R. A. Kadhim, A. K. K. Abdul, and L. Yuan, “Advances in surface plasmon resonance-based plastic optical fiber sensors,” IETE Tech. Rev. 1–18 (2020).
M. S. Rahman, M. S. Anower, and L. F. Abdulrazak, “Utilization of a phosphorene-graphene/TMDC heterostructure in a surface plasmon resonance-based fiber optic biosensor,” Photonics Nanostruct. Fundam. Appl. 35, 100711 (2019).
[Crossref]
Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L.-K. Ang, W. Knoll, and L. Wu, “Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]
A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, E. Karakoleva, E. Vlaikova, and E. Alipieva, “A refractometric sensor using index-sensitive mode resonance between single-mode fiber and thin film amorphous silicon waveguide,” Sens. Actuators, B 106(1), 484–488 (2005).
[Crossref]
P. Prieto-Cortés, R. I. Álvarez-Tamayo, M. García-Méndez, and M. Durán-Sánchez, “Lossy mode resonance generation on sputtered aluminum-doped zinc oxide thin films deposited on multimode optical fiber structures for sensing applications in the 1.55 µm wavelength range,” Sensors 19(19), 4189 (2019).
[Crossref]
M.-J. Yin, B. Gu, Q.-F. An, C. Yang, Y. L. Guan, and K.-T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]
T. Babeva, A. Andreev, J. Grand, M. Vasileva, E. Karakoleva, B. S. Zafirova, B. Georgieva, J. Koprinarova, and S. Mintova, “Optical fiber-Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing,” Sens. Actuators, B 248, 359–366 (2017).
[Crossref]
W. Ecke, A. Andreev, A. Csaki, K. Kirsch, K. Schroeder, T. Wieduwilt, and R. Willsch, “Biosensor application of resonance coupling to thin film planar waveguides on side-polished optical fiber,” Proc. SPIE 7753, 77534T (2011).
[Crossref]
A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, E. Karakoleva, E. Vlaikova, and E. Alipieva, “A refractometric sensor using index-sensitive mode resonance between single-mode fiber and thin film amorphous silicon waveguide,” Sens. Actuators, B 106(1), 484–488 (2005).
[Crossref]
A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, A. O. Dikovska, and P. A. Atanasov, “Highly sensitive refractometers based on a side-polished single-mode fibre coupled with a metal oxide thin-film planar waveguide,” J. Opt. A: Pure Appl. Opt. 10(3), 035303 (2008).
[Crossref]
A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[Crossref]
A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[Crossref]
A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A.Ts. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
[Crossref]
Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L.-K. Ang, W. Knoll, and L. Wu, “Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]
M. S. Rahman, M. S. Anower, and L. F. Abdulrazak, “Utilization of a phosphorene-graphene/TMDC heterostructure in a surface plasmon resonance-based fiber optic biosensor,” Photonics Nanostruct. Fundam. Appl. 35, 100711 (2019).
[Crossref]
D. Sporea, A. Sporea, S. O’Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S.W. Harun, and H. Arof (Eds.), (InTech, 2012), Chap. 23, pp. 607–652.
J. Ascorbe, J. M. Corres, I. R. Matias, and F. J Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]
A. Ozcariz, M. Dominik, M. Smietana, C. R. Zamarreño, I. Del Villar, and F. J. Arregui, “Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film,” Sens. Actuators, A 290, 20–27 (2019).
[Crossref]
A. Ozcariz, C. R. Zamarreño, P. Zubiate, and F. J. Arregui, “Is there a frontier in sensitivity with lossy mode resonance (LMR) based refractometers?” Sci. Rep. 7(1), 10280 (2017).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
J. Ascorbe, J. M. Corres, F. J. Arregui, and I. R. Matias, “Recent developments in fiber optics humidity sensors,” Sensors 17(4), 893 (2017).
[Crossref]
P. J. Rivero, M. Hernaez, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers based on localized surface plasmon resonance (LSPR) and lossy mode resonance (LMR),” Proc. SPIE 9157, 91574T (2014).
[Crossref]
P. J. Rivero, A. Urrutia, J. Goicoechea, I. R. Matias, and F. J. Arregui, “A lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing,” Sens. Actuators, B 187, 40–44 (2013).
[Crossref]
P. Sanchez, C. R. Zamarreño, M. Hernaez, I. del Villar, I. R. Matias, and F. J. Arregui, “Humidity sensor fabricated by deposition of SnO2 layers onto optical fibers,” Proc. SPIE 8794, 87940C (2013).
[Crossref]
I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref]
P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators, B 173, 244–249 (2012).
[Crossref]
C. R. Zamarreño, M. Hernaez, P. Sanchez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber humidity sensor based on lossy mode resonances supported by TiO2/PSS coatings,” Procedia Eng. 25, 1385–1388 (2011).
[Crossref]
C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators, B 155(1), 290–297 (2011).
[Crossref]
C. R. Zamarreño, I. Del Villar, P. Sanchez, M. Hernaez, C. Fernandez, I. R. Matias, and F. J. Arregui, “Lossy-mode resonance based refractometers by means of indium oxide coatings fabricated onto optical fibers,” Proc. SPIE 7653, 76531W (2010).
[Crossref]
C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators, B 146(1), 414–417 (2010).
[Crossref]
M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref]
A. Ozcariz, I. Vitoria, F. J. Arregui, and C. R. Zamarreño, “Copper oxide coated D-shaped optical fibers for the development of LMR refractometers,” 2020 IEEE Sens., 1–4 (2020).
J. Ascorbe, J. M. Corres, F. J. Arregui, and I. R. Matias, “Recent developments in fiber optics humidity sensors,” Sensors 17(4), 893 (2017).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
J. Ascorbe, J. M. Corres, I. R. Matias, and F. J Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]
A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A.Ts. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
[Crossref]
A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, A. O. Dikovska, and P. A. Atanasov, “Highly sensitive refractometers based on a side-polished single-mode fibre coupled with a metal oxide thin-film planar waveguide,” J. Opt. A: Pure Appl. Opt. 10(3), 035303 (2008).
[Crossref]
A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[Crossref]
A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[Crossref]
A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A.Ts. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
[Crossref]
T. Babeva, A. Andreev, J. Grand, M. Vasileva, E. Karakoleva, B. S. Zafirova, B. Georgieva, J. Koprinarova, and S. Mintova, “Optical fiber-Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing,” Sens. Actuators, B 248, 359–366 (2017).
[Crossref]
B. A. Kuzubasoglu and S. K. Bahadir, “Flexible temperature sensors: a review,” Sens. Actuators, A 315, 112282 (2020).
[Crossref]
Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L.-K. Ang, W. Knoll, and L. Wu, “Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]
B. Reichman and A. J. Bard, “Electrochromism at niobium pentoxide electrodes in aqueous and acetonitrile solutions,” J. Electrochem. Soc. 127(1), 241–242 (1980).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]
M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J. Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).
[Crossref]
J. Peng, S. Jia, J. Bian, S. Zhang, J. Liu, and X. Zhou, “Recent progress on electromagnetic field measurement based on optical sensors,” Sensors 19(13), 2860 (2019).
[Crossref]
S. B. Ficarro, J. R. Parikh, N. C. Blank, and J. A. Marto, “Niobium(V) oxide (Nb2O5): application to phosphoproteomics,” Anal. Chem. 80(12), 4606–4613 (2008).
[Crossref]
M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J. Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).
[Crossref]
D. Velten, E. Eisenbarth, N. Schanne, and J. Breme, “Biocompatible Nb2O5 thin films prepared by means of the sol-gel process,” J. Mater. Sci.: Mater. Med. 15(4), 457–461 (2004).
[Crossref]
O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]
L. Chambon, C. Maleysson, A. Pauly, J. P. Germain, V. Demarne, and A. Grisel, “Investigation, for NH3 gas sensing applications, of the Nb2O5 semiconducting oxide in the presence of interferent species such as oxygen and humidity,” Sens. Actuators, B 45(2), 107–114 (1997).
[Crossref]
O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]
Y.-C. Lin, L.-Y. Chen, and F.-C. Chiu, “Lossy mode resonance-based glucose sensor with high-κ dielectric film,” Crystals 9(9), 450 (2019).
[Crossref]
T.-C. Chen, C.-J. Chu, C. H. Ho, C. C. Wu, and C.-C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]
Y.-C. Lin, L.-Y. Chen, and F.-C. Chiu, “Lossy mode resonance-based glucose sensor with high-κ dielectric film,” Crystals 9(9), 450 (2019).
[Crossref]
C.-S. Lee, D. Kwon, J. E. Yoo, B. G. Lee, J. Choi, and B. H. Chung, “A highly sensitive enzyme-amplified immunosensor based on a nanoporous niobium oxide (Nb2O5) electrode,” Sensors 10(5), 5160–5170 (2010).
[Crossref]
T.-C. Chen, C.-J. Chu, C. H. Ho, C. C. Wu, and C.-C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]
C.-S. Lee, D. Kwon, J. E. Yoo, B. G. Lee, J. Choi, and B. H. Chung, “A highly sensitive enzyme-amplified immunosensor based on a nanoporous niobium oxide (Nb2O5) electrode,” Sensors 10(5), 5160–5170 (2010).
[Crossref]
F. B. Destro, M. Cilense, M. P. Nascimento, F. G. Garcia, L. R. O. Heina, and A. Z. Simões, “Corrosion behaviour of polycrystalline Nb2O5 thin films and its size effects,” Prot. Met. Phys. Chem 52(1), 104–110 (2016).
[Crossref]
I. R. Matias, S. Ikezawa, and J. Corres, Fiber Optic Sensors: Current Status and Future Possibilities, 1st ed. (Springer, 2017), Vol. 21.
J. Ascorbe, J. M. Corres, F. J. Arregui, and I. R. Matias, “Recent developments in fiber optics humidity sensors,” Sensors 17(4), 893 (2017).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
J. Ascorbe, J. M. Corres, I. R. Matias, and F. J Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]
W. Ecke, A. Andreev, A. Csaki, K. Kirsch, K. Schroeder, T. Wieduwilt, and R. Willsch, “Biosensor application of resonance coupling to thin film planar waveguides on side-polished optical fiber,” Proc. SPIE 7753, 77534T (2011).
[Crossref]
A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, E. Karakoleva, E. Vlaikova, and E. Alipieva, “A refractometric sensor using index-sensitive mode resonance between single-mode fiber and thin film amorphous silicon waveguide,” Sens. Actuators, B 106(1), 484–488 (2005).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
J. J. Imas, C. R. Zamarreño, P. Zubiate, I. Del Villar, J. M. Pérez-Escudero, and I. R. Matías, “Twin lossy mode resonance (LMR) on a single D-shaped optical fiber,” Opt. Lett. 46(13), 3284–3287 (2021).
[Crossref]
A. Ozcariz, M. Dominik, M. Smietana, C. R. Zamarreño, I. Del Villar, and F. J. Arregui, “Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film,” Sens. Actuators, A 290, 20–27 (2019).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
P. Sanchez, C. R. Zamarreño, M. Hernaez, I. del Villar, I. R. Matias, and F. J. Arregui, “Humidity sensor fabricated by deposition of SnO2 layers onto optical fibers,” Proc. SPIE 8794, 87940C (2013).
[Crossref]
I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref]
C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators, B 155(1), 290–297 (2011).
[Crossref]
C. R. Zamarreño, M. Hernaez, P. Sanchez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber humidity sensor based on lossy mode resonances supported by TiO2/PSS coatings,” Procedia Eng. 25, 1385–1388 (2011).
[Crossref]
M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref]
C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators, B 146(1), 414–417 (2010).
[Crossref]
C. R. Zamarreño, I. Del Villar, P. Sanchez, M. Hernaez, C. Fernandez, I. R. Matias, and F. J. Arregui, “Lossy-mode resonance based refractometers by means of indium oxide coatings fabricated onto optical fibers,” Proc. SPIE 7653, 76531W (2010).
[Crossref]
L. Chambon, C. Maleysson, A. Pauly, J. P. Germain, V. Demarne, and A. Grisel, “Investigation, for NH3 gas sensing applications, of the Nb2O5 semiconducting oxide in the presence of interferent species such as oxygen and humidity,” Sens. Actuators, B 45(2), 107–114 (1997).
[Crossref]
F. B. Destro, M. Cilense, M. P. Nascimento, F. G. Garcia, L. R. O. Heina, and A. Z. Simões, “Corrosion behaviour of polycrystalline Nb2O5 thin films and its size effects,” Prot. Met. Phys. Chem 52(1), 104–110 (2016).
[Crossref]
A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A.Ts. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
[Crossref]
A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, A. O. Dikovska, and P. A. Atanasov, “Highly sensitive refractometers based on a side-polished single-mode fibre coupled with a metal oxide thin-film planar waveguide,” J. Opt. A: Pure Appl. Opt. 10(3), 035303 (2008).
[Crossref]
A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[Crossref]
A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[Crossref]
M. Mazur, M. Szymańska, D. Kaczmarek, M. Kalisz, D. Wojcieszak, J. Domaradzki, and F. Placido, “Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application,” Appl. Surf. Sci. 301, 63–69 (2014).
[Crossref]
A. Ozcariz, M. Dominik, M. Smietana, C. R. Zamarreño, I. Del Villar, and F. J. Arregui, “Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film,” Sens. Actuators, A 290, 20–27 (2019).
[Crossref]
D. A. Drake, R. W. Sullivan, and J. C. Wilson, “Distributed strain sensing from different optical fiber configurations,” Inventions 3(4), 67 (2018).
[Crossref]
S. Venkataraj, R. Drese, Ch. Liesch, O. Kappertz, R. Jayavel, and M. Wuttig, “Temperature stability of sputtered niobium-oxide films,” J. Appl. Phys. 91(8), 4863–4871 (2002).
[Crossref]
M. Śmietana, M. Dudek, M. Koba, and B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibres,” Phys. Status Solidi A 210(10), 2100–2105 (2013).
[Crossref]
M. T. Duffy, C. C. Wang, A. Waxman, and K. H. Zaininger, “Preparation, optical and dielectric properties of vapor-deposited niobium oxide thin films,” J. Electrochem. Soc. 116(2), 234–239 (1969).
[Crossref]
P. Prieto-Cortés, R. I. Álvarez-Tamayo, M. García-Méndez, and M. Durán-Sánchez, “Lossy mode resonance generation on sputtered aluminum-doped zinc oxide thin films deposited on multimode optical fiber structures for sensing applications in the 1.55 µm wavelength range,” Sensors 19(19), 4189 (2019).
[Crossref]
W. Ecke, A. Andreev, A. Csaki, K. Kirsch, K. Schroeder, T. Wieduwilt, and R. Willsch, “Biosensor application of resonance coupling to thin film planar waveguides on side-polished optical fiber,” Proc. SPIE 7753, 77534T (2011).
[Crossref]
O. B. Shcherbina, M. N. Palatnikov, and V. V. Efremov, “Mechanical properties of Nb2O5 and Ta2O5 prepared by different procedures,” Inorg. Mater. 48(4), 433–438 (2012).
[Crossref]
D. Velten, E. Eisenbarth, N. Schanne, and J. Breme, “Biocompatible Nb2O5 thin films prepared by means of the sol-gel process,” J. Mater. Sci.: Mater. Med. 15(4), 457–461 (2004).
[Crossref]
D. Saulys, V. Joshkin, M. Khoudiakov, T. F. Kuech, A. B. Ellis, S. R. Oktyabrsky, and L. McCaughan, “An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions,” J. Cryst. Growth 217(3), 287–301 (2000).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
K. Mahendraprabhu and P. Elumalai, “Stabilized zirconia-based selective NO2 sensor using sol-gel derived Nb2O5 sensing-electrode,” Sens. Actuators, B 238, 105–110 (2017).
[Crossref]
N. C. Emeka, P. E. Imoisili, and T.-C. Jen, “Preparation and characterization of NbxOy thin films: a review,” Coatings 10(12), 1246 (2020).
[Crossref]
H. Farahani, R. Wagiran, and M. N. Hamidon, “Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review,” Sensors 14(5), 7881–7939 (2014).
[Crossref]
J. L. Santos and F. Farahi, Handbook of Optical Sensors, 1st ed. (CRC Press, 2014).
O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]
C. R. Zamarreño, I. Del Villar, P. Sanchez, M. Hernaez, C. Fernandez, I. R. Matias, and F. J. Arregui, “Lossy-mode resonance based refractometers by means of indium oxide coatings fabricated onto optical fibers,” Proc. SPIE 7653, 76531W (2010).
[Crossref]
S. B. Ficarro, J. R. Parikh, N. C. Blank, and J. A. Marto, “Niobium(V) oxide (Nb2O5): application to phosphoproteomics,” Anal. Chem. 80(12), 4606–4613 (2008).
[Crossref]
J. Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 5th ed. (Springer, 2016).
F. B. Destro, M. Cilense, M. P. Nascimento, F. G. Garcia, L. R. O. Heina, and A. Z. Simões, “Corrosion behaviour of polycrystalline Nb2O5 thin films and its size effects,” Prot. Met. Phys. Chem 52(1), 104–110 (2016).
[Crossref]
P. Prieto-Cortés, R. I. Álvarez-Tamayo, M. García-Méndez, and M. Durán-Sánchez, “Lossy mode resonance generation on sputtered aluminum-doped zinc oxide thin films deposited on multimode optical fiber structures for sensing applications in the 1.55 µm wavelength range,” Sensors 19(19), 4189 (2019).
[Crossref]
T. A. Gens, The Chemistry of Niobium in Processing of Nuclear Fuels, 1st ed. (U.S. Atomic Energy Commission, 1962).
T. Babeva, A. Andreev, J. Grand, M. Vasileva, E. Karakoleva, B. S. Zafirova, B. Georgieva, J. Koprinarova, and S. Mintova, “Optical fiber-Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing,” Sens. Actuators, B 248, 359–366 (2017).
[Crossref]
L. Chambon, C. Maleysson, A. Pauly, J. P. Germain, V. Demarne, and A. Grisel, “Investigation, for NH3 gas sensing applications, of the Nb2O5 semiconducting oxide in the presence of interferent species such as oxygen and humidity,” Sens. Actuators, B 45(2), 107–114 (1997).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
P. J. Rivero, M. Hernaez, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers based on localized surface plasmon resonance (LSPR) and lossy mode resonance (LMR),” Proc. SPIE 9157, 91574T (2014).
[Crossref]
P. J. Rivero, A. Urrutia, J. Goicoechea, I. R. Matias, and F. J. Arregui, “A lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing,” Sens. Actuators, B 187, 40–44 (2013).
[Crossref]
P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators, B 173, 244–249 (2012).
[Crossref]
T. Babeva, A. Andreev, J. Grand, M. Vasileva, E. Karakoleva, B. S. Zafirova, B. Georgieva, J. Koprinarova, and S. Mintova, “Optical fiber-Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing,” Sens. Actuators, B 248, 359–366 (2017).
[Crossref]
L. Chambon, C. Maleysson, A. Pauly, J. P. Germain, V. Demarne, and A. Grisel, “Investigation, for NH3 gas sensing applications, of the Nb2O5 semiconducting oxide in the presence of interferent species such as oxygen and humidity,” Sens. Actuators, B 45(2), 107–114 (1997).
[Crossref]
M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEE Proc.-J: Optoelectron. 140(4), 247–252 (1993).
[Crossref]
M.-J. Yin, B. Gu, Q.-F. An, C. Yang, Y. L. Guan, and K.-T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]
Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, and H. Gu, “Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature,” Int. J. Hydrogen Energy 37(5), 4526–4532 (2012).
[Crossref]
Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, and H. Gu, “Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature,” Int. J. Hydrogen Energy 37(5), 4526–4532 (2012).
[Crossref]
M.-J. Yin, B. Gu, Q.-F. An, C. Yang, Y. L. Guan, and K.-T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]
N. Hossain, O. Günes, C. Zhang, C. Koughia, Y. Li, S.-J. Wen, R. Wong, S. Kasap, and Q. Yang, “Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering,” J. Mater. Sci.: Mater. Electron. 30(10), 9822–9835 (2019).
[Crossref]
C. Ya-nan, Y. Sheng-hai, J. Sheng-ming, Y. Hai-ping, H. Guo-feng, and X. Jiao-yun, “Electrochemical synthesis, characterization and thermal properties of niobium ethoxide,” J. Cent. South Univ. Technol. 18(1), 73–77 (2011).
[Crossref]
S. Sharma, A. M. Shrivastav, and B. D. Gupta, “Lossy mode resonance based fiber optic creatinine sensor fabricated using molecular imprinting over nanocomposite of MoS2/SnO2,” IEEE Sens. J. 20(8), 4251–4259 (2020).
[Crossref]
B. D. Gupta, A. Pathak, and V. Semwal, “Carbon-based nanomaterials for plasmonic sensors: a review,” Sensors 19(16), 3536 (2019).
[Crossref]
S. P. Usha, A. M. Shrivastav, and B. D. Gupta, “Semiconductor metal oxide/polymer based fiber optic lossy mode resonance sensors: a contemporary study,” Opt. Fiber Technol. 45, 146–166 (2018).
[Crossref]
S. Sharma and B. D. Gupta, “Lossy mode resonance-based fiber optic sensor for the detection of As (III) using α-Fe2O3/SnO2 core–shell nanostructures,” IEEE Sens. J. 18(17), 7077–7084 (2018).
[Crossref]
S. P. Usha and B. D. Gupta, “Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor,” Biosens. Bioelectron. 101, 135–145 (2018).
[Crossref]
S. P. Usha and B. D. Gupta, “Performance analysis of zinc oxide-implemented lossy mode resonance-based optical fiber refractive index sensor utilizing thin film/nanostructure,” Appl. Opt. 56(20), 5716–5725 (2017).
[Crossref]
B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]
A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]
E. Vorathin, Z. M. Hafizi, N. Ismail, and M. Loman, “Review of high sensitivity fibre-optic pressure sensors for low pressure sensing,” Opt. Laser Technol. 121, 105841 (2020).
[Crossref]
C. Ya-nan, Y. Sheng-hai, J. Sheng-ming, Y. Hai-ping, H. Guo-feng, and X. Jiao-yun, “Electrochemical synthesis, characterization and thermal properties of niobium ethoxide,” J. Cent. South Univ. Technol. 18(1), 73–77 (2011).
[Crossref]
H. Farahani, R. Wagiran, and M. N. Hamidon, “Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review,” Sensors 14(5), 7881–7939 (2014).
[Crossref]
D. Sporea, A. Sporea, S. O’Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S.W. Harun, and H. Arof (Eds.), (InTech, 2012), Chap. 23, pp. 607–652.
M. Jia, J. Wen, X. Pan, Z. Xin, F. Pang, L. He, and T. Wang, “Tapered fiber radiation sensor based on Ce/Tb:YAG crystals for remote γ-ray dosimetry,” Opt. Express 29(2), 1210–1220 (2021).
[Crossref]
F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, and R. Liu, “Recent developments for flexible pressure sensors: a review,” Micromachines 9(11), 580 (2018).
[Crossref]
F. B. Destro, M. Cilense, M. P. Nascimento, F. G. Garcia, L. R. O. Heina, and A. Z. Simões, “Corrosion behaviour of polycrystalline Nb2O5 thin films and its size effects,” Prot. Met. Phys. Chem 52(1), 104–110 (2016).
[Crossref]
M. Mikolajek, R. Martinek, J. Koziorek, S. Hejduk, J. Vitasek, A. Vanderka, R. Poboril, V. Vasinek, and R. Hercik, “Temperature measurement using optical fiber methods: overview and evaluation,” J. Sens. 2020, 1–25 (2020).
[Crossref]
M. Mikolajek, R. Martinek, J. Koziorek, S. Hejduk, J. Vitasek, A. Vanderka, R. Poboril, V. Vasinek, and R. Hercik, “Temperature measurement using optical fiber methods: overview and evaluation,” J. Sens. 2020, 1–25 (2020).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
P. J. Rivero, M. Hernaez, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers based on localized surface plasmon resonance (LSPR) and lossy mode resonance (LMR),” Proc. SPIE 9157, 91574T (2014).
[Crossref]
P. Sanchez, C. R. Zamarreño, M. Hernaez, I. del Villar, I. R. Matias, and F. J. Arregui, “Humidity sensor fabricated by deposition of SnO2 layers onto optical fibers,” Proc. SPIE 8794, 87940C (2013).
[Crossref]
I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref]
C. R. Zamarreño, M. Hernaez, P. Sanchez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber humidity sensor based on lossy mode resonances supported by TiO2/PSS coatings,” Procedia Eng. 25, 1385–1388 (2011).
[Crossref]
C. R. Zamarreño, I. Del Villar, P. Sanchez, M. Hernaez, C. Fernandez, I. R. Matias, and F. J. Arregui, “Lossy-mode resonance based refractometers by means of indium oxide coatings fabricated onto optical fibers,” Proc. SPIE 7653, 76531W (2010).
[Crossref]
C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators, B 146(1), 414–417 (2010).
[Crossref]
C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators, B 155(1), 290–297 (2011).
[Crossref]
M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref]
T.-C. Chen, C.-J. Chu, C. H. Ho, C. C. Wu, and C.-C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]
M. M. Hossain and M. A. Talukder, “Gate-controlled graphene surface plasmon resonance glucose sensor,” Opt. Commun. 493, 126994 (2021).
[Crossref]
N. Hossain, O. Günes, C. Zhang, C. Koughia, Y. Li, S.-J. Wen, R. Wong, S. Kasap, and Q. Yang, “Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering,” J. Mater. Sci.: Mater. Electron. 30(10), 9822–9835 (2019).
[Crossref]
Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, and H. Gu, “Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature,” Int. J. Hydrogen Energy 37(5), 4526–4532 (2012).
[Crossref]
I. R. Matias, S. Ikezawa, and J. Corres, Fiber Optic Sensors: Current Status and Future Possibilities, 1st ed. (Springer, 2017), Vol. 21.
N. C. Emeka, P. E. Imoisili, and T.-C. Jen, “Preparation and characterization of NbxOy thin films: a review,” Coatings 10(12), 1246 (2020).
[Crossref]
E. Vorathin, Z. M. Hafizi, N. Ismail, and M. Loman, “Review of high sensitivity fibre-optic pressure sensors for low pressure sensing,” Opt. Laser Technol. 121, 105841 (2020).
[Crossref]
S. Venkataraj, R. Drese, Ch. Liesch, O. Kappertz, R. Jayavel, and M. Wuttig, “Temperature stability of sputtered niobium-oxide films,” J. Appl. Phys. 91(8), 4863–4871 (2002).
[Crossref]
N. C. Emeka, P. E. Imoisili, and T.-C. Jen, “Preparation and characterization of NbxOy thin films: a review,” Coatings 10(12), 1246 (2020).
[Crossref]
A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]
J. Peng, S. Jia, J. Bian, S. Zhang, J. Liu, and X. Zhou, “Recent progress on electromagnetic field measurement based on optical sensors,” Sensors 19(13), 2860 (2019).
[Crossref]
C. Ya-nan, Y. Sheng-hai, J. Sheng-ming, Y. Hai-ping, H. Guo-feng, and X. Jiao-yun, “Electrochemical synthesis, characterization and thermal properties of niobium ethoxide,” J. Cent. South Univ. Technol. 18(1), 73–77 (2011).
[Crossref]
Q. Wang, X. Li, W.-M. Zhao, and S. Jin, “Lossy mode resonance-based fiber optic sensor using layer-by-layer SnO2 thin film and SnO2 nanoparticles,” Appl. Surf. Sci. 492, 374–381 (2019).
[Crossref]
N. Paliwal and J. John, “Lossy mode resonance (LMR) based fiber optic sensors: a review,” IEEE Sens. J. 15(10), 5361–5371 (2015).
[Crossref]
D. Saulys, V. Joshkin, M. Khoudiakov, T. F. Kuech, A. B. Ellis, S. R. Oktyabrsky, and L. McCaughan, “An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions,” J. Cryst. Growth 217(3), 287–301 (2000).
[Crossref]
M. Mazur, M. Szymańska, D. Kaczmarek, M. Kalisz, D. Wojcieszak, J. Domaradzki, and F. Placido, “Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application,” Appl. Surf. Sci. 301, 63–69 (2014).
[Crossref]
R. A. Kadhim, A. K. K. Abdul, and L. Yuan, “Advances in surface plasmon resonance-based plastic optical fiber sensors,” IETE Tech. Rev. 1–18 (2020).
M. Mazur, M. Szymańska, D. Kaczmarek, M. Kalisz, D. Wojcieszak, J. Domaradzki, and F. Placido, “Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application,” Appl. Surf. Sci. 301, 63–69 (2014).
[Crossref]
S. Venkataraj, R. Drese, Ch. Liesch, O. Kappertz, R. Jayavel, and M. Wuttig, “Temperature stability of sputtered niobium-oxide films,” J. Appl. Phys. 91(8), 4863–4871 (2002).
[Crossref]
T. Babeva, A. Andreev, J. Grand, M. Vasileva, E. Karakoleva, B. S. Zafirova, B. Georgieva, J. Koprinarova, and S. Mintova, “Optical fiber-Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing,” Sens. Actuators, B 248, 359–366 (2017).
[Crossref]
A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, E. Karakoleva, E. Vlaikova, and E. Alipieva, “A refractometric sensor using index-sensitive mode resonance between single-mode fiber and thin film amorphous silicon waveguide,” Sens. Actuators, B 106(1), 484–488 (2005).
[Crossref]
A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A.Ts. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
[Crossref]
A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, A. O. Dikovska, and P. A. Atanasov, “Highly sensitive refractometers based on a side-polished single-mode fibre coupled with a metal oxide thin-film planar waveguide,” J. Opt. A: Pure Appl. Opt. 10(3), 035303 (2008).
[Crossref]
A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[Crossref]
A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[Crossref]
M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J. Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).
[Crossref]
N. Hossain, O. Günes, C. Zhang, C. Koughia, Y. Li, S.-J. Wen, R. Wong, S. Kasap, and Q. Yang, “Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering,” J. Mater. Sci.: Mater. Electron. 30(10), 9822–9835 (2019).
[Crossref]
D. Saulys, V. Joshkin, M. Khoudiakov, T. F. Kuech, A. B. Ellis, S. R. Oktyabrsky, and L. McCaughan, “An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions,” J. Cryst. Growth 217(3), 287–301 (2000).
[Crossref]
W. Ecke, A. Andreev, A. Csaki, K. Kirsch, K. Schroeder, T. Wieduwilt, and R. Willsch, “Biosensor application of resonance coupling to thin film planar waveguides on side-polished optical fiber,” Proc. SPIE 7753, 77534T (2011).
[Crossref]
Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L.-K. Ang, W. Knoll, and L. Wu, “Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]
M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J. Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).
[Crossref]
K. Kosiel, M. Koba, M. Masiewicz, and M. Śmietana, “Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique,” Opt. Laser Technol. 102, 213–221 (2018).
[Crossref]
B. Michalak, M. Koba, and M. Śmietana, “Silicon nitride overlays deposited on optical fibers with RF PECVD method for sensing applications: overlay uniformity aspects,” Acta Phys. Pol. A 127(6), 1587–1591 (2015).
[Crossref]
M. Śmietana, M. Dudek, M. Koba, and B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibres,” Phys. Status Solidi A 210(10), 2100–2105 (2013).
[Crossref]
T. Babeva, A. Andreev, J. Grand, M. Vasileva, E. Karakoleva, B. S. Zafirova, B. Georgieva, J. Koprinarova, and S. Mintova, “Optical fiber-Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing,” Sens. Actuators, B 248, 359–366 (2017).
[Crossref]
K. Kosiel, M. Koba, M. Masiewicz, and M. Śmietana, “Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique,” Opt. Laser Technol. 102, 213–221 (2018).
[Crossref]
N. Hossain, O. Günes, C. Zhang, C. Koughia, Y. Li, S.-J. Wen, R. Wong, S. Kasap, and Q. Yang, “Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering,” J. Mater. Sci.: Mater. Electron. 30(10), 9822–9835 (2019).
[Crossref]
M. Mikolajek, R. Martinek, J. Koziorek, S. Hejduk, J. Vitasek, A. Vanderka, R. Poboril, V. Vasinek, and R. Hercik, “Temperature measurement using optical fiber methods: overview and evaluation,” J. Sens. 2020, 1–25 (2020).
[Crossref]
D. Saulys, V. Joshkin, M. Khoudiakov, T. F. Kuech, A. B. Ellis, S. R. Oktyabrsky, and L. McCaughan, “An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions,” J. Cryst. Growth 217(3), 287–301 (2000).
[Crossref]
P. I. Kuznetsov, D. P. Sudas, and E. A. Savelyev, “Fiber optic lossy mode resonance based sensor for aggressive liquids,” Sens. Actuators, A 321, 112576 (2021).
[Crossref]
P. I. Kuznetsov, D. P. Sudas, and E. A. Savel’ev, “Formation of fiber tapers by chemical etching for application in fiber sensors and lasers,” Instrum. Exp. Tech. 63(4), 516–521 (2020).
[Crossref]
B. A. Kuzubasoglu and S. K. Bahadir, “Flexible temperature sensors: a review,” Sens. Actuators, A 315, 112282 (2020).
[Crossref]
C.-S. Lee, D. Kwon, J. E. Yoo, B. G. Lee, J. Choi, and B. H. Chung, “A highly sensitive enzyme-amplified immunosensor based on a nanoporous niobium oxide (Nb2O5) electrode,” Sensors 10(5), 5160–5170 (2010).
[Crossref]
N. Özer, M. D. Rubin, and C. M. Lampert, “Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering a comparison,” Sol. Energy Mater. Sol. Cells 40(4), 285–296 (1996).
[Crossref]
C.-S. Lee, D. Kwon, J. E. Yoo, B. G. Lee, J. Choi, and B. H. Chung, “A highly sensitive enzyme-amplified immunosensor based on a nanoporous niobium oxide (Nb2O5) electrode,” Sensors 10(5), 5160–5170 (2010).
[Crossref]
T.-C. Chen, C.-J. Chu, C. H. Ho, C. C. Wu, and C.-C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]
C.-S. Lee, D. Kwon, J. E. Yoo, B. G. Lee, J. Choi, and B. H. Chung, “A highly sensitive enzyme-amplified immunosensor based on a nanoporous niobium oxide (Nb2O5) electrode,” Sensors 10(5), 5160–5170 (2010).
[Crossref]
F. Lemarchand, “Optical constants of Nb2O5 (Niobium pentoxide),” https://refractiveindex.info/?shelf=main&book=Nb2O5&page=Lemarchand.
D. Sporea, A. Sporea, S. O’Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S.W. Harun, and H. Arof (Eds.), (InTech, 2012), Chap. 23, pp. 607–652.
J. Li, “A review: development of novel fiber-optic platforms for bulk and surface refractive index sensing applications,” Sens. Actuators Rep. 2(1), 100018 (2020).
[Crossref]
F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, and R. Liu, “Recent developments for flexible pressure sensors: a review,” Micromachines 9(11), 580 (2018).
[Crossref]
Q. Wang, X. Li, W.-M. Zhao, and S. Jin, “Lossy mode resonance-based fiber optic sensor using layer-by-layer SnO2 thin film and SnO2 nanoparticles,” Appl. Surf. Sci. 492, 374–381 (2019).
[Crossref]
F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, and R. Liu, “Recent developments for flexible pressure sensors: a review,” Micromachines 9(11), 580 (2018).
[Crossref]
N. Hossain, O. Günes, C. Zhang, C. Koughia, Y. Li, S.-J. Wen, R. Wong, S. Kasap, and Q. Yang, “Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering,” J. Mater. Sci.: Mater. Electron. 30(10), 9822–9835 (2019).
[Crossref]
D. R. Lide, Handbook of Chemistry and Physics, 84th ed. (CRC Press, 2003).
S. Venkataraj, R. Drese, Ch. Liesch, O. Kappertz, R. Jayavel, and M. Wuttig, “Temperature stability of sputtered niobium-oxide films,” J. Appl. Phys. 91(8), 4863–4871 (2002).
[Crossref]
C.-L. Tien, H.-Y. Lin, and S.-H. Su, “High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm,” Adv. Condens. Matter Phys. 2018, 1–6 (2018).
[Crossref]
Y.-C. Lin, L.-Y. Chen, and F.-C. Chiu, “Lossy mode resonance-based glucose sensor with high-κ dielectric film,” Crystals 9(9), 450 (2019).
[Crossref]
J. Peng, S. Jia, J. Bian, S. Zhang, J. Liu, and X. Zhou, “Recent progress on electromagnetic field measurement based on optical sensors,” Sensors 19(13), 2860 (2019).
[Crossref]
F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, and R. Liu, “Recent developments for flexible pressure sensors: a review,” Micromachines 9(11), 580 (2018).
[Crossref]
E. Vorathin, Z. M. Hafizi, N. Ismail, and M. Loman, “Review of high sensitivity fibre-optic pressure sensors for low pressure sensing,” Opt. Laser Technol. 121, 105841 (2020).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
K. Mahendraprabhu and P. Elumalai, “Stabilized zirconia-based selective NO2 sensor using sol-gel derived Nb2O5 sensing-electrode,” Sens. Actuators, B 238, 105–110 (2017).
[Crossref]
L. Chambon, C. Maleysson, A. Pauly, J. P. Germain, V. Demarne, and A. Grisel, “Investigation, for NH3 gas sensing applications, of the Nb2O5 semiconducting oxide in the presence of interferent species such as oxygen and humidity,” Sens. Actuators, B 45(2), 107–114 (1997).
[Crossref]
M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEE Proc.-J: Optoelectron. 140(4), 247–252 (1993).
[Crossref]
M. Mikolajek, R. Martinek, J. Koziorek, S. Hejduk, J. Vitasek, A. Vanderka, R. Poboril, V. Vasinek, and R. Hercik, “Temperature measurement using optical fiber methods: overview and evaluation,” J. Sens. 2020, 1–25 (2020).
[Crossref]
S. B. Ficarro, J. R. Parikh, N. C. Blank, and J. A. Marto, “Niobium(V) oxide (Nb2O5): application to phosphoproteomics,” Anal. Chem. 80(12), 4606–4613 (2008).
[Crossref]
K. Kosiel, M. Koba, M. Masiewicz, and M. Śmietana, “Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique,” Opt. Laser Technol. 102, 213–221 (2018).
[Crossref]
J. Ascorbe, J. M. Corres, F. J. Arregui, and I. R. Matias, “Recent developments in fiber optics humidity sensors,” Sensors 17(4), 893 (2017).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
J. Ascorbe, J. M. Corres, I. R. Matias, and F. J Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]
P. J. Rivero, M. Hernaez, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers based on localized surface plasmon resonance (LSPR) and lossy mode resonance (LMR),” Proc. SPIE 9157, 91574T (2014).
[Crossref]
P. J. Rivero, A. Urrutia, J. Goicoechea, I. R. Matias, and F. J. Arregui, “A lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing,” Sens. Actuators, B 187, 40–44 (2013).
[Crossref]
P. Sanchez, C. R. Zamarreño, M. Hernaez, I. del Villar, I. R. Matias, and F. J. Arregui, “Humidity sensor fabricated by deposition of SnO2 layers onto optical fibers,” Proc. SPIE 8794, 87940C (2013).
[Crossref]
I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref]
C. R. Zamarreño, M. Hernaez, P. Sanchez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber humidity sensor based on lossy mode resonances supported by TiO2/PSS coatings,” Procedia Eng. 25, 1385–1388 (2011).
[Crossref]
M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref]
C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators, B 146(1), 414–417 (2010).
[Crossref]
C. R. Zamarreño, I. Del Villar, P. Sanchez, M. Hernaez, C. Fernandez, I. R. Matias, and F. J. Arregui, “Lossy-mode resonance based refractometers by means of indium oxide coatings fabricated onto optical fibers,” Proc. SPIE 7653, 76531W (2010).
[Crossref]
I. R. Matias, S. Ikezawa, and J. Corres, Fiber Optic Sensors: Current Status and Future Possibilities, 1st ed. (Springer, 2017), Vol. 21.
J. J. Imas, C. R. Zamarreño, P. Zubiate, I. Del Villar, J. M. Pérez-Escudero, and I. R. Matías, “Twin lossy mode resonance (LMR) on a single D-shaped optical fiber,” Opt. Lett. 46(13), 3284–3287 (2021).
[Crossref]
C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators, B 155(1), 290–297 (2011).
[Crossref]
M. Mazur, M. Szymańska, D. Kaczmarek, M. Kalisz, D. Wojcieszak, J. Domaradzki, and F. Placido, “Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application,” Appl. Surf. Sci. 301, 63–69 (2014).
[Crossref]
D. Sporea, A. Sporea, S. O’Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S.W. Harun, and H. Arof (Eds.), (InTech, 2012), Chap. 23, pp. 607–652.
D. Saulys, V. Joshkin, M. Khoudiakov, T. F. Kuech, A. B. Ellis, S. R. Oktyabrsky, and L. McCaughan, “An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions,” J. Cryst. Growth 217(3), 287–301 (2000).
[Crossref]
M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J. Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).
[Crossref]
B. Michalak, M. Koba, and M. Śmietana, “Silicon nitride overlays deposited on optical fibers with RF PECVD method for sensing applications: overlay uniformity aspects,” Acta Phys. Pol. A 127(6), 1587–1591 (2015).
[Crossref]
M. Śmietana, M. Dudek, M. Koba, and B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibres,” Phys. Status Solidi A 210(10), 2100–2105 (2013).
[Crossref]
M. Mikolajek, R. Martinek, J. Koziorek, S. Hejduk, J. Vitasek, A. Vanderka, R. Poboril, V. Vasinek, and R. Hercik, “Temperature measurement using optical fiber methods: overview and evaluation,” J. Sens. 2020, 1–25 (2020).
[Crossref]
T. Babeva, A. Andreev, J. Grand, M. Vasileva, E. Karakoleva, B. S. Zafirova, B. Georgieva, J. Koprinarova, and S. Mintova, “Optical fiber-Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing,” Sens. Actuators, B 248, 359–366 (2017).
[Crossref]
S. Nangare and P. Patil, “Black phosphorus nanostructure based highly sensitive and selective surface plasmon resonance sensor for biological and chemical sensing: a review,” Crit. Rev. Anal. Chem. 1–26 (2021).
F. B. Destro, M. Cilense, M. P. Nascimento, F. G. Garcia, L. R. O. Heina, and A. Z. Simões, “Corrosion behaviour of polycrystalline Nb2O5 thin films and its size effects,” Prot. Met. Phys. Chem 52(1), 104–110 (2016).
[Crossref]
A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A.Ts. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
[Crossref]
M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J. Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).
[Crossref]
D. Sporea, A. Sporea, S. O’Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S.W. Harun, and H. Arof (Eds.), (InTech, 2012), Chap. 23, pp. 607–652.
D. Saulys, V. Joshkin, M. Khoudiakov, T. F. Kuech, A. B. Ellis, S. R. Oktyabrsky, and L. McCaughan, “An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions,” J. Cryst. Growth 217(3), 287–301 (2000).
[Crossref]
M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J. Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).
[Crossref]
A. Ozcariz, M. Dominik, M. Smietana, C. R. Zamarreño, I. Del Villar, and F. J. Arregui, “Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film,” Sens. Actuators, A 290, 20–27 (2019).
[Crossref]
A. Ozcariz, C. R. Zamarreño, P. Zubiate, and F. J. Arregui, “Is there a frontier in sensitivity with lossy mode resonance (LMR) based refractometers?” Sci. Rep. 7(1), 10280 (2017).
[Crossref]
A. Ozcariz, I. Vitoria, F. J. Arregui, and C. R. Zamarreño, “Copper oxide coated D-shaped optical fibers for the development of LMR refractometers,” 2020 IEEE Sens., 1–4 (2020).
N. Özer, M. D. Rubin, and C. M. Lampert, “Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering a comparison,” Sol. Energy Mater. Sol. Cells 40(4), 285–296 (1996).
[Crossref]
O. B. Shcherbina, M. N. Palatnikov, and V. V. Efremov, “Mechanical properties of Nb2O5 and Ta2O5 prepared by different procedures,” Inorg. Mater. 48(4), 433–438 (2012).
[Crossref]
N. Paliwal and J. John, “Lossy mode resonance (LMR) based fiber optic sensors: a review,” IEEE Sens. J. 15(10), 5361–5371 (2015).
[Crossref]
M. Jia, J. Wen, X. Pan, Z. Xin, F. Pang, L. He, and T. Wang, “Tapered fiber radiation sensor based on Ce/Tb:YAG crystals for remote γ-ray dosimetry,” Opt. Express 29(2), 1210–1220 (2021).
[Crossref]
S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, and T. Wang, “High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD,” Opt. Express 23(11), 13880–13888 (2015).
[Crossref]
A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, E. Karakoleva, E. Vlaikova, and E. Alipieva, “A refractometric sensor using index-sensitive mode resonance between single-mode fiber and thin film amorphous silicon waveguide,” Sens. Actuators, B 106(1), 484–488 (2005).
[Crossref]
S. B. Ficarro, J. R. Parikh, N. C. Blank, and J. A. Marto, “Niobium(V) oxide (Nb2O5): application to phosphoproteomics,” Anal. Chem. 80(12), 4606–4613 (2008).
[Crossref]
B. D. Gupta, A. Pathak, and V. Semwal, “Carbon-based nanomaterials for plasmonic sensors: a review,” Sensors 19(16), 3536 (2019).
[Crossref]
S. Nangare and P. Patil, “Black phosphorus nanostructure based highly sensitive and selective surface plasmon resonance sensor for biological and chemical sensing: a review,” Crit. Rev. Anal. Chem. 1–26 (2021).
L. Chambon, C. Maleysson, A. Pauly, J. P. Germain, V. Demarne, and A. Grisel, “Investigation, for NH3 gas sensing applications, of the Nb2O5 semiconducting oxide in the presence of interferent species such as oxygen and humidity,” Sens. Actuators, B 45(2), 107–114 (1997).
[Crossref]
J. Peng, S. Jia, J. Bian, S. Zhang, J. Liu, and X. Zhou, “Recent progress on electromagnetic field measurement based on optical sensors,” Sensors 19(13), 2860 (2019).
[Crossref]
Y. Zhao, R. J. Tong, F. Xia, and Y. Peng, “Current status of optical fiber biosensor based on surface plasmon resonance,” Biosens. Bioelectron. 142, 111505 (2019).
[Crossref]
M. Mazur, M. Szymańska, D. Kaczmarek, M. Kalisz, D. Wojcieszak, J. Domaradzki, and F. Placido, “Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application,” Appl. Surf. Sci. 301, 63–69 (2014).
[Crossref]
Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L.-K. Ang, W. Knoll, and L. Wu, “Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]
M. Mikolajek, R. Martinek, J. Koziorek, S. Hejduk, J. Vitasek, A. Vanderka, R. Poboril, V. Vasinek, and R. Hercik, “Temperature measurement using optical fiber methods: overview and evaluation,” J. Sens. 2020, 1–25 (2020).
[Crossref]
P. Prieto-Cortés, R. I. Álvarez-Tamayo, M. García-Méndez, and M. Durán-Sánchez, “Lossy mode resonance generation on sputtered aluminum-doped zinc oxide thin films deposited on multimode optical fiber structures for sensing applications in the 1.55 µm wavelength range,” Sensors 19(19), 4189 (2019).
[Crossref]
M. S. Rahman, M. S. Anower, and L. F. Abdulrazak, “Utilization of a phosphorene-graphene/TMDC heterostructure in a surface plasmon resonance-based fiber optic biosensor,” Photonics Nanostruct. Fundam. Appl. 35, 100711 (2019).
[Crossref]
B. Reichman and A. J. Bard, “Electrochromism at niobium pentoxide electrodes in aqueous and acetonitrile solutions,” J. Electrochem. Soc. 127(1), 241–242 (1980).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
P. J. Rivero, M. Hernaez, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers based on localized surface plasmon resonance (LSPR) and lossy mode resonance (LMR),” Proc. SPIE 9157, 91574T (2014).
[Crossref]
P. J. Rivero, A. Urrutia, J. Goicoechea, I. R. Matias, and F. J. Arregui, “A lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing,” Sens. Actuators, B 187, 40–44 (2013).
[Crossref]
P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators, B 173, 244–249 (2012).
[Crossref]
N. Özer, M. D. Rubin, and C. M. Lampert, “Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering a comparison,” Sol. Energy Mater. Sol. Cells 40(4), 285–296 (1996).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
P. Sanchez, C. R. Zamarreño, M. Hernaez, I. del Villar, I. R. Matias, and F. J. Arregui, “Humidity sensor fabricated by deposition of SnO2 layers onto optical fibers,” Proc. SPIE 8794, 87940C (2013).
[Crossref]
C. R. Zamarreño, M. Hernaez, P. Sanchez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber humidity sensor based on lossy mode resonances supported by TiO2/PSS coatings,” Procedia Eng. 25, 1385–1388 (2011).
[Crossref]
C. R. Zamarreño, I. Del Villar, P. Sanchez, M. Hernaez, C. Fernandez, I. R. Matias, and F. J. Arregui, “Lossy-mode resonance based refractometers by means of indium oxide coatings fabricated onto optical fibers,” Proc. SPIE 7653, 76531W (2010).
[Crossref]
J. L. Santos and F. Farahi, Handbook of Optical Sensors, 1st ed. (CRC Press, 2014).
D. Saulys, V. Joshkin, M. Khoudiakov, T. F. Kuech, A. B. Ellis, S. R. Oktyabrsky, and L. McCaughan, “An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions,” J. Cryst. Growth 217(3), 287–301 (2000).
[Crossref]
P. I. Kuznetsov, D. P. Sudas, and E. A. Savel’ev, “Formation of fiber tapers by chemical etching for application in fiber sensors and lasers,” Instrum. Exp. Tech. 63(4), 516–521 (2020).
[Crossref]
P. I. Kuznetsov, D. P. Sudas, and E. A. Savelyev, “Fiber optic lossy mode resonance based sensor for aggressive liquids,” Sens. Actuators, A 321, 112576 (2021).
[Crossref]
D. Velten, E. Eisenbarth, N. Schanne, and J. Breme, “Biocompatible Nb2O5 thin films prepared by means of the sol-gel process,” J. Mater. Sci.: Mater. Med. 15(4), 457–461 (2004).
[Crossref]
W. Ecke, A. Andreev, A. Csaki, K. Kirsch, K. Schroeder, T. Wieduwilt, and R. Willsch, “Biosensor application of resonance coupling to thin film planar waveguides on side-polished optical fiber,” Proc. SPIE 7753, 77534T (2011).
[Crossref]
B. D. Gupta, A. Pathak, and V. Semwal, “Carbon-based nanomaterials for plasmonic sensors: a review,” Sensors 19(16), 3536 (2019).
[Crossref]
M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J. Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).
[Crossref]
A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]
S. Sharma, A. M. Shrivastav, and B. D. Gupta, “Lossy mode resonance based fiber optic creatinine sensor fabricated using molecular imprinting over nanocomposite of MoS2/SnO2,” IEEE Sens. J. 20(8), 4251–4259 (2020).
[Crossref]
S. Sharma and B. D. Gupta, “Lossy mode resonance-based fiber optic sensor for the detection of As (III) using α-Fe2O3/SnO2 core–shell nanostructures,” IEEE Sens. J. 18(17), 7077–7084 (2018).
[Crossref]
O. B. Shcherbina, M. N. Palatnikov, and V. V. Efremov, “Mechanical properties of Nb2O5 and Ta2O5 prepared by different procedures,” Inorg. Mater. 48(4), 433–438 (2012).
[Crossref]
C. Ya-nan, Y. Sheng-hai, J. Sheng-ming, Y. Hai-ping, H. Guo-feng, and X. Jiao-yun, “Electrochemical synthesis, characterization and thermal properties of niobium ethoxide,” J. Cent. South Univ. Technol. 18(1), 73–77 (2011).
[Crossref]
C. Ya-nan, Y. Sheng-hai, J. Sheng-ming, Y. Hai-ping, H. Guo-feng, and X. Jiao-yun, “Electrochemical synthesis, characterization and thermal properties of niobium ethoxide,” J. Cent. South Univ. Technol. 18(1), 73–77 (2011).
[Crossref]
O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]
F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, and R. Liu, “Recent developments for flexible pressure sensors: a review,” Micromachines 9(11), 580 (2018).
[Crossref]
S. Sharma, A. M. Shrivastav, and B. D. Gupta, “Lossy mode resonance based fiber optic creatinine sensor fabricated using molecular imprinting over nanocomposite of MoS2/SnO2,” IEEE Sens. J. 20(8), 4251–4259 (2020).
[Crossref]
S. P. Usha, A. M. Shrivastav, and B. D. Gupta, “Semiconductor metal oxide/polymer based fiber optic lossy mode resonance sensors: a contemporary study,” Opt. Fiber Technol. 45, 146–166 (2018).
[Crossref]
F. B. Destro, M. Cilense, M. P. Nascimento, F. G. Garcia, L. R. O. Heina, and A. Z. Simões, “Corrosion behaviour of polycrystalline Nb2O5 thin films and its size effects,” Prot. Met. Phys. Chem 52(1), 104–110 (2016).
[Crossref]
A. Ozcariz, M. Dominik, M. Smietana, C. R. Zamarreño, I. Del Villar, and F. J. Arregui, “Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film,” Sens. Actuators, A 290, 20–27 (2019).
[Crossref]
K. Kosiel, M. Koba, M. Masiewicz, and M. Śmietana, “Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique,” Opt. Laser Technol. 102, 213–221 (2018).
[Crossref]
M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J. Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).
[Crossref]
B. Michalak, M. Koba, and M. Śmietana, “Silicon nitride overlays deposited on optical fibers with RF PECVD method for sensing applications: overlay uniformity aspects,” Acta Phys. Pol. A 127(6), 1587–1591 (2015).
[Crossref]
M. Śmietana, M. Dudek, M. Koba, and B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibres,” Phys. Status Solidi A 210(10), 2100–2105 (2013).
[Crossref]
M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J. Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
D. Sporea, A. Sporea, S. O’Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S.W. Harun, and H. Arof (Eds.), (InTech, 2012), Chap. 23, pp. 607–652.
D. Sporea, A. Sporea, S. O’Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S.W. Harun, and H. Arof (Eds.), (InTech, 2012), Chap. 23, pp. 607–652.
A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A.Ts. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
[Crossref]
A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[Crossref]
A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[Crossref]
M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J. Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).
[Crossref]
C.-L. Tien, H.-Y. Lin, and S.-H. Su, “High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm,” Adv. Condens. Matter Phys. 2018, 1–6 (2018).
[Crossref]
P. I. Kuznetsov, D. P. Sudas, and E. A. Savelyev, “Fiber optic lossy mode resonance based sensor for aggressive liquids,” Sens. Actuators, A 321, 112576 (2021).
[Crossref]
P. I. Kuznetsov, D. P. Sudas, and E. A. Savel’ev, “Formation of fiber tapers by chemical etching for application in fiber sensors and lasers,” Instrum. Exp. Tech. 63(4), 516–521 (2020).
[Crossref]
D. A. Drake, R. W. Sullivan, and J. C. Wilson, “Distributed strain sensing from different optical fiber configurations,” Inventions 3(4), 67 (2018).
[Crossref]
M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEE Proc.-J: Optoelectron. 140(4), 247–252 (1993).
[Crossref]
M. Mazur, M. Szymańska, D. Kaczmarek, M. Kalisz, D. Wojcieszak, J. Domaradzki, and F. Placido, “Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application,” Appl. Surf. Sci. 301, 63–69 (2014).
[Crossref]
M. M. Hossain and M. A. Talukder, “Gate-controlled graphene surface plasmon resonance glucose sensor,” Opt. Commun. 493, 126994 (2021).
[Crossref]
Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, and H. Gu, “Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature,” Int. J. Hydrogen Energy 37(5), 4526–4532 (2012).
[Crossref]
C.-L. Tien, H.-Y. Lin, and S.-H. Su, “High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm,” Adv. Condens. Matter Phys. 2018, 1–6 (2018).
[Crossref]
Y. Zhao, R. J. Tong, F. Xia, and Y. Peng, “Current status of optical fiber biosensor based on surface plasmon resonance,” Biosens. Bioelectron. 142, 111505 (2019).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
P. J. Rivero, A. Urrutia, J. Goicoechea, I. R. Matias, and F. J. Arregui, “A lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing,” Sens. Actuators, B 187, 40–44 (2013).
[Crossref]
P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators, B 173, 244–249 (2012).
[Crossref]
S. P. Usha and B. D. Gupta, “Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor,” Biosens. Bioelectron. 101, 135–145 (2018).
[Crossref]
S. P. Usha, A. M. Shrivastav, and B. D. Gupta, “Semiconductor metal oxide/polymer based fiber optic lossy mode resonance sensors: a contemporary study,” Opt. Fiber Technol. 45, 146–166 (2018).
[Crossref]
S. P. Usha and B. D. Gupta, “Performance analysis of zinc oxide-implemented lossy mode resonance-based optical fiber refractive index sensor utilizing thin film/nanostructure,” Appl. Opt. 56(20), 5716–5725 (2017).
[Crossref]
M. Mikolajek, R. Martinek, J. Koziorek, S. Hejduk, J. Vitasek, A. Vanderka, R. Poboril, V. Vasinek, and R. Hercik, “Temperature measurement using optical fiber methods: overview and evaluation,” J. Sens. 2020, 1–25 (2020).
[Crossref]
T. Babeva, A. Andreev, J. Grand, M. Vasileva, E. Karakoleva, B. S. Zafirova, B. Georgieva, J. Koprinarova, and S. Mintova, “Optical fiber-Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing,” Sens. Actuators, B 248, 359–366 (2017).
[Crossref]
M. Mikolajek, R. Martinek, J. Koziorek, S. Hejduk, J. Vitasek, A. Vanderka, R. Poboril, V. Vasinek, and R. Hercik, “Temperature measurement using optical fiber methods: overview and evaluation,” J. Sens. 2020, 1–25 (2020).
[Crossref]
D. Velten, E. Eisenbarth, N. Schanne, and J. Breme, “Biocompatible Nb2O5 thin films prepared by means of the sol-gel process,” J. Mater. Sci.: Mater. Med. 15(4), 457–461 (2004).
[Crossref]
S. Venkataraj, R. Drese, Ch. Liesch, O. Kappertz, R. Jayavel, and M. Wuttig, “Temperature stability of sputtered niobium-oxide films,” J. Appl. Phys. 91(8), 4863–4871 (2002).
[Crossref]
B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]
M. Mikolajek, R. Martinek, J. Koziorek, S. Hejduk, J. Vitasek, A. Vanderka, R. Poboril, V. Vasinek, and R. Hercik, “Temperature measurement using optical fiber methods: overview and evaluation,” J. Sens. 2020, 1–25 (2020).
[Crossref]
A. Ozcariz, I. Vitoria, F. J. Arregui, and C. R. Zamarreño, “Copper oxide coated D-shaped optical fibers for the development of LMR refractometers,” 2020 IEEE Sens., 1–4 (2020).
A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, E. Karakoleva, E. Vlaikova, and E. Alipieva, “A refractometric sensor using index-sensitive mode resonance between single-mode fiber and thin film amorphous silicon waveguide,” Sens. Actuators, B 106(1), 484–488 (2005).
[Crossref]
E. Vorathin, Z. M. Hafizi, N. Ismail, and M. Loman, “Review of high sensitivity fibre-optic pressure sensors for low pressure sensing,” Opt. Laser Technol. 121, 105841 (2020).
[Crossref]
H. Farahani, R. Wagiran, and M. N. Hamidon, “Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review,” Sensors 14(5), 7881–7939 (2014).
[Crossref]
Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, and H. Gu, “Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature,” Int. J. Hydrogen Energy 37(5), 4526–4532 (2012).
[Crossref]
C. C. Wang, J. Y. Tan, and L. H. Liu, “Wavelength and concentration-dependent optical constants of NaCl, KCl, MgCl2, CaCl2, and Na2SO4 multi-component mixed-salt solutions,” Appl. Opt. 56(27), 7662–7671 (2017).
[Crossref]
M. T. Duffy, C. C. Wang, A. Waxman, and K. H. Zaininger, “Preparation, optical and dielectric properties of vapor-deposited niobium oxide thin films,” J. Electrochem. Soc. 116(2), 234–239 (1969).
[Crossref]
Q. Wang, X. Li, W.-M. Zhao, and S. Jin, “Lossy mode resonance-based fiber optic sensor using layer-by-layer SnO2 thin film and SnO2 nanoparticles,” Appl. Surf. Sci. 492, 374–381 (2019).
[Crossref]
Q. Wang and W.-M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Lasers Eng. 100, 47–60 (2018).
[Crossref]
M. Jia, J. Wen, X. Pan, Z. Xin, F. Pang, L. He, and T. Wang, “Tapered fiber radiation sensor based on Ce/Tb:YAG crystals for remote γ-ray dosimetry,” Opt. Express 29(2), 1210–1220 (2021).
[Crossref]
S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, and T. Wang, “High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD,” Opt. Express 23(11), 13880–13888 (2015).
[Crossref]
F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, and R. Liu, “Recent developments for flexible pressure sensors: a review,” Micromachines 9(11), 580 (2018).
[Crossref]
Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, and H. Gu, “Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature,” Int. J. Hydrogen Energy 37(5), 4526–4532 (2012).
[Crossref]
Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, and H. Gu, “Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature,” Int. J. Hydrogen Energy 37(5), 4526–4532 (2012).
[Crossref]
Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, and H. Gu, “Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature,” Int. J. Hydrogen Energy 37(5), 4526–4532 (2012).
[Crossref]
M. T. Duffy, C. C. Wang, A. Waxman, and K. H. Zaininger, “Preparation, optical and dielectric properties of vapor-deposited niobium oxide thin films,” J. Electrochem. Soc. 116(2), 234–239 (1969).
[Crossref]
N. Hossain, O. Günes, C. Zhang, C. Koughia, Y. Li, S.-J. Wen, R. Wong, S. Kasap, and Q. Yang, “Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering,” J. Mater. Sci.: Mater. Electron. 30(10), 9822–9835 (2019).
[Crossref]
W. Ecke, A. Andreev, A. Csaki, K. Kirsch, K. Schroeder, T. Wieduwilt, and R. Willsch, “Biosensor application of resonance coupling to thin film planar waveguides on side-polished optical fiber,” Proc. SPIE 7753, 77534T (2011).
[Crossref]
W. Ecke, A. Andreev, A. Csaki, K. Kirsch, K. Schroeder, T. Wieduwilt, and R. Willsch, “Biosensor application of resonance coupling to thin film planar waveguides on side-polished optical fiber,” Proc. SPIE 7753, 77534T (2011).
[Crossref]
D. A. Drake, R. W. Sullivan, and J. C. Wilson, “Distributed strain sensing from different optical fiber configurations,” Inventions 3(4), 67 (2018).
[Crossref]
M. Mazur, M. Szymańska, D. Kaczmarek, M. Kalisz, D. Wojcieszak, J. Domaradzki, and F. Placido, “Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application,” Appl. Surf. Sci. 301, 63–69 (2014).
[Crossref]
N. Hossain, O. Günes, C. Zhang, C. Koughia, Y. Li, S.-J. Wen, R. Wong, S. Kasap, and Q. Yang, “Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering,” J. Mater. Sci.: Mater. Electron. 30(10), 9822–9835 (2019).
[Crossref]
T.-C. Chen, C.-J. Chu, C. H. Ho, C. C. Wu, and C.-C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]
Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L.-K. Ang, W. Knoll, and L. Wu, “Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]
S. Venkataraj, R. Drese, Ch. Liesch, O. Kappertz, R. Jayavel, and M. Wuttig, “Temperature stability of sputtered niobium-oxide films,” J. Appl. Phys. 91(8), 4863–4871 (2002).
[Crossref]
Y. Zhao, R. J. Tong, F. Xia, and Y. Peng, “Current status of optical fiber biosensor based on surface plasmon resonance,” Biosens. Bioelectron. 142, 111505 (2019).
[Crossref]
F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, and R. Liu, “Recent developments for flexible pressure sensors: a review,” Micromachines 9(11), 580 (2018).
[Crossref]
Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L.-K. Ang, W. Knoll, and L. Wu, “Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]
C. Ya-nan, Y. Sheng-hai, J. Sheng-ming, Y. Hai-ping, H. Guo-feng, and X. Jiao-yun, “Electrochemical synthesis, characterization and thermal properties of niobium ethoxide,” J. Cent. South Univ. Technol. 18(1), 73–77 (2011).
[Crossref]
M.-J. Yin, B. Gu, Q.-F. An, C. Yang, Y. L. Guan, and K.-T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]
N. Hossain, O. Günes, C. Zhang, C. Koughia, Y. Li, S.-J. Wen, R. Wong, S. Kasap, and Q. Yang, “Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering,” J. Mater. Sci.: Mater. Electron. 30(10), 9822–9835 (2019).
[Crossref]
D. Sporea, A. Sporea, S. O’Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S.W. Harun, and H. Arof (Eds.), (InTech, 2012), Chap. 23, pp. 607–652.
M.-J. Yin, B. Gu, Q.-F. An, C. Yang, Y. L. Guan, and K.-T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]
M.-J. Yin, B. Gu, Q.-F. An, C. Yang, Y. L. Guan, and K.-T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]
C.-S. Lee, D. Kwon, J. E. Yoo, B. G. Lee, J. Choi, and B. H. Chung, “A highly sensitive enzyme-amplified immunosensor based on a nanoporous niobium oxide (Nb2O5) electrode,” Sensors 10(5), 5160–5170 (2010).
[Crossref]
R. A. Kadhim, A. K. K. Abdul, and L. Yuan, “Advances in surface plasmon resonance-based plastic optical fiber sensors,” IETE Tech. Rev. 1–18 (2020).
A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, E. Karakoleva, E. Vlaikova, and E. Alipieva, “A refractometric sensor using index-sensitive mode resonance between single-mode fiber and thin film amorphous silicon waveguide,” Sens. Actuators, B 106(1), 484–488 (2005).
[Crossref]
T. Babeva, A. Andreev, J. Grand, M. Vasileva, E. Karakoleva, B. S. Zafirova, B. Georgieva, J. Koprinarova, and S. Mintova, “Optical fiber-Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing,” Sens. Actuators, B 248, 359–366 (2017).
[Crossref]
A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, A. O. Dikovska, and P. A. Atanasov, “Highly sensitive refractometers based on a side-polished single-mode fibre coupled with a metal oxide thin-film planar waveguide,” J. Opt. A: Pure Appl. Opt. 10(3), 035303 (2008).
[Crossref]
A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[Crossref]
A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[Crossref]
M. T. Duffy, C. C. Wang, A. Waxman, and K. H. Zaininger, “Preparation, optical and dielectric properties of vapor-deposited niobium oxide thin films,” J. Electrochem. Soc. 116(2), 234–239 (1969).
[Crossref]
J. J. Imas, C. R. Zamarreño, P. Zubiate, I. Del Villar, J. M. Pérez-Escudero, and I. R. Matías, “Twin lossy mode resonance (LMR) on a single D-shaped optical fiber,” Opt. Lett. 46(13), 3284–3287 (2021).
[Crossref]
A. Ozcariz, M. Dominik, M. Smietana, C. R. Zamarreño, I. Del Villar, and F. J. Arregui, “Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film,” Sens. Actuators, A 290, 20–27 (2019).
[Crossref]
A. Ozcariz, C. R. Zamarreño, P. Zubiate, and F. J. Arregui, “Is there a frontier in sensitivity with lossy mode resonance (LMR) based refractometers?” Sci. Rep. 7(1), 10280 (2017).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
P. Sanchez, C. R. Zamarreño, M. Hernaez, I. del Villar, I. R. Matias, and F. J. Arregui, “Humidity sensor fabricated by deposition of SnO2 layers onto optical fibers,” Proc. SPIE 8794, 87940C (2013).
[Crossref]
I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref]
C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators, B 155(1), 290–297 (2011).
[Crossref]
C. R. Zamarreño, M. Hernaez, P. Sanchez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber humidity sensor based on lossy mode resonances supported by TiO2/PSS coatings,” Procedia Eng. 25, 1385–1388 (2011).
[Crossref]
M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref]
C. R. Zamarreño, I. Del Villar, P. Sanchez, M. Hernaez, C. Fernandez, I. R. Matias, and F. J. Arregui, “Lossy-mode resonance based refractometers by means of indium oxide coatings fabricated onto optical fibers,” Proc. SPIE 7653, 76531W (2010).
[Crossref]
C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators, B 146(1), 414–417 (2010).
[Crossref]
A. Ozcariz, I. Vitoria, F. J. Arregui, and C. R. Zamarreño, “Copper oxide coated D-shaped optical fibers for the development of LMR refractometers,” 2020 IEEE Sens., 1–4 (2020).
N. Hossain, O. Günes, C. Zhang, C. Koughia, Y. Li, S.-J. Wen, R. Wong, S. Kasap, and Q. Yang, “Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering,” J. Mater. Sci.: Mater. Electron. 30(10), 9822–9835 (2019).
[Crossref]
J. Peng, S. Jia, J. Bian, S. Zhang, J. Liu, and X. Zhou, “Recent progress on electromagnetic field measurement based on optical sensors,” Sensors 19(13), 2860 (2019).
[Crossref]
Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, and H. Gu, “Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature,” Int. J. Hydrogen Energy 37(5), 4526–4532 (2012).
[Crossref]
Q. Wang, X. Li, W.-M. Zhao, and S. Jin, “Lossy mode resonance-based fiber optic sensor using layer-by-layer SnO2 thin film and SnO2 nanoparticles,” Appl. Surf. Sci. 492, 374–381 (2019).
[Crossref]
Q. Wang and W.-M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Lasers Eng. 100, 47–60 (2018).
[Crossref]
Y. Zhao, R. J. Tong, F. Xia, and Y. Peng, “Current status of optical fiber biosensor based on surface plasmon resonance,” Biosens. Bioelectron. 142, 111505 (2019).
[Crossref]
J. Peng, S. Jia, J. Bian, S. Zhang, J. Liu, and X. Zhou, “Recent progress on electromagnetic field measurement based on optical sensors,” Sensors 19(13), 2860 (2019).
[Crossref]
Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L.-K. Ang, W. Knoll, and L. Wu, “Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]
J. J. Imas, C. R. Zamarreño, P. Zubiate, I. Del Villar, J. M. Pérez-Escudero, and I. R. Matías, “Twin lossy mode resonance (LMR) on a single D-shaped optical fiber,” Opt. Lett. 46(13), 3284–3287 (2021).
[Crossref]
A. Ozcariz, C. R. Zamarreño, P. Zubiate, and F. J. Arregui, “Is there a frontier in sensitivity with lossy mode resonance (LMR) based refractometers?” Sci. Rep. 7(1), 10280 (2017).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
B. Michalak, M. Koba, and M. Śmietana, “Silicon nitride overlays deposited on optical fibers with RF PECVD method for sensing applications: overlay uniformity aspects,” Acta Phys. Pol. A 127(6), 1587–1591 (2015).
[Crossref]
C.-L. Tien, H.-Y. Lin, and S.-H. Su, “High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm,” Adv. Condens. Matter Phys. 2018, 1–6 (2018).
[Crossref]
Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L.-K. Ang, W. Knoll, and L. Wu, “Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]
S. B. Ficarro, J. R. Parikh, N. C. Blank, and J. A. Marto, “Niobium(V) oxide (Nb2O5): application to phosphoproteomics,” Anal. Chem. 80(12), 4606–4613 (2008).
[Crossref]
E. I. Golant, A. B. Pashkovskii, and K. M. Golant, “Lossy mode resonance in an etched-out optical fiber taper covered by a thin ITO layer,” Appl. Opt. 59(29), 9254–9258 (2020).
[Crossref]
C. C. Wang, J. Y. Tan, and L. H. Liu, “Wavelength and concentration-dependent optical constants of NaCl, KCl, MgCl2, CaCl2, and Na2SO4 multi-component mixed-salt solutions,” Appl. Opt. 56(27), 7662–7671 (2017).
[Crossref]
H. Sobral and M. Peña-Gomar, “Determination of the refractive index of glucose-ethanol-water mixtures using spectroscopic refractometry near the critical angle,” Appl. Opt. 54(28), 8453–8458 (2015).
[Crossref]
M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref]
A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[Crossref]
S. P. Usha and B. D. Gupta, “Performance analysis of zinc oxide-implemented lossy mode resonance-based optical fiber refractive index sensor utilizing thin film/nanostructure,” Appl. Opt. 56(20), 5716–5725 (2017).
[Crossref]
I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref]
A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[Crossref]
Q. Wang, X. Li, W.-M. Zhao, and S. Jin, “Lossy mode resonance-based fiber optic sensor using layer-by-layer SnO2 thin film and SnO2 nanoparticles,” Appl. Surf. Sci. 492, 374–381 (2019).
[Crossref]
M. Mazur, M. Szymańska, D. Kaczmarek, M. Kalisz, D. Wojcieszak, J. Domaradzki, and F. Placido, “Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application,” Appl. Surf. Sci. 301, 63–69 (2014).
[Crossref]
S. P. Usha and B. D. Gupta, “Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor,” Biosens. Bioelectron. 101, 135–145 (2018).
[Crossref]
Y. Zhao, R. J. Tong, F. Xia, and Y. Peng, “Current status of optical fiber biosensor based on surface plasmon resonance,” Biosens. Bioelectron. 142, 111505 (2019).
[Crossref]
N. C. Emeka, P. E. Imoisili, and T.-C. Jen, “Preparation and characterization of NbxOy thin films: a review,” Coatings 10(12), 1246 (2020).
[Crossref]
M.-J. Yin, B. Gu, Q.-F. An, C. Yang, Y. L. Guan, and K.-T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]
Y.-C. Lin, L.-Y. Chen, and F.-C. Chiu, “Lossy mode resonance-based glucose sensor with high-κ dielectric film,” Crystals 9(9), 450 (2019).
[Crossref]
M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEE Proc.-J: Optoelectron. 140(4), 247–252 (1993).
[Crossref]
A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]
N. Paliwal and J. John, “Lossy mode resonance (LMR) based fiber optic sensors: a review,” IEEE Sens. J. 15(10), 5361–5371 (2015).
[Crossref]
S. Sharma, A. M. Shrivastav, and B. D. Gupta, “Lossy mode resonance based fiber optic creatinine sensor fabricated using molecular imprinting over nanocomposite of MoS2/SnO2,” IEEE Sens. J. 20(8), 4251–4259 (2020).
[Crossref]
S. Sharma and B. D. Gupta, “Lossy mode resonance-based fiber optic sensor for the detection of As (III) using α-Fe2O3/SnO2 core–shell nanostructures,” IEEE Sens. J. 18(17), 7077–7084 (2018).
[Crossref]
O. B. Shcherbina, M. N. Palatnikov, and V. V. Efremov, “Mechanical properties of Nb2O5 and Ta2O5 prepared by different procedures,” Inorg. Mater. 48(4), 433–438 (2012).
[Crossref]
P. I. Kuznetsov, D. P. Sudas, and E. A. Savel’ev, “Formation of fiber tapers by chemical etching for application in fiber sensors and lasers,” Instrum. Exp. Tech. 63(4), 516–521 (2020).
[Crossref]
Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, and H. Gu, “Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature,” Int. J. Hydrogen Energy 37(5), 4526–4532 (2012).
[Crossref]
D. A. Drake, R. W. Sullivan, and J. C. Wilson, “Distributed strain sensing from different optical fiber configurations,” Inventions 3(4), 67 (2018).
[Crossref]
S. Venkataraj, R. Drese, Ch. Liesch, O. Kappertz, R. Jayavel, and M. Wuttig, “Temperature stability of sputtered niobium-oxide films,” J. Appl. Phys. 91(8), 4863–4871 (2002).
[Crossref]
T.-C. Chen, C.-J. Chu, C. H. Ho, C. C. Wu, and C.-C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]
C. Ya-nan, Y. Sheng-hai, J. Sheng-ming, Y. Hai-ping, H. Guo-feng, and X. Jiao-yun, “Electrochemical synthesis, characterization and thermal properties of niobium ethoxide,” J. Cent. South Univ. Technol. 18(1), 73–77 (2011).
[Crossref]
D. Saulys, V. Joshkin, M. Khoudiakov, T. F. Kuech, A. B. Ellis, S. R. Oktyabrsky, and L. McCaughan, “An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions,” J. Cryst. Growth 217(3), 287–301 (2000).
[Crossref]
B. Reichman and A. J. Bard, “Electrochromism at niobium pentoxide electrodes in aqueous and acetonitrile solutions,” J. Electrochem. Soc. 127(1), 241–242 (1980).
[Crossref]
M. T. Duffy, C. C. Wang, A. Waxman, and K. H. Zaininger, “Preparation, optical and dielectric properties of vapor-deposited niobium oxide thin films,” J. Electrochem. Soc. 116(2), 234–239 (1969).
[Crossref]
M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J. Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).
[Crossref]
F. Chiavaioli and D. Janner, “Fiber optic sensing with lossy mode resonances: applications and perspectives,” J. Lightwave Technol. 39(12), 3855–3870 (2021).
[Crossref]
Y. Liu and W. Peng, “Fiber-optic surface plasmon resonance sensors and biochemical applications: a review,” J. Lightwave Technol. 39(12), 3781–3791 (2021).
[Crossref]
N. Hossain, O. Günes, C. Zhang, C. Koughia, Y. Li, S.-J. Wen, R. Wong, S. Kasap, and Q. Yang, “Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering,” J. Mater. Sci.: Mater. Electron. 30(10), 9822–9835 (2019).
[Crossref]
D. Velten, E. Eisenbarth, N. Schanne, and J. Breme, “Biocompatible Nb2O5 thin films prepared by means of the sol-gel process,” J. Mater. Sci.: Mater. Med. 15(4), 457–461 (2004).
[Crossref]
A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, A. O. Dikovska, and P. A. Atanasov, “Highly sensitive refractometers based on a side-polished single-mode fibre coupled with a metal oxide thin-film planar waveguide,” J. Opt. A: Pure Appl. Opt. 10(3), 035303 (2008).
[Crossref]
B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]
M. Mikolajek, R. Martinek, J. Koziorek, S. Hejduk, J. Vitasek, A. Vanderka, R. Poboril, V. Vasinek, and R. Hercik, “Temperature measurement using optical fiber methods: overview and evaluation,” J. Sens. 2020, 1–25 (2020).
[Crossref]
F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, and R. Liu, “Recent developments for flexible pressure sensors: a review,” Micromachines 9(11), 580 (2018).
[Crossref]
M. M. Hossain and M. A. Talukder, “Gate-controlled graphene surface plasmon resonance glucose sensor,” Opt. Commun. 493, 126994 (2021).
[Crossref]
M. Jia, J. Wen, X. Pan, Z. Xin, F. Pang, L. He, and T. Wang, “Tapered fiber radiation sensor based on Ce/Tb:YAG crystals for remote γ-ray dosimetry,” Opt. Express 29(2), 1210–1220 (2021).
[Crossref]
S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, and T. Wang, “High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD,” Opt. Express 23(11), 13880–13888 (2015).
[Crossref]
S. P. Usha, A. M. Shrivastav, and B. D. Gupta, “Semiconductor metal oxide/polymer based fiber optic lossy mode resonance sensors: a contemporary study,” Opt. Fiber Technol. 45, 146–166 (2018).
[Crossref]
E. Vorathin, Z. M. Hafizi, N. Ismail, and M. Loman, “Review of high sensitivity fibre-optic pressure sensors for low pressure sensing,” Opt. Laser Technol. 121, 105841 (2020).
[Crossref]
K. Kosiel, M. Koba, M. Masiewicz, and M. Śmietana, “Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique,” Opt. Laser Technol. 102, 213–221 (2018).
[Crossref]
Q. Wang and W.-M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Lasers Eng. 100, 47–60 (2018).
[Crossref]
T. Begou and J. Lumeau, “Accurate analysis of mechanical stress in dielectric multilayers,” Opt. Lett. 42(16), 3217–3220 (2017).
[Crossref]
J. J. Imas, C. R. Zamarreño, P. Zubiate, I. Del Villar, J. M. Pérez-Escudero, and I. R. Matías, “Twin lossy mode resonance (LMR) on a single D-shaped optical fiber,” Opt. Lett. 46(13), 3284–3287 (2021).
[Crossref]
M. S. Rahman, M. S. Anower, and L. F. Abdulrazak, “Utilization of a phosphorene-graphene/TMDC heterostructure in a surface plasmon resonance-based fiber optic biosensor,” Photonics Nanostruct. Fundam. Appl. 35, 100711 (2019).
[Crossref]
M. Śmietana, M. Dudek, M. Koba, and B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibres,” Phys. Status Solidi A 210(10), 2100–2105 (2013).
[Crossref]
P. Sanchez, C. R. Zamarreño, M. Hernaez, I. del Villar, I. R. Matias, and F. J. Arregui, “Humidity sensor fabricated by deposition of SnO2 layers onto optical fibers,” Proc. SPIE 8794, 87940C (2013).
[Crossref]
W. Ecke, A. Andreev, A. Csaki, K. Kirsch, K. Schroeder, T. Wieduwilt, and R. Willsch, “Biosensor application of resonance coupling to thin film planar waveguides on side-polished optical fiber,” Proc. SPIE 7753, 77534T (2011).
[Crossref]
P. J. Rivero, M. Hernaez, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers based on localized surface plasmon resonance (LSPR) and lossy mode resonance (LMR),” Proc. SPIE 9157, 91574T (2014).
[Crossref]
C. R. Zamarreño, I. Del Villar, P. Sanchez, M. Hernaez, C. Fernandez, I. R. Matias, and F. J. Arregui, “Lossy-mode resonance based refractometers by means of indium oxide coatings fabricated onto optical fibers,” Proc. SPIE 7653, 76531W (2010).
[Crossref]
C. R. Zamarreño, M. Hernaez, P. Sanchez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber humidity sensor based on lossy mode resonances supported by TiO2/PSS coatings,” Procedia Eng. 25, 1385–1388 (2011).
[Crossref]
F. B. Destro, M. Cilense, M. P. Nascimento, F. G. Garcia, L. R. O. Heina, and A. Z. Simões, “Corrosion behaviour of polycrystalline Nb2O5 thin films and its size effects,” Prot. Met. Phys. Chem 52(1), 104–110 (2016).
[Crossref]
A. Ozcariz, C. R. Zamarreño, P. Zubiate, and F. J. Arregui, “Is there a frontier in sensitivity with lossy mode resonance (LMR) based refractometers?” Sci. Rep. 7(1), 10280 (2017).
[Crossref]
J. Li, “A review: development of novel fiber-optic platforms for bulk and surface refractive index sensing applications,” Sens. Actuators Rep. 2(1), 100018 (2020).
[Crossref]
P. I. Kuznetsov, D. P. Sudas, and E. A. Savelyev, “Fiber optic lossy mode resonance based sensor for aggressive liquids,” Sens. Actuators, A 321, 112576 (2021).
[Crossref]
B. A. Kuzubasoglu and S. K. Bahadir, “Flexible temperature sensors: a review,” Sens. Actuators, A 315, 112282 (2020).
[Crossref]
A. Ozcariz, M. Dominik, M. Smietana, C. R. Zamarreño, I. Del Villar, and F. J. Arregui, “Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film,” Sens. Actuators, A 290, 20–27 (2019).
[Crossref]
J. Ascorbe, J. M. Corres, I. R. Matias, and F. J Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]
C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators, B 155(1), 290–297 (2011).
[Crossref]
C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators, B 146(1), 414–417 (2010).
[Crossref]
T. Babeva, A. Andreev, J. Grand, M. Vasileva, E. Karakoleva, B. S. Zafirova, B. Georgieva, J. Koprinarova, and S. Mintova, “Optical fiber-Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing,” Sens. Actuators, B 248, 359–366 (2017).
[Crossref]
P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators, B 173, 244–249 (2012).
[Crossref]
P. J. Rivero, A. Urrutia, J. Goicoechea, I. R. Matias, and F. J. Arregui, “A lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing,” Sens. Actuators, B 187, 40–44 (2013).
[Crossref]
A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A.Ts. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators, B 146(1), 331–336 (2010).
[Crossref]
A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, E. Karakoleva, E. Vlaikova, and E. Alipieva, “A refractometric sensor using index-sensitive mode resonance between single-mode fiber and thin film amorphous silicon waveguide,” Sens. Actuators, B 106(1), 484–488 (2005).
[Crossref]
I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]
L. Chambon, C. Maleysson, A. Pauly, J. P. Germain, V. Demarne, and A. Grisel, “Investigation, for NH3 gas sensing applications, of the Nb2O5 semiconducting oxide in the presence of interferent species such as oxygen and humidity,” Sens. Actuators, B 45(2), 107–114 (1997).
[Crossref]
K. Mahendraprabhu and P. Elumalai, “Stabilized zirconia-based selective NO2 sensor using sol-gel derived Nb2O5 sensing-electrode,” Sens. Actuators, B 238, 105–110 (2017).
[Crossref]
C.-S. Lee, D. Kwon, J. E. Yoo, B. G. Lee, J. Choi, and B. H. Chung, “A highly sensitive enzyme-amplified immunosensor based on a nanoporous niobium oxide (Nb2O5) electrode,” Sensors 10(5), 5160–5170 (2010).
[Crossref]
B. D. Gupta, A. Pathak, and V. Semwal, “Carbon-based nanomaterials for plasmonic sensors: a review,” Sensors 19(16), 3536 (2019).
[Crossref]
J. Ascorbe, J. M. Corres, F. J. Arregui, and I. R. Matias, “Recent developments in fiber optics humidity sensors,” Sensors 17(4), 893 (2017).
[Crossref]
H. Farahani, R. Wagiran, and M. N. Hamidon, “Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review,” Sensors 14(5), 7881–7939 (2014).
[Crossref]
O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]
J. Peng, S. Jia, J. Bian, S. Zhang, J. Liu, and X. Zhou, “Recent progress on electromagnetic field measurement based on optical sensors,” Sensors 19(13), 2860 (2019).
[Crossref]
P. Prieto-Cortés, R. I. Álvarez-Tamayo, M. García-Méndez, and M. Durán-Sánchez, “Lossy mode resonance generation on sputtered aluminum-doped zinc oxide thin films deposited on multimode optical fiber structures for sensing applications in the 1.55 µm wavelength range,” Sensors 19(19), 4189 (2019).
[Crossref]
N. Özer, M. D. Rubin, and C. M. Lampert, “Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering a comparison,” Sol. Energy Mater. Sol. Cells 40(4), 285–296 (1996).
[Crossref]
E. I. Golant and K. M. Golant, “Fields and modes in thin film coated optical waveguides,” 2019 PIERS-Spring, 725–732 (2019).
F. Lemarchand, “Optical constants of Nb2O5 (Niobium pentoxide),” https://refractiveindex.info/?shelf=main&book=Nb2O5&page=Lemarchand.
D. R. Lide, Handbook of Chemistry and Physics, 84th ed. (CRC Press, 2003).
T. A. Gens, The Chemistry of Niobium in Processing of Nuclear Fuels, 1st ed. (U.S. Atomic Energy Commission, 1962).
A. Ozcariz, I. Vitoria, F. J. Arregui, and C. R. Zamarreño, “Copper oxide coated D-shaped optical fibers for the development of LMR refractometers,” 2020 IEEE Sens., 1–4 (2020).
D. Sporea, A. Sporea, S. O’Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S.W. Harun, and H. Arof (Eds.), (InTech, 2012), Chap. 23, pp. 607–652.
J. Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 5th ed. (Springer, 2016).
I. R. Matias, S. Ikezawa, and J. Corres, Fiber Optic Sensors: Current Status and Future Possibilities, 1st ed. (Springer, 2017), Vol. 21.
J. L. Santos and F. Farahi, Handbook of Optical Sensors, 1st ed. (CRC Press, 2014).
R. A. Kadhim, A. K. K. Abdul, and L. Yuan, “Advances in surface plasmon resonance-based plastic optical fiber sensors,” IETE Tech. Rev. 1–18 (2020).
S. Nangare and P. Patil, “Black phosphorus nanostructure based highly sensitive and selective surface plasmon resonance sensor for biological and chemical sensing: a review,” Crit. Rev. Anal. Chem. 1–26 (2021).