2020).
[Crossref]

J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]

J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” Nat. Rev. Mater. 20201–22 (2020).
[Crossref]

R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7(10), 2703–2712 (2020).
[Crossref]

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
[Crossref]

T. Badloe, I. Kim, and J. Rho, “Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide,” Sci. Rep. 10(1), 4522 (2020).
[Crossref]

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

2019 (10)

A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

B. Yang, H. Cheng, S. Chen, and J. Tian, “Structural colors in metasurfaces: principle, design and applications,” Mater. Chem. Front. 3(5), 750–761 (2019).
[Crossref]

M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1(3), 198–210 (2019).
[Crossref]

S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).
[Crossref]

S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8(7), 1255–1261 (2019).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, and J.-J. Delaunay, “Hot-electron photodetector with wavelength selectivity in near-infrared via tamm plasmon,” Nanoscale 11(37), 17407–17414 (2019).
[Crossref]

I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation from dielectric nanostructures using reinforcement learning,” Opt. Express 27(4), 5874 (2019).
[Crossref]

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]

2018 (11)

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]

I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
[Crossref]

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

B. Ko, D. Lee, T. Badloe, and J. Rho, “Metamaterial-based radiative cooling: towards energy-free all-day cooling,” Energies 12(1), 89 (2018).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]

2017 (8)

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

T. Badloe, J. Mun, and J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 1–18 (2017).
[Crossref]

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref]

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

2016 (3)

G. Yoon, I. Kim, and J. Rho, “Challenges in fabrication towards realization of practical metamaterials,” Microelectronic Eng. 163, 7–20 (2016).
[Crossref]

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

2015 (4)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

2014 (4)

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

2012 (5)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref]

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
[Crossref]

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

2011 (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]

2010 (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

2009 (2)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

2008 (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]

2007 (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref]

2005 (2)

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1 ⩽ ω ⩽ 4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

2003 (1)

B. Kongtragool and S. Wongwises, “A review of solar-powered stirling engines and low temperature differential stirling engines,” Renew. Sustain. Energy rev. 7(2), 131–154 (2003).
[Crossref]

1976 (1)

Abou Anoma, M.

A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Ahn, H.-Y.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]

Aili, A.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Aleksandrova, A.

Altug, H.

A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Amirtharaj, P. M.

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1 ⩽ ω ⩽ 4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]

Atwater, H. A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref]

Badloe, T.

D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]

T. Badloe, I. Kim, and J. Rho, “Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide,” Sci. Rep. 10(1), 4522 (2020).
[Crossref]

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
[Crossref]

T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22(4), 2337–2342 (2020).
[Crossref]

I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation from dielectric nanostructures using reinforcement learning,” Opt. Express 27(4), 5874 (2019).
[Crossref]

B. Ko, D. Lee, T. Badloe, and J. Rho, “Metamaterial-based radiative cooling: towards energy-free all-day cooling,” Energies 12(1), 89 (2018).
[Crossref]

T. Badloe, J. Mun, and J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 1–18 (2017).
[Crossref]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

Bethke, D.

Bhatia, B.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

Bierman, D. M.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Biswas, R.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]

Boreman, G. D.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Bravo-Abad, J.

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
[Crossref]

Burckel, D. B.

Burns, Z.

Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Cai, W.

D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
[Crossref]

Cederberg, J. G.

Celanovic, I.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Chae, J.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

Chan, W. R.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Chandler-Horowitz, D.

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1 ⩽ ω ⩽ 4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]

Chang, K.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]

Chashnikova, M.

Chen, C.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Chen, K.-P.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Chen, M.

J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” Nat. Rev. Mater. 20201–22 (2020).
[Crossref]

Chen, S.

B. Yang, H. Cheng, S. Chen, and J. Tian, “Structural colors in metasurfaces: principle, design and applications,” Mater. Chem. Front. 3(5), 750–761 (2019).
[Crossref]

Chen, T.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
[Crossref]

Chen, X.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Chen, Y.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Cheng, F.

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

Cheng, H.

B. Yang, H. Cheng, S. Chen, and J. Tian, “Structural colors in metasurfaces: principle, design and applications,” Mater. Chem. Front. 3(5), 750–761 (2019).
[Crossref]

Cho, N. H.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]

Choi, C.

D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]

Choi, D.-Y. Y.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Clark, J. K.

Z. Wang, J. K. Clark, Y.-L. Ho, and J.-J. Delaunay, “Hot-electron photodetector with wavelength selectivity in near-infrared via tamm plasmon,” Nanoscale 11(37), 17407–17414 (2019).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]

Cui, L.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

D’Archangel, J.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Dai, J.

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Daiguji, H.

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]

Dalgo, D.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Dames, C.

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

Dao, T. D.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Delaunay, J.-J.

Z. Wang, J. K. Clark, Y.-L. Ho, and J.-J. Delaunay, “Hot-electron photodetector with wavelength selectivity in near-infrared via tamm plasmon,” Nanoscale 11(37), 17407–17414 (2019).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]

Dong, K.

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

Dorodnyy, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Du, K.

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Fan, J. A.

J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” Nat. Rev. Mater. 20201–22 (2020).
[Crossref]

Fan, K.

Fan, S.

A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Fedoryshyn, Y.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Fedosenko, O.

Fedotov, V.

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Flores, Y.

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Galli, M.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]

Gan, W.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Gao, J.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]

Gao, R.

J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Genevet, P.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

Gholipour, B.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Giessen, H.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Go, M.

D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]

D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]

Gong, H.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Gregorkiewicz, T.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]

Grine, A. D.

Gruska, B.

Gu, M. B.

A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

Hafner, C.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Han, S. Y.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

Han, X.

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

He, S.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Heidarinejad, M.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Hensley, J. M.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Ho, Y.-L.

Z. Wang, J. K. Clark, Y.-L. Ho, and J.-J. Delaunay, “Hot-electron photodetector with wavelength selectivity in near-infrared via tamm plasmon,” Nanoscale 11(37), 17407–17414 (2019).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]

Hu, L.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Icenogle, H.

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Ishii, S.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Jang, J.

D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]

Jeong, Y.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

Jiang, J.

J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” Nat. Rev. Mater. 20201–22 (2020).
[Crossref]

Jin, W.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]

Joannopoulos, J. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Jung, G. Y.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

Kadic, M.

M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1(3), 198–210 (2019).
[Crossref]

Kadlec, E. A.

Kassakian, J.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Khoram, E.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Khorashad, L. K.

Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Kim, A. S.

D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
[Crossref]

Kim, I.

T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22(4), 2337–2342 (2020).
[Crossref]

T. Badloe, I. Kim, and J. Rho, “Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide,” Sci. Rep. 10(1), 4522 (2020).
[Crossref]

I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
[Crossref]

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]

G. Yoon, I. Kim, and J. Rho, “Challenges in fabrication towards realization of practical metamaterials,” Microelectronic Eng. 163, 7–20 (2016).
[Crossref]

Kim, J. K.

D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]

D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]

Kim, K.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

Kim, M.

D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]

D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]

M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]

Kim, W. S.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]

Kischkat, J.

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Kivshar, Y. S.

A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Klinkmüller, M.

Ko, B.

B. Ko, D. Lee, T. Badloe, and J. Rho, “Metamaterial-based radiative cooling: towards energy-free all-day cooling,” Energies 12(1), 89 (2018).
[Crossref]

Koch, U.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Kongtragool, B.

B. Kongtragool and S. Wongwises, “A review of solar-powered stirling engines and low temperature differential stirling engines,” Renew. Sustain. Energy rev. 7(2), 131–154 (2003).
[Crossref]

Krauss, T. F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Lee, B. H.

A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

Lee, D.

M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]

D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]

D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

B. Ko, D. Lee, T. Badloe, and J. Rho, “Metamaterial-based radiative cooling: towards energy-free all-day cooling,” Energies 12(1), 89 (2018).
[Crossref]

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

Lee, H.

D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]

M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref]

Lee, H.-E.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]

Lee, J. H.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

Lee, T.

S. So, Y. Yang, T. Lee, and J. Rho, “On-demand design of spectrally sensitive multiband absorbers using an artificial neural network,” Photonics Res. 9(4), B153 (2021).
[Crossref]

Lee, Y. U.

Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Lee, Y. Y.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]

Leitis, A.

A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Lenert, A.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Leuthold, J.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Li, G.

Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Li, J.

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

Li, Q.

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Li, S.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
[Crossref]

Li, T.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Li, Y.

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]

Lin, Z.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]

Liu, D.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Liu, M.

A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Liu, Q.

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]

Liu, X.

Liu, X.-X.

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Liu, Y.

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]

Liu, Z.

Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
[Crossref]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref]

Lochbaum, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref]

Luk, T. S.

Ma, Q.

Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Ma, R.

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]

Ma, W.

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

Machulik, S.

Martini, A.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Masselink, W. T.

Mehmood, M. Q.

I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
[Crossref]

Meng, L.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Mi, R.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Michel, A.-K. U.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Milton, G. W.

M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1(3), 198–210 (2019).
[Crossref]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Molesky, S.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]

Monastyrskyi, G.

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Mun, J.

S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).
[Crossref]

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

T. Badloe, J. Mun, and J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 1–18 (2017).
[Crossref]

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]

Nagao, T.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Nam, K. T.

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]

Neshev, D. N.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Neubrech, F.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Nguyen, D. M.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

Nogan, J. J.

Noh, J.

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
[Crossref]

Ok, J. G.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

Padilla, W. J.

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Pankin, P. S.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Park, H. J.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Peters, S.

Piggott, A. Y.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]

Platt, B. C.

Plum, E.

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Polman, A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref]

Posner, C.

Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Priolo, F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]

Qiu, C.

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

Qiu, M.

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Raju, L.

D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
[Crossref]

Raman, A. P.

A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Rana, A. S.

I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
[Crossref]

Raschke, M. B.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Rephaeli, E.

A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Rho, J.

D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]

M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]

D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]

S. So, Y. Yang, T. Lee, and J. Rho, “On-demand design of spectrally sensitive multiband absorbers using an artificial neural network,” Photonics Res. 9(4), B153 (2021).
[Crossref]

T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22(4), 2337–2342 (2020).
[Crossref]

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
[Crossref]

T. Badloe, I. Kim, and J. Rho, “Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide,” Sci. Rep. 10(1), 4522 (2020).
[Crossref]

S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).
[Crossref]

S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8(7), 1255–1261 (2019).
[Crossref]

I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation from dielectric nanostructures using reinforcement learning,” Opt. Express 27(4), 5874 (2019).
[Crossref]

I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
[Crossref]

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]

B. Ko, D. Lee, T. Badloe, and J. Rho, “Metamaterial-based radiative cooling: towards energy-free all-day cooling,” Energies 12(1), 89 (2018).
[Crossref]

T. Badloe, J. Mun, and J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 1–18 (2017).
[Crossref]

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]

G. Yoon, I. Kim, and J. Rho, “Challenges in fabrication towards realization of practical metamaterials,” Microelectronic Eng. 163, 7–20 (2016).
[Crossref]

Rinnerbauer, V.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Rodriguez, A. W.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]

Sajedian, I.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Schäferling, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Semtsiv, M.

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Shadrivov, I. V.

Shaner, E. A.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

So, S.

S. So, Y. Yang, T. Lee, and J. Rho, “On-demand design of spectrally sensitive multiband absorbers using an artificial neural network,” Photonics Res. 9(4), B153 (2021).
[Crossref]

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
[Crossref]

S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8(7), 1255–1261 (2019).
[Crossref]

S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).
[Crossref]

I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
[Crossref]

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]

Soljacic, M.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Son, S.

D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]

M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]

Song, J.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Srebric, J.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Suen, J. Y.

Sun, B.

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref]

Sun, H.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
[Crossref]

Sun, M.-G.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Sundheimer, M. L.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Tan, Y.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Tang, K.

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

Taubner, T.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Tian, J.

B. Yang, H. Cheng, S. Chen, and J. Tian, “Structural colors in metasurfaces: principle, design and applications,” Mater. Chem. Front. 3(5), 750–761 (2019).
[Crossref]

Timofeev, I. V.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Tittl, A.

A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Tsai, D.

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Tucker, E.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

Unni, R.

R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7(10), 2703–2712 (2020).
[Crossref]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

van Hecke, M.

M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1(3), 198–210 (2019).
[Crossref]

Vellore, A.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Vilquin, B.

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]

Vuckovic, J.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]

Wan, W.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]

Wang, E. N.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Wang, J.

J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]

Wang, W.

J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]

Wang, X.

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

Wang, Z.

J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, and J.-J. Delaunay, “Hot-electron photodetector with wavelength selectivity in near-infrared via tamm plasmon,” Nanoscale 11(37), 17407–17414 (2019).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

Wegener, M.

M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1(3), 198–210 (2019).
[Crossref]

Wei, Z.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Wen, Q.

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Wisna, G. B. M.

Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Wolfe, W. L.

Wongwises, S.

B. Kongtragool and S. Wongwises, “A review of solar-powered stirling engines and low temperature differential stirling engines,” Renew. Sustain. Energy rev. 7(2), 131–154 (2003).
[Crossref]

Woolf, D. N.

Wu, J.

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

Wuttig, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Xie, L.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref]

Xu, H.

J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]

Xu, K.

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]

Xu, W.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

Xu, Y.

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

Yan, M.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Yang, B.

B. Yang, H. Cheng, S. Chen, and J. Tian, “Structural colors in metasurfaces: principle, design and applications,” Mater. Chem. Front. 3(5), 750–761 (2019).
[Crossref]

Yang, H. U.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

Yang, R.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Yang, X.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]

Yang, Y.

M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]

S. So, Y. Yang, T. Lee, and J. Rho, “On-demand design of spectrally sensitive multiband absorbers using an artificial neural network,” Photonics Res. 9(4), B153 (2021).
[Crossref]

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Yang, Z.-Y.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Yao, J.

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

Yao, K.

R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7(10), 2703–2712 (2020).
[Crossref]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Yeng, Y. X.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Yesilkoy, F.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Yin, X.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Ying, Y.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

Yokoyama, T.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Yoon, G.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]

G. Yoon, I. Kim, and J. Rho, “Challenges in fabrication towards realization of practical metamaterials,” Microelectronic Eng. 163, 7–20 (2016).
[Crossref]

Yu, P.

J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]

Yu, Z.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

Zhai, Y.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Zhang, J.

Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Zhang, S.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

Zhang, T.

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]

Zhang, W.

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Zhang, X.

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref]

Zhao, D.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Zhao, J.

Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Zhao, X.

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Zheludev, N.

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zheng, Y.

R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7(10), 2703–2712 (2020).
[Crossref]

Zhou, D.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]

Zhou, J.

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]

Zhou, Y.

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]

Zhu, D.

D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
[Crossref]

Zhu, L.

A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Zhu, Y.

J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]

ACS Appl. Mater. Interfaces (1)

S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11(27), 24264–24268 (2019).
[Crossref]

ACS Nano (3)

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

D. Zhu, Z. Liu, L. Raju, A. S. Kim, and W. Cai, “Building multifunctional metasystems via algorithmic construction,” ACS Nano 15(2), 2318–2326 (2021).
[Crossref]

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref]

ACS Photonics (5)

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photonics 5(10), 3876–3895 (2018).
[Crossref]

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7(10), 2703–2712 (2020).
[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Adv. Energy Mater. (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Adv. Mater. (4)

K. Tang, X. Wang, K. Dong, Y. Li, J. Li, B. Sun, X. Zhang, C. Dames, C. Qiu, J. Yao, and J. Wu, “A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition,” Adv. Mater. 32, 1907071 (2020).
[Crossref]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

Adv. Opt. Mater. (1)

M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, “Visibly transparent radiative cooler under direct sunlight,” Adv. Opt. Mater. 2021, 2002226 (2021).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113(16), 161104 (2018).
[Crossref]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]

Energies (1)

B. Ko, D. Lee, T. Badloe, and J. Rho, “Metamaterial-based radiative cooling: towards energy-free all-day cooling,” Energies 12(1), 89 (2018).
[Crossref]

IEEE Photonics J. (1)

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

J. Appl. Phys. (2)

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1 ⩽ ω ⩽ 4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]

J. Nanomater. (1)

T. Badloe, J. Mun, and J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 1–18 (2017).
[Crossref]

Mater. Chem. Front. (1)

B. Yang, H. Cheng, S. Chen, and J. Tian, “Structural colors in metasurfaces: principle, design and applications,” Mater. Chem. Front. 3(5), 750–761 (2019).
[Crossref]

Microelectronic Eng. (1)

G. Yoon, I. Kim, and J. Rho, “Challenges in fabrication towards realization of practical metamaterials,” Microelectronic Eng. 163, 7–20 (2016).
[Crossref]

Microsyst. Nanoeng. (1)

D. Lee, M. Go, M. Kim, J. Jang, C. Choi, J. K. Kim, and J. Rho, “Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared,” Microsyst. Nanoeng. 7(1), 14 (2021).
[Crossref]

Nano Converg. (1)

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref]

Nano Energy (1)

D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, “Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide,” Nano Energy 79, 105426 (2021).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Nanophotonics (3)

I. Kim, S. So, A. S. Rana, M. Q. Mehmood, and J. Rho, “Thermally robust ring-shaped chromium perfect absorber of visible light,” Nanophotonics 7(11), 1827–1833 (2018).
[Crossref]

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
[Crossref]

S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8(7), 1255–1261 (2019).
[Crossref]

Nanoscale (3)

J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, and Z. Wang, “Broadband tamm plasmon-enhanced planar hot-electron photodetector,” Nanoscale 12(47), 23945–23952 (2020).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, and J.-J. Delaunay, “Hot-electron photodetector with wavelength selectivity in near-infrared via tamm plasmon,” Nanoscale 11(37), 17407–17414 (2019).
[Crossref]

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

Nat. Commun. (2)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref]

Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, “Metamaterial assisted illumination nanoscopy via random super-resolution speckles,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Nat. Energy (1)

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

Nat. Mater. (1)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref]

Nat. Nanotechnol. (2)

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Nat. Photonics (1)

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).
[Crossref]

Nat. Rev. Mater. (1)

J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” Nat. Rev. Mater. 20201–22 (2020).
[Crossref]

Nat. Rev. Phys. (1)

M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1(3), 198–210 (2019).
[Crossref]

Nature (3)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, “Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles,” Nature 556(7701), 360–365 (2018).
[Crossref]

A. P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Opt. Express (2)

Optica (2)

Photonics Res. (2)

S. So, Y. Yang, T. Lee, and J. Rho, “On-demand design of spectrally sensitive multiband absorbers using an artificial neural network,” Photonics Res. 9(4), B153 (2021).
[Crossref]

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).
[Crossref]

Phys. Chem. Chem. Phys. (1)

T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22(4), 2337–2342 (2020).
[Crossref]

Phys. Rev. B (2)

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Renew. Sustain. Energy rev. (1)

B. Kongtragool and S. Wongwises, “A review of solar-powered stirling engines and low temperature differential stirling engines,” Renew. Sustain. Energy rev. 7(2), 131–154 (2003).
[Crossref]

Sci. Adv. (1)

A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

Sci. Rep. (3)

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref]

T. Badloe, I. Kim, and J. Rho, “Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide,” Sci. Rep. 10(1), 4522 (2020).
[Crossref]

Science (4)

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, and L. Hu, “A radiative cooling structural material,” Science 364(6442), 760–763 (2019).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Sensors (1)

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors 12(3), 2742–2765 (2012).
[Crossref]

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic illustration of the multilayer structure. The design parameters of the material type (Mat) and layer thicknesses ( $\textrm {t}_{\textrm {Mat}}$ , $\textrm {t}_{\textrm {SiO}_{2}}$ , $\textrm {t}_{\textrm {Si}}$ ) are indicated. (b) The architecture of the ANN. The ANN is composed of an input layer that corresponds to 300 spectral points, four hidden layers, and an output layer that corresponds to the design parameters. The number of neurons in the hidden layers are shown.
Fig. 2.
Fig. 2. (a) Learning curves for the training (black) and validation (red) losses over 5,000 epochs. A logarithmic scale is used on the x-axis. (b) Histogram of the spectral MSE for the test set. The values above each bar represent the percentage of the data that falls within that loss range. (c) Examples of test results. The solid black line shows the target emissivity spectra, and dotted red lines and blue dots show the designed emissivity spectra obtained from RCWA and FDTD simulation, respectively.
Fig. 3.
Fig. 3. Designed parameters of (a) $\textrm {t}_{\textrm {Mat}}$ and (b) $\textrm {t}_{\textrm {Si}}$ for given input spectra. Design results of ultra-narrowband thermal emitter aimed at $\lambda _{\textrm {peak}}$ of (c) 3.5 $\mu$ m, (d) 4 $\mu$ m, (e) 4.5 $\mu$ m, (f) 5 $\mu$ m, (g) 5.5 $\mu$ m, and (h) 6 $\mu$ m.
Fig. 4.
Fig. 4. Design result of ultra-narrowband thermal emitters with three different materials of (a) Si, (b) Ge, and (c) $\textrm {Si}_{3}\textrm {N}_{4}$ . The text boxes indicate the design parameters of [Mat, $\textrm {t}_{\textrm {Si}}$ (nm), $\textrm {t}_{\textrm {SiO}_{2}}$ (nm), $\textrm {t}_{\textrm {Mat}}$ (nm)]
Fig. 5.
Fig. 5. Normalized electric field distribution at the peak wavelengths of the structures designed to target (a) 4 $\mu$ m, (b) 5 $\mu$ m, and (c) 6 $\mu$ m, respectively.
Fig. 6.
Fig. 6. Directional and spectral emissivity of the designed structure targeting 6 $\mu$ m for (a) TE mode and (B) TM mode.

Tables (3)

Tables Icon

Table 1. Details of multilayer structures used to create the dataset

Tables Icon

Table 2. Hyperparameters used for training the network

Tables Icon

Table 3. Design parameters of structures in Fig. 3

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Y = [ Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 ] = [ p ( Si ) , p ( Ge ) , p ( Si 3 N 4 ) , t Si , t SiO 2 , t Mat ]
l = α l material loss + ( 1 α ) l thickness loss , l material loss = 1 n i = 1 n ( Y i log ( σ ( Y ^ i ) ) + ( 1 Y i ) log ( σ ( 1 Y ^ i ) ) , l thickness loss = 1 n i = 1 n ( Y i Y ^ i ) 2 , σ ( x ) = 1 1 + exp x
ϵ target = w ( λ λ peak ) 2 + w 2 ,
%  Error of the  λ peak = | λ peak, target λ peak, designed | λ peak, target × 100 ( % ) .

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved