B. Jafari, H. Soofi, and K. Abbasian, “Low voltage, high modulation depth graphene THz modulator employing Fabry–Perot resonance in a metal/dielectric/graphene sandwich structure,” Opt. Commun. 472(1), 125911 (2020).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
H. S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16(4), 2818–2823 (2016).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]
H. G. Yan, T. Low, F. Guinea, F. N. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
R. Y. Wu, L. Zhang, L. Bao, L. W. Wu, Q. Ma, G. D. Bai, H. T. Wu, and T. J. Cui, “Digital metasurface with phase code and reflection–transmission amplitude code for flexible full-space electromagnetic manipulations,” Adv. Opt. Mater. 7(8), 1801429 (2019).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
R. Y. Wu, L. Zhang, L. Bao, L. W. Wu, Q. Ma, G. D. Bai, H. T. Wu, and T. J. Cui, “Digital metasurface with phase code and reflection–transmission amplitude code for flexible full-space electromagnetic manipulations,” Adv. Opt. Mater. 7(8), 1801429 (2019).
[Crossref]
Y. M. Yang, N. Kamaraju, S. Campione, S. Liu, J. L. Reno, M. B. Sinclair, R. P. Prasankumar, and I. Brener, “Transient GaAs plasmonic metasurfaces at terahertz frequencies,” ACS Photonics 4(1), 15–21 (2017).
[Crossref]
G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]
H. L. Cai, S. Chen, C. W. Zou, Q. P. Huang, Y. Liu, X. Hu, Z. P. Fu, Y. Zhao, H. C. He, and Y. L. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]
Y. M. Yang, N. Kamaraju, S. Campione, S. Liu, J. L. Reno, M. B. Sinclair, R. P. Prasankumar, and I. Brener, “Transient GaAs plasmonic metasurfaces at terahertz frequencies,” ACS Photonics 4(1), 15–21 (2017).
[Crossref]
G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]
H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]
Z. F. Chen, X. Q. Chen, L. Tao, K. Chen, M. Z. Long, X. D. Liu, K. Y. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J. B. Xu, “Graphene controlled Brewster angle device for ultra broadband terahertz modulation,” Nat. Commun. 9(1), 4909 (2018).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
H. L. Wang, H. F. Ma, M. Chen, S. Sun, and T. J. Cui, “A reconfigurable multifunctional metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 31(25), 2100275 (2021).
[Crossref]
L. Zhang, M. Z. Chen, W. K. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Chen, and T. J. Cui, “A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces,” Nat. Electron. 4, 218–227 (2021).
[Crossref]
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
L. Zhang, M. Z. Chen, W. K. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Chen, and T. J. Cui, “A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces,” Nat. Electron. 4, 218–227 (2021).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
H. L. Cai, S. Chen, C. W. Zou, Q. P. Huang, Y. Liu, X. Hu, Z. P. Fu, Y. Zhao, H. C. He, and Y. L. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]
X. D. Chen, T. W. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
[Crossref]
Z. F. Chen, X. Q. Chen, L. Tao, K. Chen, M. Z. Long, X. D. Liu, K. Y. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J. B. Xu, “Graphene controlled Brewster angle device for ultra broadband terahertz modulation,” Nat. Commun. 9(1), 4909 (2018).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
Z. F. Chen, X. Q. Chen, L. Tao, K. Chen, M. Z. Long, X. D. Liu, K. Y. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J. B. Xu, “Graphene controlled Brewster angle device for ultra broadband terahertz modulation,” Nat. Commun. 9(1), 4909 (2018).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]
L. Zhang, M. Z. Chen, W. K. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Chen, and T. J. Cui, “A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces,” Nat. Electron. 4, 218–227 (2021).
[Crossref]
H. L. Wang, H. F. Ma, M. Chen, S. Sun, and T. J. Cui, “A reconfigurable multifunctional metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 31(25), 2100275 (2021).
[Crossref]
R. Y. Wu, L. Zhang, L. Bao, L. W. Wu, Q. Ma, G. D. Bai, H. T. Wu, and T. J. Cui, “Digital metasurface with phase code and reflection–transmission amplitude code for flexible full-space electromagnetic manipulations,” Adv. Opt. Mater. 7(8), 1801429 (2019).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref]
L. Zhang, M. Z. Chen, W. K. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Chen, and T. J. Cui, “A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces,” Nat. Electron. 4, 218–227 (2021).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]
A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]
L. L. Du, H. Li, L. L. Yan, J. W. Zhang, Q. Xin, Q. P. Wang, and A. M. Song, “Effects of substrate and anode metal annealing on InGaZnO Schottky diodes,” Appl. Phys. Lett. 110(1), 011602 (2017).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
H. S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16(4), 2818–2823 (2016).
[Crossref]
P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorral, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
H. L. Cai, S. Chen, C. W. Zou, Q. P. Huang, Y. Liu, X. Hu, Z. P. Fu, Y. Zhao, H. C. He, and Y. L. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]
H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]
A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]
X. D. Chen, T. W. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
H. G. Yan, T. Low, F. Guinea, F. N. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref]
A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
H. L. Cai, S. Chen, C. W. Zou, Q. P. Huang, Y. Liu, X. Hu, Z. P. Fu, Y. Zhao, H. C. He, and Y. L. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]
W. M. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. T. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]
A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]
T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater. 11(4), 044305 (2010).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
H. L. Cai, S. Chen, C. W. Zou, Q. P. Huang, Y. Liu, X. Hu, Z. P. Fu, Y. Zhao, H. C. He, and Y. L. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
H. L. Cai, S. Chen, C. W. Zou, Q. P. Huang, Y. Liu, X. Hu, Z. P. Fu, Y. Zhao, H. C. He, and Y. L. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]
B. Jafari, H. Soofi, and K. Abbasian, “Low voltage, high modulation depth graphene THz modulator employing Fabry–Perot resonance in a metal/dielectric/graphene sandwich structure,” Opt. Commun. 472(1), 125911 (2020).
[Crossref]
R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
L. Zhang, M. Z. Chen, W. K. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Chen, and T. J. Cui, “A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces,” Nat. Electron. 4, 218–227 (2021).
[Crossref]
Y. M. Yang, N. Kamaraju, S. Campione, S. Liu, J. L. Reno, M. B. Sinclair, R. P. Prasankumar, and I. Brener, “Transient GaAs plasmonic metasurfaces at terahertz frequencies,” ACS Photonics 4(1), 15–21 (2017).
[Crossref]
T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater. 11(4), 044305 (2010).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]
G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]
X. D. Chen, T. W. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
[Crossref]
Y. K. Srivastava, M. Manjappa, H. N. S. Krishnamoorthy, and R. Singh, “Accessing the high-Q dark plasmonic Fano resonances in superconductor metasurfaces,” Adv. Opt. Mater. 4(11), 1875–1881 (2016).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
L. L. Du, H. Li, L. L. Yan, J. W. Zhang, Q. Xin, Q. P. Wang, and A. M. Song, “Effects of substrate and anode metal annealing on InGaZnO Schottky diodes,” Appl. Phys. Lett. 110(1), 011602 (2017).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
W. M. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. T. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]
J. W. Zhang, Y. P. Li, B. L. Zhang, H. B. Wang, Q. Xin, and A. M. Song, “Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz,” Nat. Commun. 6(1), 7561 (2015).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
W. M. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. T. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]
P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorral, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]
R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref]
Y. M. Yang, N. Kamaraju, S. Campione, S. Liu, J. L. Reno, M. B. Sinclair, R. P. Prasankumar, and I. Brener, “Transient GaAs plasmonic metasurfaces at terahertz frequencies,” ACS Photonics 4(1), 15–21 (2017).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
Z. F. Chen, X. Q. Chen, L. Tao, K. Chen, M. Z. Long, X. D. Liu, K. Y. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J. B. Xu, “Graphene controlled Brewster angle device for ultra broadband terahertz modulation,” Nat. Commun. 9(1), 4909 (2018).
[Crossref]
H. L. Cai, S. Chen, C. W. Zou, Q. P. Huang, Y. Liu, X. Hu, Z. P. Fu, Y. Zhao, H. C. He, and Y. L. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
Z. F. Chen, X. Q. Chen, L. Tao, K. Chen, M. Z. Long, X. D. Liu, K. Y. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J. B. Xu, “Graphene controlled Brewster angle device for ultra broadband terahertz modulation,” Nat. Commun. 9(1), 4909 (2018).
[Crossref]
H. G. Yan, T. Low, F. Guinea, F. N. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
H. L. Cai, S. Chen, C. W. Zou, Q. P. Huang, Y. Liu, X. Hu, Z. P. Fu, Y. Zhao, H. C. He, and Y. L. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]
P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorral, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]
H. L. Wang, H. F. Ma, M. Chen, S. Sun, and T. J. Cui, “A reconfigurable multifunctional metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 31(25), 2100275 (2021).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
R. Y. Wu, L. Zhang, L. Bao, L. W. Wu, Q. Ma, G. D. Bai, H. T. Wu, and T. J. Cui, “Digital metasurface with phase code and reflection–transmission amplitude code for flexible full-space electromagnetic manipulations,” Adv. Opt. Mater. 7(8), 1801429 (2019).
[Crossref]
S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]
Y. K. Srivastava, M. Manjappa, H. N. S. Krishnamoorthy, and R. Singh, “Accessing the high-Q dark plasmonic Fano resonances in superconductor metasurfaces,” Adv. Opt. Mater. 4(11), 1875–1881 (2016).
[Crossref]
A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]
L. Zhang, M. Z. Chen, W. K. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Chen, and T. J. Cui, “A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces,” Nat. Electron. 4, 218–227 (2021).
[Crossref]
P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorral, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]
S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]
G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]
R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]
V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nat. Mater. 5(10), 759–762 (2006).
[Crossref]
P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorral, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater. 11(4), 044305 (2010).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
X. D. Chen, T. W. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
[Crossref]
S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
A. Pedross-Engel, C. M. Watts, D. R. Smith, and M. S. Reynolds, “Enhanced resolution stripmap mode using dynamic metasurface antennas,” IEEE Trans. Geosci. Remote Sensing 55(7), 3764–3772 (2017).
[Crossref]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]
Z. F. Chen, X. Q. Chen, L. Tao, K. Chen, M. Z. Long, X. D. Liu, K. Y. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J. B. Xu, “Graphene controlled Brewster angle device for ultra broadband terahertz modulation,” Nat. Commun. 9(1), 4909 (2018).
[Crossref]
S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
Y. M. Yang, N. Kamaraju, S. Campione, S. Liu, J. L. Reno, M. B. Sinclair, R. P. Prasankumar, and I. Brener, “Transient GaAs plasmonic metasurfaces at terahertz frequencies,” ACS Photonics 4(1), 15–21 (2017).
[Crossref]
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
W. M. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. T. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]
W. M. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. T. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
Y. M. Yang, N. Kamaraju, S. Campione, S. Liu, J. L. Reno, M. B. Sinclair, R. P. Prasankumar, and I. Brener, “Transient GaAs plasmonic metasurfaces at terahertz frequencies,” ACS Photonics 4(1), 15–21 (2017).
[Crossref]
G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]
A. Pedross-Engel, C. M. Watts, D. R. Smith, and M. S. Reynolds, “Enhanced resolution stripmap mode using dynamic metasurface antennas,” IEEE Trans. Geosci. Remote Sensing 55(7), 3764–3772 (2017).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]
P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorral, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]
A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]
D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]
Y. M. Yang, N. Kamaraju, S. Campione, S. Liu, J. L. Reno, M. B. Sinclair, R. P. Prasankumar, and I. Brener, “Transient GaAs plasmonic metasurfaces at terahertz frequencies,” ACS Photonics 4(1), 15–21 (2017).
[Crossref]
Y. K. Srivastava, M. Manjappa, H. N. S. Krishnamoorthy, and R. Singh, “Accessing the high-Q dark plasmonic Fano resonances in superconductor metasurfaces,” Adv. Opt. Mater. 4(11), 1875–1881 (2016).
[Crossref]
A. Pedross-Engel, C. M. Watts, D. R. Smith, and M. S. Reynolds, “Enhanced resolution stripmap mode using dynamic metasurface antennas,” IEEE Trans. Geosci. Remote Sensing 55(7), 3764–3772 (2017).
[Crossref]
R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]
D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
L. L. Du, H. Li, L. L. Yan, J. W. Zhang, Q. Xin, Q. P. Wang, and A. M. Song, “Effects of substrate and anode metal annealing on InGaZnO Schottky diodes,” Appl. Phys. Lett. 110(1), 011602 (2017).
[Crossref]
J. W. Zhang, Y. P. Li, B. L. Zhang, H. B. Wang, Q. Xin, and A. M. Song, “Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz,” Nat. Commun. 6(1), 7561 (2015).
[Crossref]
B. Jafari, H. Soofi, and K. Abbasian, “Low voltage, high modulation depth graphene THz modulator employing Fabry–Perot resonance in a metal/dielectric/graphene sandwich structure,” Opt. Commun. 472(1), 125911 (2020).
[Crossref]
Y. K. Srivastava, M. Manjappa, H. N. S. Krishnamoorthy, and R. Singh, “Accessing the high-Q dark plasmonic Fano resonances in superconductor metasurfaces,” Adv. Opt. Mater. 4(11), 1875–1881 (2016).
[Crossref]
Z. F. Chen, X. Q. Chen, L. Tao, K. Chen, M. Z. Long, X. D. Liu, K. Y. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J. B. Xu, “Graphene controlled Brewster angle device for ultra broadband terahertz modulation,” Nat. Commun. 9(1), 4909 (2018).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
H. L. Wang, H. F. Ma, M. Chen, S. Sun, and T. J. Cui, “A reconfigurable multifunctional metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 31(25), 2100275 (2021).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
L. Zhang, M. Z. Chen, W. K. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Chen, and T. J. Cui, “A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces,” Nat. Electron. 4, 218–227 (2021).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
Z. F. Chen, X. Q. Chen, L. Tao, K. Chen, M. Z. Long, X. D. Liu, K. Y. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J. B. Xu, “Graphene controlled Brewster angle device for ultra broadband terahertz modulation,” Nat. Commun. 9(1), 4909 (2018).
[Crossref]
G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]
H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]
S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]
G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]
P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorral, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]
V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nat. Mater. 5(10), 759–762 (2006).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
J. W. Zhang, Y. P. Li, B. L. Zhang, H. B. Wang, Q. Xin, and A. M. Song, “Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz,” Nat. Commun. 6(1), 7561 (2015).
[Crossref]
H. L. Wang, H. F. Ma, M. Chen, S. Sun, and T. J. Cui, “A reconfigurable multifunctional metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 31(25), 2100275 (2021).
[Crossref]
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
L. L. Du, H. Li, L. L. Yan, J. W. Zhang, Q. Xin, Q. P. Wang, and A. M. Song, “Effects of substrate and anode metal annealing on InGaZnO Schottky diodes,” Appl. Phys. Lett. 110(1), 011602 (2017).
[Crossref]
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
W. M. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. T. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]
A. Pedross-Engel, C. M. Watts, D. R. Smith, and M. S. Reynolds, “Enhanced resolution stripmap mode using dynamic metasurface antennas,” IEEE Trans. Geosci. Remote Sensing 55(7), 3764–3772 (2017).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
X. D. Chen, T. W. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E. 70(1), 016608 (2004).
[Crossref]
R. Y. Wu, L. Zhang, L. Bao, L. W. Wu, Q. Ma, G. D. Bai, H. T. Wu, and T. J. Cui, “Digital metasurface with phase code and reflection–transmission amplitude code for flexible full-space electromagnetic manipulations,” Adv. Opt. Mater. 7(8), 1801429 (2019).
[Crossref]
R. Y. Wu, L. Zhang, L. Bao, L. W. Wu, Q. Ma, G. D. Bai, H. T. Wu, and T. J. Cui, “Digital metasurface with phase code and reflection–transmission amplitude code for flexible full-space electromagnetic manipulations,” Adv. Opt. Mater. 7(8), 1801429 (2019).
[Crossref]
R. Y. Wu, L. Zhang, L. Bao, L. W. Wu, Q. Ma, G. D. Bai, H. T. Wu, and T. J. Cui, “Digital metasurface with phase code and reflection–transmission amplitude code for flexible full-space electromagnetic manipulations,” Adv. Opt. Mater. 7(8), 1801429 (2019).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
H. G. Yan, T. Low, F. Guinea, F. N. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref]
W. D. Xu, L. J. Xie, and Y. B. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
L. L. Du, H. Li, L. L. Yan, J. W. Zhang, Q. Xin, Q. P. Wang, and A. M. Song, “Effects of substrate and anode metal annealing on InGaZnO Schottky diodes,” Appl. Phys. Lett. 110(1), 011602 (2017).
[Crossref]
J. W. Zhang, Y. P. Li, B. L. Zhang, H. B. Wang, Q. Xin, and A. M. Song, “Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz,” Nat. Commun. 6(1), 7561 (2015).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
Z. F. Chen, X. Q. Chen, L. Tao, K. Chen, M. Z. Long, X. D. Liu, K. Y. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J. B. Xu, “Graphene controlled Brewster angle device for ultra broadband terahertz modulation,” Nat. Commun. 9(1), 4909 (2018).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
W. D. Xu, L. J. Xie, and Y. B. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
H. G. Yan, T. Low, F. Guinea, F. N. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref]
Z. F. Chen, X. Q. Chen, L. Tao, K. Chen, M. Z. Long, X. D. Liu, K. Y. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J. B. Xu, “Graphene controlled Brewster angle device for ultra broadband terahertz modulation,” Nat. Commun. 9(1), 4909 (2018).
[Crossref]
L. L. Du, H. Li, L. L. Yan, J. W. Zhang, Q. Xin, Q. P. Wang, and A. M. Song, “Effects of substrate and anode metal annealing on InGaZnO Schottky diodes,” Appl. Phys. Lett. 110(1), 011602 (2017).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
Y. M. Yang, N. Kamaraju, S. Campione, S. Liu, J. L. Reno, M. B. Sinclair, R. P. Prasankumar, and I. Brener, “Transient GaAs plasmonic metasurfaces at terahertz frequencies,” ACS Photonics 4(1), 15–21 (2017).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
W. M. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. T. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]
W. D. Xu, L. J. Xie, and Y. B. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]
W. M. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. T. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]
W. M. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. T. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
J. W. Zhang, Y. P. Li, B. L. Zhang, H. B. Wang, Q. Xin, and A. M. Song, “Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz,” Nat. Commun. 6(1), 7561 (2015).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
L. L. Du, H. Li, L. L. Yan, J. W. Zhang, Q. Xin, Q. P. Wang, and A. M. Song, “Effects of substrate and anode metal annealing on InGaZnO Schottky diodes,” Appl. Phys. Lett. 110(1), 011602 (2017).
[Crossref]
J. W. Zhang, Y. P. Li, B. L. Zhang, H. B. Wang, Q. Xin, and A. M. Song, “Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz,” Nat. Commun. 6(1), 7561 (2015).
[Crossref]
L. Zhang, M. Z. Chen, W. K. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Chen, and T. J. Cui, “A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces,” Nat. Electron. 4, 218–227 (2021).
[Crossref]
R. Y. Wu, L. Zhang, L. Bao, L. W. Wu, Q. Ma, G. D. Bai, H. T. Wu, and T. J. Cui, “Digital metasurface with phase code and reflection–transmission amplitude code for flexible full-space electromagnetic manipulations,” Adv. Opt. Mater. 7(8), 1801429 (2019).
[Crossref]
W. Z. Xu, F. F. Ren, J. D. Ye, H. Lu, L. J. Liang, X. M. Huang, M. K. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. B. Jin, R. Zhang, H. H. Tan, and C. J agadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref]
W. M. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. T. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
Y. F. Zhang, H. T. Ling, P. J. Chen, P. F. Qian, Y. P. Shi, Y. M. Wang, H. Y. Feng, Q. Xin, Q. P. Wang, S. Y. Shi, X. M. Pan, X. Q. Sheng, and A. M. Song, “Tunable surface plasmon polaritons with monolithic Schottky diodes,” ACS Appl. Electron. Mater. 1(10), 2124–2129 (2019).
[Crossref]
Y. F. Zhang, C. Fowler, J. H. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. L. Zhang, and J. J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. (2021).
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
Y. S. Liu, T. Sun, Y. Xu, X. J. Wu, Z. Y. Bai, Y. Sun, H. L. Li, H. Y. Zhang, K. L. Chen, C. J. Ruan, Y. Z. Sun, Y. Q. Hu, W. S. Zhao, T. X. Nie, and L. G. Wen, “Active tunable THz metamaterial array implemented in CMOS technology,” J. Phys. D: Appl. Phys. 54(8), 085107 (2021).
[Crossref]
H. L. Cai, S. Chen, C. W. Zou, Q. P. Huang, Y. Liu, X. Hu, Z. P. Fu, Y. Zhao, H. C. He, and Y. L. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
L. Zhang, M. Z. Chen, W. K. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Chen, and T. J. Cui, “A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces,” Nat. Electron. 4, 218–227 (2021).
[Crossref]
S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]
Y. M. Wang, J. Yang, H. B. Wang, J. W. Zhang, H. Li, G. C. Zhu, Y. P. Shi, Y. X. Li, Q. P. Wang, Q. Xin, Z. C. Fan, F. H. Yang, and A. M. Song, “Amorphous-InGaZnO thin-film transistors operating beyond 1 GHz achieved by optimizing the channel and gate dimensions,” IEEE Trans. Electron Devices 65(4), 1377–1382 (2018).
[Crossref]
H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]
H. L. Cai, S. Chen, C. W. Zou, Q. P. Huang, Y. Liu, X. Hu, Z. P. Fu, Y. Zhao, H. C. He, and Y. L. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]
Y. X. Zhang, S. Qiao, S. X. Liang, Z. H. Wu, Z. Q. Yang, Z. H. Feng, H. Sun, Y. C. Zhou, L. L. Sun, Z. Chen, X. B. Zou, B. Zhang, J. H. Hu, S. Q. Li, Q. Chen, L. Li, G. Q. Xu, Y. C. Zhao, and S. G. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref]