D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-waveoptical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]
B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]
A. Bartos, K.P. Lieb, M. Uhrmacher, and D. Wiarda, “Refinement of atomic positions in bixbyite oxides using perturbed angular correlation spectroscopy,” Acta Crystallogr B Struct Sci 49(2), 165–169 (1993).
[Crossref]
S.R. Bowman, W.S. Rabinovich, A.P. Bowman, B.J. Feldman, and G.H. Rosenblatt, “3 μm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]
W.S. Rabinovich, S.R. Bowman, B.J. Feldman, and M.J. Winings, “Tunable laser pumped 3 μm Ho:YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]
S.R. Bowman, W.S. Rabinovich, A.P. Bowman, B.J. Feldman, and G.H. Rosenblatt, “3 μm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]
F. Chen, M. Cai, Y.S. Zhang, and B. Li, “A high power Q-switched Ho YAG laser pumped by two Tm-fiber lasers,” Fifth Symposium on Novel Optoelectronic Detection Technology and Application. International Society for Optics and Photonics, 11023, 110233P (2019).
W.T. Carnall, P.R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” The Journal of Chemical Physics 49(10), 4412–4423 (1968).
[Crossref]
J.T. Peng, H.P. Xia, P.Y. Wang, H.Y. Hu, L. Tang, Y.P. Zhang, H.C. Jiang, and B.J. Chen, “Optical Spectra and gain properties of Ho3+/Pr3+ Co-doped LiYF4crystal,” J. Mater. Sci. Technol. 30(9), 910–916 (2014).
[Crossref]
F. Chen, M. Cai, Y.S. Zhang, and B. Li, “A high power Q-switched Ho YAG laser pumped by two Tm-fiber lasers,” Fifth Symposium on Novel Optoelectronic Detection Technology and Application. International Society for Optics and Photonics, 11023, 110233P (2019).
J.L. Liu, X.Y. Chen, R.M. Wang, C.T. Wu, and G.Y. Jin, “A stable wavelength operation Ho: YAG laser with orthogonally polarized pump,” Chinese Phys. Lett. 36(2), 024201 (2019).
[Crossref]
D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-waveoptical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]
X.M. Duan, Y.J. Shen, Z. Zhang, L.B. Su, and T.Y. Dai, “A passively Q-switching of diode-pumped 2.08-µm Ho: CaF2 laser,” Infrared Phys. Techn. 103, 103071 (2019).
[Crossref]
Y.Y. Xue, N. Li, Q.S. Song, X.D. Xu, X.T. Yang, T.Y. Dai, D.H. Wang, Q.G. Wang, D.Z. Li, Z.S. Wang, and J. Xu, “Spectral properties and laser performance of Ho:CNGG crystals grown by the micro-pulling-down method,” Opt. Mater. Express 9(6), 2490–2496 (2019).
[Crossref]
J. Wu, Y.L. Ju, T.Y. Dai, B.Q. Yao, and Y.Z. Wang, “1.5 W high efficiency and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect,” Opt. Express 25(22), 27671–27677 (2017).
[Crossref]
X.M. Duan, Y.J. Shen, Z. Zhang, L.B. Su, and T.Y. Dai, “A passively Q-switching of diode-pumped 2.08-µm Ho: CaF2 laser,” Infrared Phys. Techn. 103, 103071 (2019).
[Crossref]
X.M. Duan, Y.J. Shen, B.Q. Yao, and Y.Z. Wang, “A 106W Q-switched Ho: YAG laser with single crystal,” Optik 169, 224–227 (2018).
[Crossref]
X.M. Duan, Y.J. Shen, B.Q. Yao, and Y.Z. Wang, “146.4 W end-pumped Ho: YAG slab laser with two crystals,” Quantum Electron. 48(8), 691–694 (2018).
[Crossref]
Y.J. Shen, B.Q. Yao, X.M. Duan, G.L. Zhu, W. Wang, Y.L. Ju, and Y.Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett. 37(17), 3558–3560 (2012).
[Crossref]
W.S. Rabinovich, S.R. Bowman, B.J. Feldman, and M.J. Winings, “Tunable laser pumped 3 μm Ho:YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]
S.R. Bowman, W.S. Rabinovich, A.P. Bowman, B.J. Feldman, and G.H. Rosenblatt, “3 μm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]
W.T. Carnall, P.R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” The Journal of Chemical Physics 49(10), 4412–4423 (1968).
[Crossref]
L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]
M. Ganija, N. Simakov, A. Hemming, J. Haub, P. Veitch, and J. Munch, “Efficient, low threshold, cryogenic Ho:YAG laser,” Opt. Express 24(11), 11569–11577 (2016).
[Crossref]
B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]
H.K. Nie, P.X. Zhang, B.T. Zhang, M. Xu, K.J. Yang, X.L. Sun, L.H. Zhang, Y. Hang, and J.L. He, “Watt-level continuous-wave and black phosphorus passive q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 μm,” IEEE J. Select. Topics Quantum Electron. 24(5), 1–5 (2018).
[Crossref]
P. Zhang, Y. Hang, and L. Zhang, “Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal,” Opt. Lett. 37(24), 5241–5243 (2012).
D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-waveoptical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]
M. Ganija, N. Simakov, A. Hemming, J. Haub, P. Veitch, and J. Munch, “Efficient, low threshold, cryogenic Ho:YAG laser,” Opt. Express 24(11), 11569–11577 (2016).
[Crossref]
H.K. Nie, H.P. Xia, B.N. Shi, J.X. Hu, B.T. Zhang, K.J. Yang, and J.L He, “High-efficiency watt-level continuous-wave 2.9 μm Ho, Pr: YLF laser,” Opt. Lett. 43(24), 6109–6112 (2018).
[Crossref]
H.K. Nie, P.X. Zhang, B.T. Zhang, M. Xu, K.J. Yang, X.L. Sun, L.H. Zhang, Y. Hang, and J.L. He, “Watt-level continuous-wave and black phosphorus passive q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 μm,” IEEE J. Select. Topics Quantum Electron. 24(5), 1–5 (2018).
[Crossref]
M. Ganija, N. Simakov, A. Hemming, J. Haub, P. Veitch, and J. Munch, “Efficient, low threshold, cryogenic Ho:YAG laser,” Opt. Express 24(11), 11569–11577 (2016).
[Crossref]
J.T. Peng, H.P. Xia, P.Y. Wang, H.Y. Hu, L. Tang, Y.P. Zhang, H.C. Jiang, and B.J. Chen, “Optical Spectra and gain properties of Ho3+/Pr3+ Co-doped LiYF4crystal,” J. Mater. Sci. Technol. 30(9), 910–916 (2014).
[Crossref]
H.K. Nie, H.P. Xia, B.N. Shi, J.X. Hu, B.T. Zhang, K.J. Yang, and J.L He, “High-efficiency watt-level continuous-wave 2.9 μm Ho, Pr: YLF laser,” Opt. Lett. 43(24), 6109–6112 (2018).
[Crossref]
L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]
J.T. Peng, H.P. Xia, P.Y. Wang, H.Y. Hu, L. Tang, Y.P. Zhang, H.C. Jiang, and B.J. Chen, “Optical Spectra and gain properties of Ho3+/Pr3+ Co-doped LiYF4crystal,” J. Mater. Sci. Technol. 30(9), 910–916 (2014).
[Crossref]
J.L. Liu, X.Y. Chen, R.M. Wang, C.T. Wu, and G.Y. Jin, “A stable wavelength operation Ho: YAG laser with orthogonally polarized pump,” Chinese Phys. Lett. 36(2), 024201 (2019).
[Crossref]
J. Wu, Y.L. Ju, T.Y. Dai, B.Q. Yao, and Y.Z. Wang, “1.5 W high efficiency and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect,” Opt. Express 25(22), 27671–27677 (2017).
[Crossref]
Y.J. Shen, B.Q. Yao, X.M. Duan, G.L. Zhu, W. Wang, Y.L. Ju, and Y.Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett. 37(17), 3558–3560 (2012).
[Crossref]
B.R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]
X.S. Zhu, G.W. Zhu, C. Wei, L. V. Kotov, J.F. Wang, M.H. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm,” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]
J. Kwiatkowski, “Highly efficient high power CW and Q-switched Ho:YLF laser,” Opto-Electron. Rev. 23(2), 165–171 (2015).
[Crossref]
F. Chen, M. Cai, Y.S. Zhang, and B. Li, “A high power Q-switched Ho YAG laser pumped by two Tm-fiber lasers,” Fifth Symposium on Novel Optoelectronic Detection Technology and Application. International Society for Optics and Photonics, 11023, 110233P (2019).
B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, and J. Xu, “Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3,” J. Lumin. 196, 76–80 (2018).
[Crossref]
Y.Y. Xue, N. Li, Q.S. Song, X.D. Xu, X.T. Yang, T.Y. Dai, D.H. Wang, Q.G. Wang, D.Z. Li, Z.S. Wang, and J. Xu, “Spectral properties and laser performance of Ho:CNGG crystals grown by the micro-pulling-down method,” Opt. Mater. Express 9(6), 2490–2496 (2019).
[Crossref]
W.C. Yao, E.H. Li, Y.J. Shen, C.Y. Ren, Y.G. Zhao, D.Y. Tang, and D.Y. Shen, “A 142 W Ho: YAG laser single-end-pumped by a Tm-doped fiber laser at 1931nm,” Laser Phys. Lett. 16(11), 115001 (2019).
[Crossref]
Y.Y. Xue, N. Li, Q.S. Song, X.D. Xu, X.T. Yang, T.Y. Dai, D.H. Wang, Q.G. Wang, D.Z. Li, Z.S. Wang, and J. Xu, “Spectral properties and laser performance of Ho:CNGG crystals grown by the micro-pulling-down method,” Opt. Mater. Express 9(6), 2490–2496 (2019).
[Crossref]
A. Bartos, K.P. Lieb, M. Uhrmacher, and D. Wiarda, “Refinement of atomic positions in bixbyite oxides using perturbed angular correlation spectroscopy,” Acta Crystallogr B Struct Sci 49(2), 165–169 (1993).
[Crossref]
B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, and J. Xu, “Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3,” J. Lumin. 196, 76–80 (2018).
[Crossref]
B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, and J. Xu, “Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3,” J. Lumin. 196, 76–80 (2018).
[Crossref]
B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, and J. Xu, “Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3,” J. Lumin. 196, 76–80 (2018).
[Crossref]
J.L. Liu, X.Y. Chen, R.M. Wang, C.T. Wu, and G.Y. Jin, “A stable wavelength operation Ho: YAG laser with orthogonally polarized pump,” Chinese Phys. Lett. 36(2), 024201 (2019).
[Crossref]
D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-waveoptical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]
L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]
M. Ganija, N. Simakov, A. Hemming, J. Haub, P. Veitch, and J. Munch, “Efficient, low threshold, cryogenic Ho:YAG laser,” Opt. Express 24(11), 11569–11577 (2016).
[Crossref]
H.K. Nie, H.P. Xia, B.N. Shi, J.X. Hu, B.T. Zhang, K.J. Yang, and J.L He, “High-efficiency watt-level continuous-wave 2.9 μm Ho, Pr: YLF laser,” Opt. Lett. 43(24), 6109–6112 (2018).
[Crossref]
H.K. Nie, P.X. Zhang, B.T. Zhang, M. Xu, K.J. Yang, X.L. Sun, L.H. Zhang, Y. Hang, and J.L. He, “Watt-level continuous-wave and black phosphorus passive q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 μm,” IEEE J. Select. Topics Quantum Electron. 24(5), 1–5 (2018).
[Crossref]
X.S. Zhu, G.W. Zhu, C. Wei, L. V. Kotov, J.F. Wang, M.H. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm,” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]
G.S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” The Journal of Chemical Physics 37(3), 511–520 (1962).
[Crossref]
J.T. Peng, H.P. Xia, P.Y. Wang, H.Y. Hu, L. Tang, Y.P. Zhang, H.C. Jiang, and B.J. Chen, “Optical Spectra and gain properties of Ho3+/Pr3+ Co-doped LiYF4crystal,” J. Mater. Sci. Technol. 30(9), 910–916 (2014).
[Crossref]
D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-waveoptical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]
L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]
P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004).
[Crossref]
L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]
X.S. Zhu, G.W. Zhu, C. Wei, L. V. Kotov, J.F. Wang, M.H. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm,” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]
W.S. Rabinovich, S.R. Bowman, B.J. Feldman, and M.J. Winings, “Tunable laser pumped 3 μm Ho:YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]
S.R. Bowman, W.S. Rabinovich, A.P. Bowman, B.J. Feldman, and G.H. Rosenblatt, “3 μm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]
W.T. Carnall, P.R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” The Journal of Chemical Physics 49(10), 4412–4423 (1968).
[Crossref]
W.C. Yao, E.H. Li, Y.J. Shen, C.Y. Ren, Y.G. Zhao, D.Y. Tang, and D.Y. Shen, “A 142 W Ho: YAG laser single-end-pumped by a Tm-doped fiber laser at 1931nm,” Laser Phys. Lett. 16(11), 115001 (2019).
[Crossref]
S.R. Bowman, W.S. Rabinovich, A.P. Bowman, B.J. Feldman, and G.H. Rosenblatt, “3 μm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]
M. Schellhorn, “A comparison of resonantly pumped Ho: YLF and Ho: LLF lasers in CW and Q-switched operation under identical pump conditions,” Appl. Phys. B 103(4), 777–788 (2011).
[Crossref]
J.L. Wang, Q.S. Song, Y.G. Zhao, C.F. Shen, W.C. Yao, X.D. Xu, J. Xu, and D.Y. Shen, “Ho:YAG single-crystal fiber amplifier,” Laser Applications Conference. Optical Society of America, JM5A. 24 (2019).
W.C. Yao, E.H. Li, Y.J. Shen, C.Y. Ren, Y.G. Zhao, D.Y. Tang, and D.Y. Shen, “A 142 W Ho: YAG laser single-end-pumped by a Tm-doped fiber laser at 1931nm,” Laser Phys. Lett. 16(11), 115001 (2019).
[Crossref]
J.N. Zhang, D.Y. Shen, X.D. Xu, and H. Chen, “Widely tunable, narrow line-width Ho: CaYAlO4 laser with a volume Bragg grating,” Opt. Mater. Express 6(6), 1768–1773 (2016).
[Crossref]
J.L. Wang, Q.S. Song, Y.G. Zhao, C.F. Shen, W.C. Yao, X.D. Xu, J. Xu, and D.Y. Shen, “Ho:YAG single-crystal fiber amplifier,” Laser Applications Conference. Optical Society of America, JM5A. 24 (2019).
W.C. Yao, E.H. Li, Y.J. Shen, C.Y. Ren, Y.G. Zhao, D.Y. Tang, and D.Y. Shen, “A 142 W Ho: YAG laser single-end-pumped by a Tm-doped fiber laser at 1931nm,” Laser Phys. Lett. 16(11), 115001 (2019).
[Crossref]
X.M. Duan, Y.J. Shen, Z. Zhang, L.B. Su, and T.Y. Dai, “A passively Q-switching of diode-pumped 2.08-µm Ho: CaF2 laser,” Infrared Phys. Techn. 103, 103071 (2019).
[Crossref]
X.M. Duan, Y.J. Shen, B.Q. Yao, and Y.Z. Wang, “A 106W Q-switched Ho: YAG laser with single crystal,” Optik 169, 224–227 (2018).
[Crossref]
X.M. Duan, Y.J. Shen, B.Q. Yao, and Y.Z. Wang, “146.4 W end-pumped Ho: YAG slab laser with two crystals,” Quantum Electron. 48(8), 691–694 (2018).
[Crossref]
Y.J. Shen, B.Q. Yao, X.M. Duan, G.L. Zhu, W. Wang, Y.L. Ju, and Y.Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett. 37(17), 3558–3560 (2012).
[Crossref]
H.K. Nie, H.P. Xia, B.N. Shi, J.X. Hu, B.T. Zhang, K.J. Yang, and J.L He, “High-efficiency watt-level continuous-wave 2.9 μm Ho, Pr: YLF laser,” Opt. Lett. 43(24), 6109–6112 (2018).
[Crossref]
B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, and J. Xu, “Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3,” J. Lumin. 196, 76–80 (2018).
[Crossref]
M. Ganija, N. Simakov, A. Hemming, J. Haub, P. Veitch, and J. Munch, “Efficient, low threshold, cryogenic Ho:YAG laser,” Opt. Express 24(11), 11569–11577 (2016).
[Crossref]
Y.Y. Xue, N. Li, Q.S. Song, X.D. Xu, X.T. Yang, T.Y. Dai, D.H. Wang, Q.G. Wang, D.Z. Li, Z.S. Wang, and J. Xu, “Spectral properties and laser performance of Ho:CNGG crystals grown by the micro-pulling-down method,” Opt. Mater. Express 9(6), 2490–2496 (2019).
[Crossref]
J.L. Wang, Q.S. Song, Y.G. Zhao, C.F. Shen, W.C. Yao, X.D. Xu, J. Xu, and D.Y. Shen, “Ho:YAG single-crystal fiber amplifier,” Laser Applications Conference. Optical Society of America, JM5A. 24 (2019).
D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-waveoptical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]
X.M. Duan, Y.J. Shen, Z. Zhang, L.B. Su, and T.Y. Dai, “A passively Q-switching of diode-pumped 2.08-µm Ho: CaF2 laser,” Infrared Phys. Techn. 103, 103071 (2019).
[Crossref]
H.K. Nie, P.X. Zhang, B.T. Zhang, M. Xu, K.J. Yang, X.L. Sun, L.H. Zhang, Y. Hang, and J.L. He, “Watt-level continuous-wave and black phosphorus passive q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 μm,” IEEE J. Select. Topics Quantum Electron. 24(5), 1–5 (2018).
[Crossref]
W.C. Yao, E.H. Li, Y.J. Shen, C.Y. Ren, Y.G. Zhao, D.Y. Tang, and D.Y. Shen, “A 142 W Ho: YAG laser single-end-pumped by a Tm-doped fiber laser at 1931nm,” Laser Phys. Lett. 16(11), 115001 (2019).
[Crossref]
B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, and J. Xu, “Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3,” J. Lumin. 196, 76–80 (2018).
[Crossref]
J.T. Peng, H.P. Xia, P.Y. Wang, H.Y. Hu, L. Tang, Y.P. Zhang, H.C. Jiang, and B.J. Chen, “Optical Spectra and gain properties of Ho3+/Pr3+ Co-doped LiYF4crystal,” J. Mater. Sci. Technol. 30(9), 910–916 (2014).
[Crossref]
X.S. Zhu, G.W. Zhu, C. Wei, L. V. Kotov, J.F. Wang, M.H. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm,” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]
A. Bartos, K.P. Lieb, M. Uhrmacher, and D. Wiarda, “Refinement of atomic positions in bixbyite oxides using perturbed angular correlation spectroscopy,” Acta Crystallogr B Struct Sci 49(2), 165–169 (1993).
[Crossref]
M. Ganija, N. Simakov, A. Hemming, J. Haub, P. Veitch, and J. Munch, “Efficient, low threshold, cryogenic Ho:YAG laser,” Opt. Express 24(11), 11569–11577 (2016).
[Crossref]
B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]
Y.Y. Xue, N. Li, Q.S. Song, X.D. Xu, X.T. Yang, T.Y. Dai, D.H. Wang, Q.G. Wang, D.Z. Li, Z.S. Wang, and J. Xu, “Spectral properties and laser performance of Ho:CNGG crystals grown by the micro-pulling-down method,” Opt. Mater. Express 9(6), 2490–2496 (2019).
[Crossref]
X.S. Zhu, G.W. Zhu, C. Wei, L. V. Kotov, J.F. Wang, M.H. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm,” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]
J.L. Wang, Q.S. Song, Y.G. Zhao, C.F. Shen, W.C. Yao, X.D. Xu, J. Xu, and D.Y. Shen, “Ho:YAG single-crystal fiber amplifier,” Laser Applications Conference. Optical Society of America, JM5A. 24 (2019).
J.T. Peng, H.P. Xia, P.Y. Wang, H.Y. Hu, L. Tang, Y.P. Zhang, H.C. Jiang, and B.J. Chen, “Optical Spectra and gain properties of Ho3+/Pr3+ Co-doped LiYF4crystal,” J. Mater. Sci. Technol. 30(9), 910–916 (2014).
[Crossref]
B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, and J. Xu, “Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3,” J. Lumin. 196, 76–80 (2018).
[Crossref]
Y.Y. Xue, N. Li, Q.S. Song, X.D. Xu, X.T. Yang, T.Y. Dai, D.H. Wang, Q.G. Wang, D.Z. Li, Z.S. Wang, and J. Xu, “Spectral properties and laser performance of Ho:CNGG crystals grown by the micro-pulling-down method,” Opt. Mater. Express 9(6), 2490–2496 (2019).
[Crossref]
J.L. Liu, X.Y. Chen, R.M. Wang, C.T. Wu, and G.Y. Jin, “A stable wavelength operation Ho: YAG laser with orthogonally polarized pump,” Chinese Phys. Lett. 36(2), 024201 (2019).
[Crossref]
X.M. Duan, Y.J. Shen, B.Q. Yao, and Y.Z. Wang, “146.4 W end-pumped Ho: YAG slab laser with two crystals,” Quantum Electron. 48(8), 691–694 (2018).
[Crossref]
X.M. Duan, Y.J. Shen, B.Q. Yao, and Y.Z. Wang, “A 106W Q-switched Ho: YAG laser with single crystal,” Optik 169, 224–227 (2018).
[Crossref]
J. Wu, Y.L. Ju, T.Y. Dai, B.Q. Yao, and Y.Z. Wang, “1.5 W high efficiency and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect,” Opt. Express 25(22), 27671–27677 (2017).
[Crossref]
Y.J. Shen, B.Q. Yao, X.M. Duan, G.L. Zhu, W. Wang, Y.L. Ju, and Y.Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett. 37(17), 3558–3560 (2012).
[Crossref]
B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, and J. Xu, “Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3,” J. Lumin. 196, 76–80 (2018).
[Crossref]
Y.Y. Xue, N. Li, Q.S. Song, X.D. Xu, X.T. Yang, T.Y. Dai, D.H. Wang, Q.G. Wang, D.Z. Li, Z.S. Wang, and J. Xu, “Spectral properties and laser performance of Ho:CNGG crystals grown by the micro-pulling-down method,” Opt. Mater. Express 9(6), 2490–2496 (2019).
[Crossref]
M.J. Weber, “Handbook of Optical Materials,” CRC Press, Boca Raton, 122–136 (2003).
X.S. Zhu, G.W. Zhu, C. Wei, L. V. Kotov, J.F. Wang, M.H. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm,” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]
A. Bartos, K.P. Lieb, M. Uhrmacher, and D. Wiarda, “Refinement of atomic positions in bixbyite oxides using perturbed angular correlation spectroscopy,” Acta Crystallogr B Struct Sci 49(2), 165–169 (1993).
[Crossref]
W.S. Rabinovich, S.R. Bowman, B.J. Feldman, and M.J. Winings, “Tunable laser pumped 3 μm Ho:YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]
J.L. Liu, X.Y. Chen, R.M. Wang, C.T. Wu, and G.Y. Jin, “A stable wavelength operation Ho: YAG laser with orthogonally polarized pump,” Chinese Phys. Lett. 36(2), 024201 (2019).
[Crossref]
H.K. Nie, H.P. Xia, B.N. Shi, J.X. Hu, B.T. Zhang, K.J. Yang, and J.L He, “High-efficiency watt-level continuous-wave 2.9 μm Ho, Pr: YLF laser,” Opt. Lett. 43(24), 6109–6112 (2018).
[Crossref]
J.T. Peng, H.P. Xia, P.Y. Wang, H.Y. Hu, L. Tang, Y.P. Zhang, H.C. Jiang, and B.J. Chen, “Optical Spectra and gain properties of Ho3+/Pr3+ Co-doped LiYF4crystal,” J. Mater. Sci. Technol. 30(9), 910–916 (2014).
[Crossref]
Y.Y. Xue, N. Li, Q.S. Song, X.D. Xu, X.T. Yang, T.Y. Dai, D.H. Wang, Q.G. Wang, D.Z. Li, Z.S. Wang, and J. Xu, “Spectral properties and laser performance of Ho:CNGG crystals grown by the micro-pulling-down method,” Opt. Mater. Express 9(6), 2490–2496 (2019).
[Crossref]
B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, and J. Xu, “Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3,” J. Lumin. 196, 76–80 (2018).
[Crossref]
J.L. Wang, Q.S. Song, Y.G. Zhao, C.F. Shen, W.C. Yao, X.D. Xu, J. Xu, and D.Y. Shen, “Ho:YAG single-crystal fiber amplifier,” Laser Applications Conference. Optical Society of America, JM5A. 24 (2019).
H.K. Nie, P.X. Zhang, B.T. Zhang, M. Xu, K.J. Yang, X.L. Sun, L.H. Zhang, Y. Hang, and J.L. He, “Watt-level continuous-wave and black phosphorus passive q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 μm,” IEEE J. Select. Topics Quantum Electron. 24(5), 1–5 (2018).
[Crossref]
B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, and J. Xu, “Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3,” J. Lumin. 196, 76–80 (2018).
[Crossref]
Y.Y. Xue, N. Li, Q.S. Song, X.D. Xu, X.T. Yang, T.Y. Dai, D.H. Wang, Q.G. Wang, D.Z. Li, Z.S. Wang, and J. Xu, “Spectral properties and laser performance of Ho:CNGG crystals grown by the micro-pulling-down method,” Opt. Mater. Express 9(6), 2490–2496 (2019).
[Crossref]
J.N. Zhang, D.Y. Shen, X.D. Xu, and H. Chen, “Widely tunable, narrow line-width Ho: CaYAlO4 laser with a volume Bragg grating,” Opt. Mater. Express 6(6), 1768–1773 (2016).
[Crossref]
J.L. Wang, Q.S. Song, Y.G. Zhao, C.F. Shen, W.C. Yao, X.D. Xu, J. Xu, and D.Y. Shen, “Ho:YAG single-crystal fiber amplifier,” Laser Applications Conference. Optical Society of America, JM5A. 24 (2019).
Y.Y. Xue, N. Li, Q.S. Song, X.D. Xu, X.T. Yang, T.Y. Dai, D.H. Wang, Q.G. Wang, D.Z. Li, Z.S. Wang, and J. Xu, “Spectral properties and laser performance of Ho:CNGG crystals grown by the micro-pulling-down method,” Opt. Mater. Express 9(6), 2490–2496 (2019).
[Crossref]
H.K. Nie, P.X. Zhang, B.T. Zhang, M. Xu, K.J. Yang, X.L. Sun, L.H. Zhang, Y. Hang, and J.L. He, “Watt-level continuous-wave and black phosphorus passive q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 μm,” IEEE J. Select. Topics Quantum Electron. 24(5), 1–5 (2018).
[Crossref]
H.K. Nie, H.P. Xia, B.N. Shi, J.X. Hu, B.T. Zhang, K.J. Yang, and J.L He, “High-efficiency watt-level continuous-wave 2.9 μm Ho, Pr: YLF laser,” Opt. Lett. 43(24), 6109–6112 (2018).
[Crossref]
Y.Y. Xue, N. Li, Q.S. Song, X.D. Xu, X.T. Yang, T.Y. Dai, D.H. Wang, Q.G. Wang, D.Z. Li, Z.S. Wang, and J. Xu, “Spectral properties and laser performance of Ho:CNGG crystals grown by the micro-pulling-down method,” Opt. Mater. Express 9(6), 2490–2496 (2019).
[Crossref]
X.M. Duan, Y.J. Shen, B.Q. Yao, and Y.Z. Wang, “A 106W Q-switched Ho: YAG laser with single crystal,” Optik 169, 224–227 (2018).
[Crossref]
X.M. Duan, Y.J. Shen, B.Q. Yao, and Y.Z. Wang, “146.4 W end-pumped Ho: YAG slab laser with two crystals,” Quantum Electron. 48(8), 691–694 (2018).
[Crossref]
J. Wu, Y.L. Ju, T.Y. Dai, B.Q. Yao, and Y.Z. Wang, “1.5 W high efficiency and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect,” Opt. Express 25(22), 27671–27677 (2017).
[Crossref]
Y.J. Shen, B.Q. Yao, X.M. Duan, G.L. Zhu, W. Wang, Y.L. Ju, and Y.Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett. 37(17), 3558–3560 (2012).
[Crossref]
W.C. Yao, E.H. Li, Y.J. Shen, C.Y. Ren, Y.G. Zhao, D.Y. Tang, and D.Y. Shen, “A 142 W Ho: YAG laser single-end-pumped by a Tm-doped fiber laser at 1931nm,” Laser Phys. Lett. 16(11), 115001 (2019).
[Crossref]
J.L. Wang, Q.S. Song, Y.G. Zhao, C.F. Shen, W.C. Yao, X.D. Xu, J. Xu, and D.Y. Shen, “Ho:YAG single-crystal fiber amplifier,” Laser Applications Conference. Optical Society of America, JM5A. 24 (2019).
H.K. Nie, H.P. Xia, B.N. Shi, J.X. Hu, B.T. Zhang, K.J. Yang, and J.L He, “High-efficiency watt-level continuous-wave 2.9 μm Ho, Pr: YLF laser,” Opt. Lett. 43(24), 6109–6112 (2018).
[Crossref]
H.K. Nie, P.X. Zhang, B.T. Zhang, M. Xu, K.J. Yang, X.L. Sun, L.H. Zhang, Y. Hang, and J.L. He, “Watt-level continuous-wave and black phosphorus passive q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 μm,” IEEE J. Select. Topics Quantum Electron. 24(5), 1–5 (2018).
[Crossref]
H.K. Nie, P.X. Zhang, B.T. Zhang, M. Xu, K.J. Yang, X.L. Sun, L.H. Zhang, Y. Hang, and J.L. He, “Watt-level continuous-wave and black phosphorus passive q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 μm,” IEEE J. Select. Topics Quantum Electron. 24(5), 1–5 (2018).
[Crossref]
H.K. Nie, P.X. Zhang, B.T. Zhang, M. Xu, K.J. Yang, X.L. Sun, L.H. Zhang, Y. Hang, and J.L. He, “Watt-level continuous-wave and black phosphorus passive q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 μm,” IEEE J. Select. Topics Quantum Electron. 24(5), 1–5 (2018).
[Crossref]
J.T. Peng, H.P. Xia, P.Y. Wang, H.Y. Hu, L. Tang, Y.P. Zhang, H.C. Jiang, and B.J. Chen, “Optical Spectra and gain properties of Ho3+/Pr3+ Co-doped LiYF4crystal,” J. Mater. Sci. Technol. 30(9), 910–916 (2014).
[Crossref]
F. Chen, M. Cai, Y.S. Zhang, and B. Li, “A high power Q-switched Ho YAG laser pumped by two Tm-fiber lasers,” Fifth Symposium on Novel Optoelectronic Detection Technology and Application. International Society for Optics and Photonics, 11023, 110233P (2019).
X.M. Duan, Y.J. Shen, Z. Zhang, L.B. Su, and T.Y. Dai, “A passively Q-switching of diode-pumped 2.08-µm Ho: CaF2 laser,” Infrared Phys. Techn. 103, 103071 (2019).
[Crossref]
B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, and J. Xu, “Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3,” J. Lumin. 196, 76–80 (2018).
[Crossref]
W.C. Yao, E.H. Li, Y.J. Shen, C.Y. Ren, Y.G. Zhao, D.Y. Tang, and D.Y. Shen, “A 142 W Ho: YAG laser single-end-pumped by a Tm-doped fiber laser at 1931nm,” Laser Phys. Lett. 16(11), 115001 (2019).
[Crossref]
J.L. Wang, Q.S. Song, Y.G. Zhao, C.F. Shen, W.C. Yao, X.D. Xu, J. Xu, and D.Y. Shen, “Ho:YAG single-crystal fiber amplifier,” Laser Applications Conference. Optical Society of America, JM5A. 24 (2019).
X.S. Zhu, G.W. Zhu, C. Wei, L. V. Kotov, J.F. Wang, M.H. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm,” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]
X.S. Zhu, G.W. Zhu, C. Wei, L. V. Kotov, J.F. Wang, M.H. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm,” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]
A. Bartos, K.P. Lieb, M. Uhrmacher, and D. Wiarda, “Refinement of atomic positions in bixbyite oxides using perturbed angular correlation spectroscopy,” Acta Crystallogr B Struct Sci 49(2), 165–169 (1993).
[Crossref]
M. Schellhorn, “A comparison of resonantly pumped Ho: YLF and Ho: LLF lasers in CW and Q-switched operation under identical pump conditions,” Appl. Phys. B 103(4), 777–788 (2011).
[Crossref]
J.L. Liu, X.Y. Chen, R.M. Wang, C.T. Wu, and G.Y. Jin, “A stable wavelength operation Ho: YAG laser with orthogonally polarized pump,” Chinese Phys. Lett. 36(2), 024201 (2019).
[Crossref]
L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]
S.R. Bowman, W.S. Rabinovich, A.P. Bowman, B.J. Feldman, and G.H. Rosenblatt, “3 μm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3,” IEEE J. Quantum Electron. 26(3), 403–406 (1990).
[Crossref]
W.S. Rabinovich, S.R. Bowman, B.J. Feldman, and M.J. Winings, “Tunable laser pumped 3 μm Ho:YAlO3 laser,” IEEE J. Quantum Electron. 27(4), 895–897 (1991).
[Crossref]
H.K. Nie, P.X. Zhang, B.T. Zhang, M. Xu, K.J. Yang, X.L. Sun, L.H. Zhang, Y. Hang, and J.L. He, “Watt-level continuous-wave and black phosphorus passive q-switching operation of Ho3+, Pr3+: LiLuF4 bulk laser at 2.95 μm,” IEEE J. Select. Topics Quantum Electron. 24(5), 1–5 (2018).
[Crossref]
X.M. Duan, Y.J. Shen, Z. Zhang, L.B. Su, and T.Y. Dai, “A passively Q-switching of diode-pumped 2.08-µm Ho: CaF2 laser,” Infrared Phys. Techn. 103, 103071 (2019).
[Crossref]
B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, and J. Xu, “Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3,” J. Lumin. 196, 76–80 (2018).
[Crossref]
J.T. Peng, H.P. Xia, P.Y. Wang, H.Y. Hu, L. Tang, Y.P. Zhang, H.C. Jiang, and B.J. Chen, “Optical Spectra and gain properties of Ho3+/Pr3+ Co-doped LiYF4crystal,” J. Mater. Sci. Technol. 30(9), 910–916 (2014).
[Crossref]
X.S. Zhu, G.W. Zhu, C. Wei, L. V. Kotov, J.F. Wang, M.H. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm,” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]
K. L. Vodopyanov, “Mid-infrared optical parametric generator with extra-wide (3–19-μm) tunability:applications for spectroscopy of two-dimensional electrons in quantum wells,” J. Opt. Soc. Am. B 16(9), 1579–1586 (1999).
[Crossref]
J.A. Caird, A.J. Ramponi, and P.R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8(7), 1391–1403 (1991).
[Crossref]
B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]
D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-waveoptical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]
W.C. Yao, E.H. Li, Y.J. Shen, C.Y. Ren, Y.G. Zhao, D.Y. Tang, and D.Y. Shen, “A 142 W Ho: YAG laser single-end-pumped by a Tm-doped fiber laser at 1931nm,” Laser Phys. Lett. 16(11), 115001 (2019).
[Crossref]
J. Wu, Y.L. Ju, T.Y. Dai, B.Q. Yao, and Y.Z. Wang, “1.5 W high efficiency and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect,” Opt. Express 25(22), 27671–27677 (2017).
[Crossref]
M. Ganija, N. Simakov, A. Hemming, J. Haub, P. Veitch, and J. Munch, “Efficient, low threshold, cryogenic Ho:YAG laser,” Opt. Express 24(11), 11569–11577 (2016).
[Crossref]
Y.J. Shen, B.Q. Yao, X.M. Duan, G.L. Zhu, W. Wang, Y.L. Ju, and Y.Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett. 37(17), 3558–3560 (2012).
[Crossref]
H.K. Nie, H.P. Xia, B.N. Shi, J.X. Hu, B.T. Zhang, K.J. Yang, and J.L He, “High-efficiency watt-level continuous-wave 2.9 μm Ho, Pr: YLF laser,” Opt. Lett. 43(24), 6109–6112 (2018).
[Crossref]
P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004).
[Crossref]
P. Zhang, Y. Hang, and L. Zhang, “Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal,” Opt. Lett. 37(24), 5241–5243 (2012).
E.C. Ji, Q. Liu, M.M. Nie, X.Z. Cao, X. Fu, and M.L. Gong, “High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode,” Opt. Lett. 41(6), 1237–1240 (2016).
[Crossref]
D. Lande, S.S. Orlov, A. Akella, L. Hesselink, and R.R. Neurgaonkar, “Digital holographic storage system incorporating optical fixing,” Opt. Lett. 22(22), 1722–1724 (1997).
[Crossref]
S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Directly diode-pumped high-energy Ho:YAG oscillator,” Opt. Lett. 37(4), 515–517 (2012).
[Crossref]
J.N. Zhang, D.Y. Shen, X.D. Xu, and H. Chen, “Widely tunable, narrow line-width Ho: CaYAlO4 laser with a volume Bragg grating,” Opt. Mater. Express 6(6), 1768–1773 (2016).
[Crossref]
Y.Y. Xue, N. Li, Q.S. Song, X.D. Xu, X.T. Yang, T.Y. Dai, D.H. Wang, Q.G. Wang, D.Z. Li, Z.S. Wang, and J. Xu, “Spectral properties and laser performance of Ho:CNGG crystals grown by the micro-pulling-down method,” Opt. Mater. Express 9(6), 2490–2496 (2019).
[Crossref]
X.M. Duan, Y.J. Shen, B.Q. Yao, and Y.Z. Wang, “A 106W Q-switched Ho: YAG laser with single crystal,” Optik 169, 224–227 (2018).
[Crossref]
J. Kwiatkowski, “Highly efficient high power CW and Q-switched Ho:YLF laser,” Opto-Electron. Rev. 23(2), 165–171 (2015).
[Crossref]
B.R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]
X.M. Duan, Y.J. Shen, B.Q. Yao, and Y.Z. Wang, “146.4 W end-pumped Ho: YAG slab laser with two crystals,” Quantum Electron. 48(8), 691–694 (2018).
[Crossref]
G.S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” The Journal of Chemical Physics 37(3), 511–520 (1962).
[Crossref]
W.T. Carnall, P.R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” The Journal of Chemical Physics 49(10), 4412–4423 (1968).
[Crossref]
M.J. Weber, “Handbook of Optical Materials,” CRC Press, Boca Raton, 122–136 (2003).
J.L. Wang, Q.S. Song, Y.G. Zhao, C.F. Shen, W.C. Yao, X.D. Xu, J. Xu, and D.Y. Shen, “Ho:YAG single-crystal fiber amplifier,” Laser Applications Conference. Optical Society of America, JM5A. 24 (2019).
F. Chen, M. Cai, Y.S. Zhang, and B. Li, “A high power Q-switched Ho YAG laser pumped by two Tm-fiber lasers,” Fifth Symposium on Novel Optoelectronic Detection Technology and Application. International Society for Optics and Photonics, 11023, 110233P (2019).