Abstract

Although advancement in nanofabrication provides the opportunity to realize nanoscale geometries with high resolutions, the scalability and repeatability issues limit their large-scale applications. Lithography-free metamaterial absorbers (LFMAs) are a potential route for the upscaling of these designs. With restricted freedom in their synthesis, the importance of the proper material choice is emphasized. Herein, we provide a comprehensive overview of the recently developed LFMAs, from both design and material perspectives, while considering their most promising applications.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Routes and materials

Light confinement and harvesting in dimensions much smaller than the wavelength have been the subject of many studies in the field of metamaterial-based perfect absorbers. Metals, at sub-wavelength dimensions, can undergo strong light-matter interaction in a broad spectral range [1]. This happens through the collective oscillation of free conduction electrons, so-called localized surface plasmon resonance (LSPR), or inter-band transitions. However, the realization of plasmonic nano units requires complex and large-scale incompatible routes such as lithography-based techniques. Therefore, recently, the concept of lithography-free metamaterial absorbers (LFMAs) has attracted intensive attention [2,3]. The most common type of these scalable LFMAs is planar multilayer designs, with the dominant absorption mechanism of Fabry-Perot (FP) resonance modes [2]. Metal-insulator-metal (MIM) and MIM-insulator (MIMI) and periodic (MI)N cavity configurations are the most common cavity absorbers. One-dimensional photonic crystal (1D-PC) based configurations are also utilized to achieve light absorption in ultrathin absorbing layers. Nanostructured LFMAs could outweigh these planar designs, especially in applications where both strong absorption and high active surface area are desired. Recently, several innovative fabrication routes have been developed to meet this requirement. Deposition induced structuring [4,5], dewetting induced nanounit formation [68], oblique angle deposition of three-dimensional (3D) structures [914], direct laser writing [15], template-assisted etching [16,17], and deposition [18,19] are examples of these methods, as shown in Fig. 1. Aside from the importance of the route, the choice of the right material is another prominent factor in LFMA design. Figure 2 outlines the most suitable materials for the building of LFMAs. In the ultraviolet (UV) and visible, a vast variety of semiconductors and metals can be used to achieve this goal. To extend this functionality toward longer ranges such as near-infrared (NIR) and short-wavelength infrared (SWIR), lossy metals such as Ti, Cr, W, and Bi could be utilized in a proper configuration [2]. Moreover, doped metal oxides such as Al-doped ZnO (AZO) [20], Ga-doped ZnO (GZO) [21], In-doped SnO2 (ITO) [22], In-doped CdO (ICO) [23,24], and Ce-doped In2O3 (CIO) [25] that show epsilon-near-zero (ENZ) characteristics in the SWIR range could be used in LFMAs. Metal nitrides such as TiN, ZrN, HfN, and InN could also reveal a plasmonic response in the infrared (IR) range [2629]. Moreover, these alternative plasmonic materials show tunable plasma frequency in the mid-wavelength infrared (MWIR) range. In longer wavelengths (i.e. MWIR, long-wavelength infrared (LWIR), and far-infrared (FIR)), LFMAs can be realized through the excitation of i) optical phonon in metal oxides [30], ii) plasmonics in highly doped semiconductors [31], iii) plasmonic resonances in two dimensional (2D) materials such as graphene and black phosphorus (BP) [32,33], and iv) phonon polariton modes in polar materials [34].

 figure: Fig. 1.

Fig. 1. Schematic illustration of lithography-free fabrication routes.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2.

Fig. 2. Possible absorber materials for the realization of LFMAs in different portions of the optical spectrum.

Download Full Size | PPT Slide | PDF

2. Applications

LFMAs are divided into two material categories: i) metallic and ii) non-metallic. Their applications are sorted based on their operational wavelength range; i) sun blackbody radiation spectrum (sun-BBRS) or so-called solar spectrum covering UV-visible-NIR-SWIR ranges, and ii) earth blackbody radiation spectrum (earth-BBRS) covering SWIR-MWIR-LWIR-FIR.

2.1 Sun-BBRS

Metallic LFMAs. Planar metallic LFMAs can reveal spectrally selective narrowband or broadband light absorption. The narrowband planar LFMAs are commonly utilized in color filtering applications [35]. While simple MIM cavity design can generate additive red-green-blue (RGB) colors in transmissive mode (with amplitudes much below unity), tandem shape cavity architectures can generate high-efficiency RGB colors in reflection mode [3640]. These planar LFMAs can also show dynamically tunable color generation, through the change in spacer layer index or thickness. For index modulation, phase change materials (PCMs) such as GST [41,42], VO2 [43], Sb2S3 [44], or even Sb [45] can be used as the spacer to generate thermally tunable colors. For nanoscale thickness tuning of the spacer, swelling/deswelling of humidity-sensitive polymers and hydrogels is employed to fabricate dynamic MIM color filters [4648]. Besides filtering, the narrowband LFMAs have potential application in colorimetric sensing platforms such as bio-, and gas-sensing, where the external stimuli shifts the resonance peak of the LFMA [12,49,50]. However, in sensing, a high surface area is desired to maximize the interaction of light with the surrounding environment. Thus, nanostructures such as dewetted or oblique angle deposited plasmonic units offer higher sensitivities [51,52].

On the other side, the broadband LFMAs can harvest a large portion of the solar spectrum, which is desired for photoconversion applications. In metals, photoconversion functionality can be acquired using the excitation and extraction of energetic hot electrons. However, due to the femtosecond relaxation of hot electrons with a dominant mechanism, called Landau damping, only energetic carriers can traverse the Schottky barrier [53]. This photoemission efficiency is even less in planar and large particle sizes [54] where absorption is due to non-resonant inter-band transitions rather than the LSPRs. Despite intensive efforts to find alternative high performance and low-cost plasmonic elements such as Al [5557], conductive oxides [27,58,59], transition metal nitrides/carbides (such as TiN) [60,61], and doped semiconductors [6264], the efficiency of hot electron designs is still low. The same obstacles are present in the hot electron based photodetection and photoelectrochemical water splitting (PEC-WS) applications [65]. The alternative route is to use these metallic LFMAs in the application platforms where metals are not the photoactive layer such as thermal photovoltaic (TPV) and steam generation. In TPV, a broadband LFMA absorbs photons, transforms them into heat, and reradiates it using a selective emitter with a spectral emission peak overlapping with the PV bandgap. Based on theoretical calculations, a solar TPV, with an ideal design of absorber and emitter, can achieve efficiencies exceeding the Shockley-Queisser limit [66]. The narrowband emitter can also be realized with a multilayer dielectric-based 1D-PC design, making the overall system a lithography-free architecture [67]. Solar-driven steam generation is another promising area for broadband LFMAs. Advancements in this area have proven efficiencies as high as 90% at 4-sun intensity (4kW m−2) [68]. Different from TPV, in this application, a high area is a must to maximize the heat transfer between the LFMA and water.

Non-metallic LFMAs. Similar to metallic ones, the dominant application of non-metallic LFMAs in sun-BBRS is photoconversion and semiconductors are its main building blocks [69]. In most semiconductors, the carrier diffusion length is much shorter than the light penetration depth. Therefore, the bulk recombination of carriers limits their efficiency. However, sub-wavelength semiconductor-based LFMAs can offer optically thick, electrically thin platforms suitable for photoconversion systems, such as PV, photodetection, and PEC-WS [67]. Planar metal-semiconductor (MS) and metal-dielectric-semiconductor (MDS) cavity designs are proven to achieve near-unity absorption in deep sub-wavelength semiconductor thicknesses [7080]. In 2D monolayer semiconductors, dielectric-based 1D-PC and Bragg reflector designs are the right strategy to confine the entire power in the position of the 2D layer and efficiently harvest it [8183]. Besides the optical response, the electrical characteristics of these semiconductors are also a prominent factor that affects the performance outcome. Ideally, a crystalline semiconductor film should be grown in ultrathin dimensions, but it is a challenging task. The transfer of external crystalline thin films [79,84] and the CVD growth of 2D semiconductors can provide high-quality thin films. In PEC-WS, two more factors should be adopted in the design of these LFMAs; i) surface area and ii) long-term structural integrity (or stability) of the photoelectrode [69]. While planar LFMAs have already been used as photoanode and photocathode components in PEC-WS [84,85], nanostructured designs with a higher water-semiconductor interface can improve the activity. To have a high surface area with good crystallinity, template-assisted etching of crystalline semiconductor host seems a promising approach [16]. A thin protection layer with proper band alignment could be utilized to solve the stability issue.

2.2 Earth-BBRS

Metallic LFMAs. In most metals, the LSPR excitation and interband transition happen in the UV-visible range. However, lossy metals in (MI)N and metal-1D-PC configurations, can reveal resonant light absorption in the SWIR-LWIR range [37,8689]. These planar absorbers can act as selective/broadband thermal emitters with possible applications in radiative cooling and thermal camouflage [9093]. Integration of these LFMAs with PCMs offers dynamically tunable IR emitters/absorbers [9496]. Such a design could even enable passive radiative thermostat functionality by adjusting the visible and IR absorption/emission [97].

Non-metallic LFMAs. Highly doped semiconductors, doped metal oxides, metal nitrides/carbides, and 2D materials such as graphene, and BP are alternative plasmonic materials in MWIR, LWIR, and FIR range [34]. Heavily doped semiconductors such as Ge, Si, III-V compounds are appealing alternatives to metals for IR plasmonics [31]. Their plasma frequency can be tuned chemically, optically, or electrically across a broad range. Semiconductor-based hyperbolic metamaterials, made of doped-undoped pairs, can be developed to realize narrowband directional IR emission [98,99] and ultrafast and low power all-optical switching [100]. Doped metal oxides have the advantage of visible transparency, making them compatible materials for spacecraft cooling and thermal camouflage [11,101]. 2D materials with exceptional electrical and optical properties are another attractive category in IR plasmonics. Graphene, as the most famous member of this group, can support guided plasmonic modes in the IR range, where the spectral position of these modes can be effectively tuned by its chemical potential (µ) [33,102104]. Graphene monolayer-based LFMAs have been realized using the excitation of Tamm plasmons in 1D-PC structures [105107]. Moreover, the use of distributed Bragg reflector (DBR) in a cavity design, to couple light into the graphene monolayer, has been demonstrated [104]. A similar design strategy can be utilized to achieve LFMA using a monolayer of BP [108]. Due to their high carrier mobility, LFMAs made of these 2D materials coupled with narrow bandgap semiconductors have promising applications in IR photodetector designs [109,110]. Different from graphene, the BP monolayer shows strong in-plane anisotropy, used to design polarization selective absorbers [111]. Moreover, different from common narrow bandgap semiconductors, BP has a tunable bandgap from 2 eV (in monolayer) to 0.3 eV (in bulk). Based on recent work [112], a vertical electric field can tune the bandgap of BP and provide a wide tunability (from 3.7 to 7.7 µm) in its photoluminescence (and consequently absorption peak) spectral response. The last category of non-metallic materials is polar dielectrics. These materials are used to make LFMAs in a wide range spanning from MWIR to FIR [2]. The IR optical response of these materials (such as hBN, SiC, AlN, GaN, GaP, and α-MoO3) are dominated by highly reflective reststrahlen (RS) bands that are located between the longitudinal and transverse optical phonons. Within these RS bands, light can couple with optical phonons to support surface phonon-polariton (SPhPs) modes. LFMAs made of these polar materials are commonly made in 1D-PC and DBR cavity configurations and have been mainly used to realize coherent monochromatic, and directional thermal emitters [113115]. The hybrid use of these polar materials with PCMs and graphene can provide tunable IR absorbers to be used in radiative cooling, adaptive thermal camouflage, and modulators [116,117]. Moreover, some of these polar materials including BP, hBN, and α-MoO3 have strong in-plane and out-of-plane anisotropy. This could be utilized to realize lithography-free polarization converters in the IR region [118].

3. Outlook

In summary, besides the development of low-cost, facile, and extendable routes, material exploration is an essential key to realizing cm-scale high-performance LFMAs. The integration of the right elements with large-scale compatible nanofabrication routes will put this technology one step closer to industrialization. In photoconversion, a deep understanding of hot electron dynamics, exploring new materials with a long hot electron lifetime, synthesis of ultrathin high mobility crystalline semiconductors, and the development of designer heterojunctions are some of the key goals to be followed. Spectrally-selective thermal emitters are another area of high interest, due to the lack of cost-effective, narrow-band light sources in the MWIR and LWIR. TPV technology and steam generation could also widen the opportunities for the use of these LFMAs in the green energy industry. The integration of these large-scale compatible designs with microfluidic channels can offer a real-time and label-free detection platform for bio-agents with high sensitivity and reliability.

Disclosures

The authors declare no conflicts of interest.

Data availability

No data were generated or analyzed in the presented research.

References

1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef]  

2. A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018). [CrossRef]  

3. J. Toudert, “Spectrally tailored light-matter interaction in lithography-free functional nanomaterials,” Phys. Status Solidi A 217, 1900677 (2020). [CrossRef]  

4. Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015). [CrossRef]  

5. S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-area low-cost dielectric perfect absorber by one-step sputtering,” Adv. Opt. Mater. 7, 1801596 (2019). [CrossRef]  

6. A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi- thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017). [CrossRef]  

7. A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 1–10 (2017). [CrossRef]  

8. A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photonics Res. 6(3), 168–176 (2018). [CrossRef]  

9. A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition of thin films: From fundamentals to devices,” Prog. Mater. Sci. 76, 59–153 (2016). [CrossRef]  

10. Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014). [CrossRef]  

11. D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019). [CrossRef]  

12. Z. Eftekhari, A. Ghobadi, and E. Ozbay, “Lithography-free disordered metal–insulator–metal nanoantennas for colorimetric sensing,” Opt. Lett. 45(24), 6719 (2020). [CrossRef]  

13. Z. Eftekhari, A. Ghobadi, M. C. Soydan, D. U. Yildirim, N. Cinel, and E. Ozbay, “Strong light emission from a defective hexagonal boron nitride monolayer coupled to near-touching random plasmonic nanounits,” Opt. Lett. 46(7), 1664 (2021). [CrossRef]  

14. M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal-tunable metamaterial,” Phys. Status Solidi RRL 14, 2000066 (2020). [CrossRef]  

15. J. E. Melzer and E. McLeod, “3D Nanophotonic device fabrication using discrete components,” Nanophotonics 9(6), 1373–1390 (2020). [CrossRef]  

16. L. Shen, C. He, J. Qiu, S. M. Lee, A. Kalita, S. B. Cronin, M. P. Stoykovich, and J. Yoon, “Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers,” ACS Appl. Mater. Interfaces 7(47), 26043–26049 (2015). [CrossRef]  

17. X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021). [CrossRef]  

18. H. Robatjazi, S. M. Bahauddin, L. H. Macfarlan, S. Fu, and I. Thomann, “Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication,” Chem. Mater. 28(13), 4546–4553 (2016). [CrossRef]  

19. U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, “Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection,” APL Mater. 7(7), 071102 (2019). [CrossRef]  

20. J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017). [CrossRef]  

21. J. W. Cleary, N. Nader, K. D. Leedy, and R. Soref, “Tunable short- to mid-infrared perfectly absorbing thin films utilizing conductive zinc oxide on metal,” Opt. Mater. Express 5(9), 1898 (2015). [CrossRef]  

22. M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019). [CrossRef]  

23. A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021). [CrossRef]  

24. K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019). [CrossRef]  

25. E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, and D. J. Milliron, “Defect engineering in plasmonic metal oxide nanocrystals,” Nano Lett. 16(5), 3390–3398 (2016). [CrossRef]  

26. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013). [CrossRef]  

27. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [ Invited ],” Opt. Mater. Express 1(6), 1090–1099 (2011). [CrossRef]  

28. A. Shabani, M. Tsegay Korsa, S. Petersen, M. Khazaei Nezhad, Y. Kumar Mishra, and J. Adam, “Zirconium nitride: optical properties of an emerging intermetallic for plasmonic applications,” Adv. Photonics Res. 2(11), 2100178 (2021). [CrossRef]  

29. P. K. B. Palomaki, E. M. Miller, and N. R. Neale, “Control of plasmonic and interband transitions in colloidal indium nitride nanocrystals,” J. Am. Chem. Soc. 135(38), 14142–14150 (2013). [CrossRef]  

30. H. Shen, L. Yang, Y. Jin, and S. He, “Perfect mid-infrared dual-band optical absorption realized by a simple lithography-free polar dielectric/metal double-layer nanostructure,” Opt. Express 28(21), 31414 (2020). [CrossRef]  

31. T. Taliercio and P. Biagioni, “Semiconductor infrared plasmonics,” Nanophotonics 8(6), 949–990 (2019). [CrossRef]  

32. R. Zhou, S. Yang, Q. Lin, L. Tang, D. Liu, K. Ullah, S. Li, and Y. Zhao, “Recent advances in graphene and black phosphorus nonlinear plasmonics,” Nanophotonics 9(7), 1695–1715 (2020). [CrossRef]  

33. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012). [CrossRef]  

34. Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015). [CrossRef]  

35. C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering Light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5, 1700368 (2017). [CrossRef]  

36. A. C. Kosger, A. Ghobadi, A. R. Rashed, H. Caglayan, and E. Ozbay, “Generation of additive colors with near unity amplitude using a multilayer tandem Fabry–Perot cavity,” Opt. Lett. 46(14), 3464 (2021). [CrossRef]  

37. A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: From narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019). [CrossRef]  

38. Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016). [CrossRef]  

39. S. Daqiqeh Rezaei, J. Ho, T. Wang, J. K. W. Yang, and S. Ramakrishna, “Direct color printing with an electron beam,” Nano Lett. 20(6), 4422–4429 (2020). [CrossRef]  

40. J. Lee, J. Kim, and M. Lee, “High-purity reflective color filters based on thin film cavities embedded with an ultrathin Ge2Sb2Te5 absorption layer,” Nanoscale Adv. 2(10), 4930–4937 (2020). [CrossRef]  

41. F. Liu, H. Shi, X. Zhu, P. Dai, Z. Lin, Y. Long, Z. Xie, Y. Zhou, and H. Duan, “Tunable reflective color filters based on asymmetric Fabry–Perot cavities employing ultrathin Ge2Sb2Te5 as a broadband absorber,” Appl. Opt. 57(30), 9040 (2018). [CrossRef]  

42. Q. He, N. Youngblood, Z. Cheng, X. Miao, and H. Bhaskaran, “Dynamically tunable transmissive color filters using ultra-thin phase change materials,” Opt. Express 28(26), 39841 (2020). [CrossRef]  

43. F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018). [CrossRef]  

44. H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 1–8 (2020). [CrossRef]  

45. Z. Cheng, T. Milne, P. Salter, J. S. Kim, S. Humphrey, M. Booth, and H. Bhaskaran, “Antimony thin films demonstrate programmable optical nonlinearity,” Sci. Adv. 7(1), 1–10 (2021). [CrossRef]  

46. T. J. Palinski, A. Tadimety, I. Trase, B. E. Vyhnalek, G. W. Hunter, E. Garmire, and J. X. J. Zhang, “Vibrant reflective sensors with percolation film Fabry-Pérot nanocavities,” Opt. Express 29(16), 25000 (2021). [CrossRef]  

47. J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021). [CrossRef]  

48. S. Chervinskii, I. Issah, M. Lahikainen, A. R. Rashed, K. Kuntze, A. Priimagi, and H. Caglayan, “Humidity- and temperature-tunable metal–hydrogel–metal reflective filters,” ACS Appl. Mater. Interfaces 13(42), 50564–50572 (2021). [CrossRef]  

49. M. Serhatlioglu, S. Ayas, N. Biyikli, A. Dana, and M. E. Solmaz, “Perfectly absorbing ultra thin interference coatings for hydrogen sensing,” Opt. Lett. 41(8), 1724 (2016). [CrossRef]  

50. S. Ayas, G. Bakan, E. Ozgur, K. Celebi, G. Torunoglu, and A. Dana, “Colorimetric detection of ultrathin dielectrics on strong interference coatings,” Opt. Lett. 43(6), 1379 (2018). [CrossRef]  

51. G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14(5), 5268–5277 (2020). [CrossRef]  

52. K. Yao, R. Toole, P. Basnet, and Y. Zhao, “Highly sensitive double-layered nanorod array gas sensors prepared by oblique angle deposition,” Appl. Phys. Lett. 104(7), 073110 (2014). [CrossRef]  

53. X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013). [CrossRef]  

54. T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012). [CrossRef]  

55. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014). [CrossRef]  

56. L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016). [CrossRef]  

57. M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015). [CrossRef]  

58. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011). [CrossRef]  

59. A. Calzolari, A. Ruini, and A. Catellani, “Transparent conductive oxides as near-IR plasmonic materials: the case of Al-doped ZnO derivatives,” ACS Photonics 1(8), 703–709 (2014). [CrossRef]  

60. A. Habib, F. Florio, and R. Sundararaman, “Hot carrier dynamics in plasmonic transition metal nitrides,” J. Opt. 20(6), 064001 (2018). [CrossRef]  

61. U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015). [CrossRef]  

62. F. Scotognella, G. Della Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86(4), 154 (2013). [CrossRef]  

63. F. B. Barho, F. Gonzalez-Posada, M. J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” Nanophotonics 7(2), 507–516 (2017). [CrossRef]  

64. I. Kriegel, F. Scotognella, and L. Manna, “Plasmonic doped semiconductor nanocrystals: properties, fabrication, applications and perspectives,” Phys. Rep. 674, 1–52 (2017). [CrossRef]  

65. T. G. U. Ghobadi, A. Ghobadi, E. Ozbay, and F. Karadas, “Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting,” ChemPhotoChem 2(3), 161–182 (2018). [CrossRef]  

66. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009). [CrossRef]  

67. S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A fully functionalized metamaterial perfect absorber with simple design and implementation,” Sci. Rep. 6(1), 36244 (2016). [CrossRef]  

68. L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016). [CrossRef]  

69. A. Ghobadi, T. G. Ulusoy Ghobadi, F. Karadas, and E. Ozbay, “Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications,” Adv. Opt. Mater. 7(14), 1900028 (2019). [CrossRef]  

70. E. D. Palik, Handbook of Optical Constants of Solids. Vol. 3 (Academic, 1998).

71. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013). [CrossRef]  

72. S. Fan and X. Zheng, “High-performance ultrathin BiVO4 photoanode on textured polydimethylsiloxane substrates for solar water splitting,” ACS Energy Lett. 1(1), 68–75 (2016). [CrossRef]  

73. M. Rebello, S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography-free, omnidirectional, CMOS-compatible AlCu alloys for thin-film superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018). [CrossRef]  

74. D. Liu, H. Yu, Z. Yang, and Y. Duan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016). [CrossRef]  

75. Q. Li, K. Du, K. Mao, X. Fang, D. Zhao, H. Ye, and M. Qiu, “Transmission enhancement based on strong interference in metal- semiconductor layered film for energy harvesting,” Sci. Rep. 6(1), 29195 (2016). [CrossRef]  

76. D. Liu, H. Yu, Y. Duan, Q. Li, and Y. Xuan, “New insight into the angle insensitivity of ultrathin planar optical absorbers for broadband solar energy harvesting,” Sci. Rep. 6(1), 32515 (2016). [CrossRef]  

77. H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013). [CrossRef]  

78. V. Steenhoff, M. Theuring, M. Vehse, and K. Von Maydell, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3(2), 182–186 (2015). [CrossRef]  

79. Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017). [CrossRef]  

80. I. A. Digdaya, B. J. Trześniewski, G. W. P. Adhyaksa, E. C. Garnett, and W. A. Smith, “General considerations for improving photovoltage in metal−insulator−semiconductor photoanodes,” J. Phys. Chem. C 122(10), 5462–5471 (2018). [CrossRef]  

81. J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014). [CrossRef]  

82. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017). [CrossRef]  

83. J. D. Ryckman, “Random coherent perfect absorption with 2D atomic materials mediated by Anderson localization,” ACS Photonics 5(2), 574–580 (2018). [CrossRef]  

84. A. Kay, B. Scherrer, Y. Piekner, K. D. Malviya, D. A. Grave, H. Dotan, and A. Rothschild, “Film flip and transfer process to enhance light harvesting in ultrathin absorber films on specular back-reflectors,” Adv. Mater. 30, 1802781 (2018). [CrossRef]  

85. Y. Piekner, H. Dotan, A. Tsyganok, K. Deo Malviya, D. A. Grave, O. Kfir, and A. Rothschild, “Implementing strong interference in ultrathin film top absorbers for tandem solar cells,” ACS Photonics 5(12), 5068–5078 (2018). [CrossRef]  

86. J. Toudert, R. Serna, M. G. Pardo, N. Ramos, R. J. Peláez, and B. Maté, “Mid-to-far infrared tunable perfect absorption by a sub - λ/100 nanofilm in a fractal phasor resonant cavity,” Opt. Express 26(26), 34043 (2018). [CrossRef]  

87. M. C. Soydan, A. Ghobadi, D. U. Yildirim, E. S. Duman, A. Bek, V. B. Erturk, and E. Ozbay, “Lithography-free random bismuth nanostructures for full solar spectrum harvesting and mid-infrared sensing,” Adv. Opt. Mater. 8(4), 1901203 (2020). [CrossRef]  

88. H. Peng, Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Broadband and highly absorbing multilayer structure in mid-infrared,” Appl. Opt. 55(31), 8833–8837 (2016). [CrossRef]  

89. X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019). [CrossRef]  

90. M. Li, D. Liu, H. Cheng, L. Peng, and M. Zu, “Manipulating metals for adaptive thermal camouflage,” Sci. Adv. 6(22), 1–11 (2020). [CrossRef]  

91. L. Peng, D. Liu, H. Cheng, S. Zhou, and M. Zu, “A multilayer film based selective thermal emitter for infrared stealth technology,” Adv. Opt. Mater. 6(23), 1801006 (2018). [CrossRef]  

92. R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C. W. Qiu, “Thermal camouflaging metamaterials,” Mater. Today 45, 120–141 (2021). [CrossRef]  

93. H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021). [CrossRef]  

94. Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light: Sci. Appl. 7(1), 1–10 (2018). [CrossRef]  

95. A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015). [CrossRef]  

96. J. K. Behera, K. Liu, M. Lian, and T. Cao, “A reconfigurable hyperbolic metamaterial perfect absorber,” Nanoscale Adv. 3(6), 1758–1766 (2021). [CrossRef]  

97. W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018). [CrossRef]  

98. S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746–9 (2016). [CrossRef]  

99. M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Silicon based mid-IR super absorber using hyperbolic metamaterial,” Sci. Rep. 8(1), 2036 (2018). [CrossRef]  

100. E. Azmoudeh and S. Farazi, “Ultrafast and low power all-optical switching in the mid-infrared region based on nonlinear highly doped semiconductor hyperbolic metamaterials,” Opt. Express 29(9), 13504 (2021). [CrossRef]  

101. K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018). [CrossRef]  

102. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef]  

103. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014). [CrossRef]  

104. X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonic Res. 5(6), 536–542 (2017). [CrossRef]  

105. Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016). [CrossRef]  

106. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013). [CrossRef]  

107. R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015). [CrossRef]  

108. D. Dong, Y. Liu, Y. Fei, Y. Fan, J. Li, Y. Feng, and Y. Fu, “Designing a nearly perfect infrared absorber in monolayer black phosphorus,” Appl. Opt. 58(14), 3862 (2019). [CrossRef]  

109. X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018). [CrossRef]  

110. C. Lan, Z. Shi, R. Cao, C. Li, and H. Zhang, “2D materials beyond graphene toward Si integrated infrared optoelectronic devices,” Nanoscale 12(22), 11784–11807 (2020). [CrossRef]  

111. N. S. Azar, J. Bullock, S. Balendhran, H. Kim, A. Javey, and K. B. Crozier, “Light-matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics,” ACS Photonics 8(4), 1120–1128 (2021). [CrossRef]  

112. C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020). [CrossRef]  

113. B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005). [CrossRef]  

114. B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007). [CrossRef]  

115. H. Hajian, A. Ghobadi, B. Butun, and E. Ozbay, “Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals,” Opt. Express 25(25), 31970–31987 (2017). [CrossRef]  

116. S. Abedini Dereshgi, M. C. Larciprete, M. Centini, A. A. Murthy, K. Tang, J. Wu, V. P. Dravid, and K. Aydin, “Tuning of optical phonons in α-MoO3 –VO2 multilayers,” ACS Appl. Mater. Interfaces 13(41), 48981–48987 (2021). [CrossRef]  

117. K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017). [CrossRef]  

118. S. Abedini Dereshgi, T. G. Folland, A. A. Murthy, X. Song, I. Tanriover, V. P. Dravid, J. D. Caldwell, and K. Aydin, “Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes,” Nat. Commun. 11(1), 5771 (2020). [CrossRef]  

References

  • View by:

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref]
  2. A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
    [Crossref]
  3. J. Toudert, “Spectrally tailored light-matter interaction in lithography-free functional nanomaterials,” Phys. Status Solidi A 217, 1900677 (2020).
    [Crossref]
  4. Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
    [Crossref]
  5. S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-area low-cost dielectric perfect absorber by one-step sputtering,” Adv. Opt. Mater. 7, 1801596 (2019).
    [Crossref]
  6. A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi- thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
    [Crossref]
  7. A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 1–10 (2017).
    [Crossref]
  8. A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photonics Res. 6(3), 168–176 (2018).
    [Crossref]
  9. A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition of thin films: From fundamentals to devices,” Prog. Mater. Sci. 76, 59–153 (2016).
    [Crossref]
  10. Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014).
    [Crossref]
  11. D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
    [Crossref]
  12. Z. Eftekhari, A. Ghobadi, and E. Ozbay, “Lithography-free disordered metal–insulator–metal nanoantennas for colorimetric sensing,” Opt. Lett. 45(24), 6719 (2020).
    [Crossref]
  13. Z. Eftekhari, A. Ghobadi, M. C. Soydan, D. U. Yildirim, N. Cinel, and E. Ozbay, “Strong light emission from a defective hexagonal boron nitride monolayer coupled to near-touching random plasmonic nanounits,” Opt. Lett. 46(7), 1664 (2021).
    [Crossref]
  14. M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal-tunable metamaterial,” Phys. Status Solidi RRL 14, 2000066 (2020).
    [Crossref]
  15. J. E. Melzer and E. McLeod, “3D Nanophotonic device fabrication using discrete components,” Nanophotonics 9(6), 1373–1390 (2020).
    [Crossref]
  16. L. Shen, C. He, J. Qiu, S. M. Lee, A. Kalita, S. B. Cronin, M. P. Stoykovich, and J. Yoon, “Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers,” ACS Appl. Mater. Interfaces 7(47), 26043–26049 (2015).
    [Crossref]
  17. X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
    [Crossref]
  18. H. Robatjazi, S. M. Bahauddin, L. H. Macfarlan, S. Fu, and I. Thomann, “Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication,” Chem. Mater. 28(13), 4546–4553 (2016).
    [Crossref]
  19. U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, “Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection,” APL Mater. 7(7), 071102 (2019).
    [Crossref]
  20. J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
    [Crossref]
  21. J. W. Cleary, N. Nader, K. D. Leedy, and R. Soref, “Tunable short- to mid-infrared perfectly absorbing thin films utilizing conductive zinc oxide on metal,” Opt. Mater. Express 5(9), 1898 (2015).
    [Crossref]
  22. M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
    [Crossref]
  23. A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
    [Crossref]
  24. K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
    [Crossref]
  25. E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, and D. J. Milliron, “Defect engineering in plasmonic metal oxide nanocrystals,” Nano Lett. 16(5), 3390–3398 (2016).
    [Crossref]
  26. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref]
  27. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [ Invited ],” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  28. A. Shabani, M. Tsegay Korsa, S. Petersen, M. Khazaei Nezhad, Y. Kumar Mishra, and J. Adam, “Zirconium nitride: optical properties of an emerging intermetallic for plasmonic applications,” Adv. Photonics Res. 2(11), 2100178 (2021).
    [Crossref]
  29. P. K. B. Palomaki, E. M. Miller, and N. R. Neale, “Control of plasmonic and interband transitions in colloidal indium nitride nanocrystals,” J. Am. Chem. Soc. 135(38), 14142–14150 (2013).
    [Crossref]
  30. H. Shen, L. Yang, Y. Jin, and S. He, “Perfect mid-infrared dual-band optical absorption realized by a simple lithography-free polar dielectric/metal double-layer nanostructure,” Opt. Express 28(21), 31414 (2020).
    [Crossref]
  31. T. Taliercio and P. Biagioni, “Semiconductor infrared plasmonics,” Nanophotonics 8(6), 949–990 (2019).
    [Crossref]
  32. R. Zhou, S. Yang, Q. Lin, L. Tang, D. Liu, K. Ullah, S. Li, and Y. Zhao, “Recent advances in graphene and black phosphorus nonlinear plasmonics,” Nanophotonics 9(7), 1695–1715 (2020).
    [Crossref]
  33. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  34. Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
    [Crossref]
  35. C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering Light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5, 1700368 (2017).
    [Crossref]
  36. A. C. Kosger, A. Ghobadi, A. R. Rashed, H. Caglayan, and E. Ozbay, “Generation of additive colors with near unity amplitude using a multilayer tandem Fabry–Perot cavity,” Opt. Lett. 46(14), 3464 (2021).
    [Crossref]
  37. A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: From narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
    [Crossref]
  38. Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
    [Crossref]
  39. S. Daqiqeh Rezaei, J. Ho, T. Wang, J. K. W. Yang, and S. Ramakrishna, “Direct color printing with an electron beam,” Nano Lett. 20(6), 4422–4429 (2020).
    [Crossref]
  40. J. Lee, J. Kim, and M. Lee, “High-purity reflective color filters based on thin film cavities embedded with an ultrathin Ge2Sb2Te5 absorption layer,” Nanoscale Adv. 2(10), 4930–4937 (2020).
    [Crossref]
  41. F. Liu, H. Shi, X. Zhu, P. Dai, Z. Lin, Y. Long, Z. Xie, Y. Zhou, and H. Duan, “Tunable reflective color filters based on asymmetric Fabry–Perot cavities employing ultrathin Ge2Sb2Te5 as a broadband absorber,” Appl. Opt. 57(30), 9040 (2018).
    [Crossref]
  42. Q. He, N. Youngblood, Z. Cheng, X. Miao, and H. Bhaskaran, “Dynamically tunable transmissive color filters using ultra-thin phase change materials,” Opt. Express 28(26), 39841 (2020).
    [Crossref]
  43. F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018).
    [Crossref]
  44. H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 1–8 (2020).
    [Crossref]
  45. Z. Cheng, T. Milne, P. Salter, J. S. Kim, S. Humphrey, M. Booth, and H. Bhaskaran, “Antimony thin films demonstrate programmable optical nonlinearity,” Sci. Adv. 7(1), 1–10 (2021).
    [Crossref]
  46. T. J. Palinski, A. Tadimety, I. Trase, B. E. Vyhnalek, G. W. Hunter, E. Garmire, and J. X. J. Zhang, “Vibrant reflective sensors with percolation film Fabry-Pérot nanocavities,” Opt. Express 29(16), 25000 (2021).
    [Crossref]
  47. J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
    [Crossref]
  48. S. Chervinskii, I. Issah, M. Lahikainen, A. R. Rashed, K. Kuntze, A. Priimagi, and H. Caglayan, “Humidity- and temperature-tunable metal–hydrogel–metal reflective filters,” ACS Appl. Mater. Interfaces 13(42), 50564–50572 (2021).
    [Crossref]
  49. M. Serhatlioglu, S. Ayas, N. Biyikli, A. Dana, and M. E. Solmaz, “Perfectly absorbing ultra thin interference coatings for hydrogen sensing,” Opt. Lett. 41(8), 1724 (2016).
    [Crossref]
  50. S. Ayas, G. Bakan, E. Ozgur, K. Celebi, G. Torunoglu, and A. Dana, “Colorimetric detection of ultrathin dielectrics on strong interference coatings,” Opt. Lett. 43(6), 1379 (2018).
    [Crossref]
  51. G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14(5), 5268–5277 (2020).
    [Crossref]
  52. K. Yao, R. Toole, P. Basnet, and Y. Zhao, “Highly sensitive double-layered nanorod array gas sensors prepared by oblique angle deposition,” Appl. Phys. Lett. 104(7), 073110 (2014).
    [Crossref]
  53. X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013).
    [Crossref]
  54. T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
    [Crossref]
  55. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref]
  56. L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
    [Crossref]
  57. M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
    [Crossref]
  58. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011).
    [Crossref]
  59. A. Calzolari, A. Ruini, and A. Catellani, “Transparent conductive oxides as near-IR plasmonic materials: the case of Al-doped ZnO derivatives,” ACS Photonics 1(8), 703–709 (2014).
    [Crossref]
  60. A. Habib, F. Florio, and R. Sundararaman, “Hot carrier dynamics in plasmonic transition metal nitrides,” J. Opt. 20(6), 064001 (2018).
    [Crossref]
  61. U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
    [Crossref]
  62. F. Scotognella, G. Della Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86(4), 154 (2013).
    [Crossref]
  63. F. B. Barho, F. Gonzalez-Posada, M. J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” Nanophotonics 7(2), 507–516 (2017).
    [Crossref]
  64. I. Kriegel, F. Scotognella, and L. Manna, “Plasmonic doped semiconductor nanocrystals: properties, fabrication, applications and perspectives,” Phys. Rep. 674, 1–52 (2017).
    [Crossref]
  65. T. G. U. Ghobadi, A. Ghobadi, E. Ozbay, and F. Karadas, “Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting,” ChemPhotoChem 2(3), 161–182 (2018).
    [Crossref]
  66. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref]
  67. S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A fully functionalized metamaterial perfect absorber with simple design and implementation,” Sci. Rep. 6(1), 36244 (2016).
    [Crossref]
  68. L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
    [Crossref]
  69. A. Ghobadi, T. G. Ulusoy Ghobadi, F. Karadas, and E. Ozbay, “Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications,” Adv. Opt. Mater. 7(14), 1900028 (2019).
    [Crossref]
  70. E. D. Palik, Handbook of Optical Constants of Solids. Vol. 3 (Academic, 1998).
  71. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
    [Crossref]
  72. S. Fan and X. Zheng, “High-performance ultrathin BiVO4 photoanode on textured polydimethylsiloxane substrates for solar water splitting,” ACS Energy Lett. 1(1), 68–75 (2016).
    [Crossref]
  73. M. Rebello, S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography-free, omnidirectional, CMOS-compatible AlCu alloys for thin-film superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
    [Crossref]
  74. D. Liu, H. Yu, Z. Yang, and Y. Duan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).
    [Crossref]
  75. Q. Li, K. Du, K. Mao, X. Fang, D. Zhao, H. Ye, and M. Qiu, “Transmission enhancement based on strong interference in metal- semiconductor layered film for energy harvesting,” Sci. Rep. 6(1), 29195 (2016).
    [Crossref]
  76. D. Liu, H. Yu, Y. Duan, Q. Li, and Y. Xuan, “New insight into the angle insensitivity of ultrathin planar optical absorbers for broadband solar energy harvesting,” Sci. Rep. 6(1), 32515 (2016).
    [Crossref]
  77. H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
    [Crossref]
  78. V. Steenhoff, M. Theuring, M. Vehse, and K. Von Maydell, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3(2), 182–186 (2015).
    [Crossref]
  79. Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
    [Crossref]
  80. I. A. Digdaya, B. J. Trześniewski, G. W. P. Adhyaksa, E. C. Garnett, and W. A. Smith, “General considerations for improving photovoltage in metal−insulator−semiconductor photoanodes,” J. Phys. Chem. C 122(10), 5462–5471 (2018).
    [Crossref]
  81. J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
    [Crossref]
  82. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
    [Crossref]
  83. J. D. Ryckman, “Random coherent perfect absorption with 2D atomic materials mediated by Anderson localization,” ACS Photonics 5(2), 574–580 (2018).
    [Crossref]
  84. A. Kay, B. Scherrer, Y. Piekner, K. D. Malviya, D. A. Grave, H. Dotan, and A. Rothschild, “Film flip and transfer process to enhance light harvesting in ultrathin absorber films on specular back-reflectors,” Adv. Mater. 30, 1802781 (2018).
    [Crossref]
  85. Y. Piekner, H. Dotan, A. Tsyganok, K. Deo Malviya, D. A. Grave, O. Kfir, and A. Rothschild, “Implementing strong interference in ultrathin film top absorbers for tandem solar cells,” ACS Photonics 5(12), 5068–5078 (2018).
    [Crossref]
  86. J. Toudert, R. Serna, M. G. Pardo, N. Ramos, R. J. Peláez, and B. Maté, “Mid-to-far infrared tunable perfect absorption by a sub - λ/100 nanofilm in a fractal phasor resonant cavity,” Opt. Express 26(26), 34043 (2018).
    [Crossref]
  87. M. C. Soydan, A. Ghobadi, D. U. Yildirim, E. S. Duman, A. Bek, V. B. Erturk, and E. Ozbay, “Lithography-free random bismuth nanostructures for full solar spectrum harvesting and mid-infrared sensing,” Adv. Opt. Mater. 8(4), 1901203 (2020).
    [Crossref]
  88. H. Peng, Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Broadband and highly absorbing multilayer structure in mid-infrared,” Appl. Opt. 55(31), 8833–8837 (2016).
    [Crossref]
  89. X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
    [Crossref]
  90. M. Li, D. Liu, H. Cheng, L. Peng, and M. Zu, “Manipulating metals for adaptive thermal camouflage,” Sci. Adv. 6(22), 1–11 (2020).
    [Crossref]
  91. L. Peng, D. Liu, H. Cheng, S. Zhou, and M. Zu, “A multilayer film based selective thermal emitter for infrared stealth technology,” Adv. Opt. Mater. 6(23), 1801006 (2018).
    [Crossref]
  92. R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C. W. Qiu, “Thermal camouflaging metamaterials,” Mater. Today 45, 120–141 (2021).
    [Crossref]
  93. H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021).
    [Crossref]
  94. Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light: Sci. Appl. 7(1), 1–10 (2018).
    [Crossref]
  95. A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
    [Crossref]
  96. J. K. Behera, K. Liu, M. Lian, and T. Cao, “A reconfigurable hyperbolic metamaterial perfect absorber,” Nanoscale Adv. 3(6), 1758–1766 (2021).
    [Crossref]
  97. W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
    [Crossref]
  98. S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746–9 (2016).
    [Crossref]
  99. M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Silicon based mid-IR super absorber using hyperbolic metamaterial,” Sci. Rep. 8(1), 2036 (2018).
    [Crossref]
  100. E. Azmoudeh and S. Farazi, “Ultrafast and low power all-optical switching in the mid-infrared region based on nonlinear highly doped semiconductor hyperbolic metamaterials,” Opt. Express 29(9), 13504 (2021).
    [Crossref]
  101. K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
    [Crossref]
  102. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref]
  103. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref]
  104. X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonic Res. 5(6), 536–542 (2017).
    [Crossref]
  105. Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
    [Crossref]
  106. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
    [Crossref]
  107. R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
    [Crossref]
  108. D. Dong, Y. Liu, Y. Fei, Y. Fan, J. Li, Y. Feng, and Y. Fu, “Designing a nearly perfect infrared absorber in monolayer black phosphorus,” Appl. Opt. 58(14), 3862 (2019).
    [Crossref]
  109. X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
    [Crossref]
  110. C. Lan, Z. Shi, R. Cao, C. Li, and H. Zhang, “2D materials beyond graphene toward Si integrated infrared optoelectronic devices,” Nanoscale 12(22), 11784–11807 (2020).
    [Crossref]
  111. N. S. Azar, J. Bullock, S. Balendhran, H. Kim, A. Javey, and K. B. Crozier, “Light-matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics,” ACS Photonics 8(4), 1120–1128 (2021).
    [Crossref]
  112. C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
    [Crossref]
  113. B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005).
    [Crossref]
  114. B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
    [Crossref]
  115. H. Hajian, A. Ghobadi, B. Butun, and E. Ozbay, “Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals,” Opt. Express 25(25), 31970–31987 (2017).
    [Crossref]
  116. S. Abedini Dereshgi, M. C. Larciprete, M. Centini, A. A. Murthy, K. Tang, J. Wu, V. P. Dravid, and K. Aydin, “Tuning of optical phonons in α-MoO3 –VO2 multilayers,” ACS Appl. Mater. Interfaces 13(41), 48981–48987 (2021).
    [Crossref]
  117. K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
    [Crossref]
  118. S. Abedini Dereshgi, T. G. Folland, A. A. Murthy, X. Song, I. Tanriover, V. P. Dravid, J. D. Caldwell, and K. Aydin, “Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes,” Nat. Commun. 11(1), 5771 (2020).
    [Crossref]

2021 (15)

Z. Eftekhari, A. Ghobadi, M. C. Soydan, D. U. Yildirim, N. Cinel, and E. Ozbay, “Strong light emission from a defective hexagonal boron nitride monolayer coupled to near-touching random plasmonic nanounits,” Opt. Lett. 46(7), 1664 (2021).
[Crossref]

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

A. Shabani, M. Tsegay Korsa, S. Petersen, M. Khazaei Nezhad, Y. Kumar Mishra, and J. Adam, “Zirconium nitride: optical properties of an emerging intermetallic for plasmonic applications,” Adv. Photonics Res. 2(11), 2100178 (2021).
[Crossref]

A. C. Kosger, A. Ghobadi, A. R. Rashed, H. Caglayan, and E. Ozbay, “Generation of additive colors with near unity amplitude using a multilayer tandem Fabry–Perot cavity,” Opt. Lett. 46(14), 3464 (2021).
[Crossref]

Z. Cheng, T. Milne, P. Salter, J. S. Kim, S. Humphrey, M. Booth, and H. Bhaskaran, “Antimony thin films demonstrate programmable optical nonlinearity,” Sci. Adv. 7(1), 1–10 (2021).
[Crossref]

T. J. Palinski, A. Tadimety, I. Trase, B. E. Vyhnalek, G. W. Hunter, E. Garmire, and J. X. J. Zhang, “Vibrant reflective sensors with percolation film Fabry-Pérot nanocavities,” Opt. Express 29(16), 25000 (2021).
[Crossref]

J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
[Crossref]

S. Chervinskii, I. Issah, M. Lahikainen, A. R. Rashed, K. Kuntze, A. Priimagi, and H. Caglayan, “Humidity- and temperature-tunable metal–hydrogel–metal reflective filters,” ACS Appl. Mater. Interfaces 13(42), 50564–50572 (2021).
[Crossref]

R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C. W. Qiu, “Thermal camouflaging metamaterials,” Mater. Today 45, 120–141 (2021).
[Crossref]

H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

J. K. Behera, K. Liu, M. Lian, and T. Cao, “A reconfigurable hyperbolic metamaterial perfect absorber,” Nanoscale Adv. 3(6), 1758–1766 (2021).
[Crossref]

E. Azmoudeh and S. Farazi, “Ultrafast and low power all-optical switching in the mid-infrared region based on nonlinear highly doped semiconductor hyperbolic metamaterials,” Opt. Express 29(9), 13504 (2021).
[Crossref]

N. S. Azar, J. Bullock, S. Balendhran, H. Kim, A. Javey, and K. B. Crozier, “Light-matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics,” ACS Photonics 8(4), 1120–1128 (2021).
[Crossref]

S. Abedini Dereshgi, M. C. Larciprete, M. Centini, A. A. Murthy, K. Tang, J. Wu, V. P. Dravid, and K. Aydin, “Tuning of optical phonons in α-MoO3 –VO2 multilayers,” ACS Appl. Mater. Interfaces 13(41), 48981–48987 (2021).
[Crossref]

2020 (16)

S. Abedini Dereshgi, T. G. Folland, A. A. Murthy, X. Song, I. Tanriover, V. P. Dravid, J. D. Caldwell, and K. Aydin, “Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes,” Nat. Commun. 11(1), 5771 (2020).
[Crossref]

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

C. Lan, Z. Shi, R. Cao, C. Li, and H. Zhang, “2D materials beyond graphene toward Si integrated infrared optoelectronic devices,” Nanoscale 12(22), 11784–11807 (2020).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, E. S. Duman, A. Bek, V. B. Erturk, and E. Ozbay, “Lithography-free random bismuth nanostructures for full solar spectrum harvesting and mid-infrared sensing,” Adv. Opt. Mater. 8(4), 1901203 (2020).
[Crossref]

M. Li, D. Liu, H. Cheng, L. Peng, and M. Zu, “Manipulating metals for adaptive thermal camouflage,” Sci. Adv. 6(22), 1–11 (2020).
[Crossref]

S. Daqiqeh Rezaei, J. Ho, T. Wang, J. K. W. Yang, and S. Ramakrishna, “Direct color printing with an electron beam,” Nano Lett. 20(6), 4422–4429 (2020).
[Crossref]

J. Lee, J. Kim, and M. Lee, “High-purity reflective color filters based on thin film cavities embedded with an ultrathin Ge2Sb2Te5 absorption layer,” Nanoscale Adv. 2(10), 4930–4937 (2020).
[Crossref]

Q. He, N. Youngblood, Z. Cheng, X. Miao, and H. Bhaskaran, “Dynamically tunable transmissive color filters using ultra-thin phase change materials,” Opt. Express 28(26), 39841 (2020).
[Crossref]

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14(5), 5268–5277 (2020).
[Crossref]

H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 1–8 (2020).
[Crossref]

H. Shen, L. Yang, Y. Jin, and S. He, “Perfect mid-infrared dual-band optical absorption realized by a simple lithography-free polar dielectric/metal double-layer nanostructure,” Opt. Express 28(21), 31414 (2020).
[Crossref]

R. Zhou, S. Yang, Q. Lin, L. Tang, D. Liu, K. Ullah, S. Li, and Y. Zhao, “Recent advances in graphene and black phosphorus nonlinear plasmonics,” Nanophotonics 9(7), 1695–1715 (2020).
[Crossref]

Z. Eftekhari, A. Ghobadi, and E. Ozbay, “Lithography-free disordered metal–insulator–metal nanoantennas for colorimetric sensing,” Opt. Lett. 45(24), 6719 (2020).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal-tunable metamaterial,” Phys. Status Solidi RRL 14, 2000066 (2020).
[Crossref]

J. E. Melzer and E. McLeod, “3D Nanophotonic device fabrication using discrete components,” Nanophotonics 9(6), 1373–1390 (2020).
[Crossref]

J. Toudert, “Spectrally tailored light-matter interaction in lithography-free functional nanomaterials,” Phys. Status Solidi A 217, 1900677 (2020).
[Crossref]

2019 (10)

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-area low-cost dielectric perfect absorber by one-step sputtering,” Adv. Opt. Mater. 7, 1801596 (2019).
[Crossref]

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

T. Taliercio and P. Biagioni, “Semiconductor infrared plasmonics,” Nanophotonics 8(6), 949–990 (2019).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: From narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, “Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection,” APL Mater. 7(7), 071102 (2019).
[Crossref]

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

A. Ghobadi, T. G. Ulusoy Ghobadi, F. Karadas, and E. Ozbay, “Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications,” Adv. Opt. Mater. 7(14), 1900028 (2019).
[Crossref]

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

D. Dong, Y. Liu, Y. Fei, Y. Fan, J. Li, Y. Feng, and Y. Fu, “Designing a nearly perfect infrared absorber in monolayer black phosphorus,” Appl. Opt. 58(14), 3862 (2019).
[Crossref]

2018 (19)

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Silicon based mid-IR super absorber using hyperbolic metamaterial,” Sci. Rep. 8(1), 2036 (2018).
[Crossref]

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light: Sci. Appl. 7(1), 1–10 (2018).
[Crossref]

L. Peng, D. Liu, H. Cheng, S. Zhou, and M. Zu, “A multilayer film based selective thermal emitter for infrared stealth technology,” Adv. Opt. Mater. 6(23), 1801006 (2018).
[Crossref]

I. A. Digdaya, B. J. Trześniewski, G. W. P. Adhyaksa, E. C. Garnett, and W. A. Smith, “General considerations for improving photovoltage in metal−insulator−semiconductor photoanodes,” J. Phys. Chem. C 122(10), 5462–5471 (2018).
[Crossref]

J. D. Ryckman, “Random coherent perfect absorption with 2D atomic materials mediated by Anderson localization,” ACS Photonics 5(2), 574–580 (2018).
[Crossref]

A. Kay, B. Scherrer, Y. Piekner, K. D. Malviya, D. A. Grave, H. Dotan, and A. Rothschild, “Film flip and transfer process to enhance light harvesting in ultrathin absorber films on specular back-reflectors,” Adv. Mater. 30, 1802781 (2018).
[Crossref]

Y. Piekner, H. Dotan, A. Tsyganok, K. Deo Malviya, D. A. Grave, O. Kfir, and A. Rothschild, “Implementing strong interference in ultrathin film top absorbers for tandem solar cells,” ACS Photonics 5(12), 5068–5078 (2018).
[Crossref]

J. Toudert, R. Serna, M. G. Pardo, N. Ramos, R. J. Peláez, and B. Maté, “Mid-to-far infrared tunable perfect absorption by a sub - λ/100 nanofilm in a fractal phasor resonant cavity,” Opt. Express 26(26), 34043 (2018).
[Crossref]

M. Rebello, S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography-free, omnidirectional, CMOS-compatible AlCu alloys for thin-film superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

A. Habib, F. Florio, and R. Sundararaman, “Hot carrier dynamics in plasmonic transition metal nitrides,” J. Opt. 20(6), 064001 (2018).
[Crossref]

T. G. U. Ghobadi, A. Ghobadi, E. Ozbay, and F. Karadas, “Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting,” ChemPhotoChem 2(3), 161–182 (2018).
[Crossref]

S. Ayas, G. Bakan, E. Ozgur, K. Celebi, G. Torunoglu, and A. Dana, “Colorimetric detection of ultrathin dielectrics on strong interference coatings,” Opt. Lett. 43(6), 1379 (2018).
[Crossref]

F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018).
[Crossref]

F. Liu, H. Shi, X. Zhu, P. Dai, Z. Lin, Y. Long, Z. Xie, Y. Zhou, and H. Duan, “Tunable reflective color filters based on asymmetric Fabry–Perot cavities employing ultrathin Ge2Sb2Te5 as a broadband absorber,” Appl. Opt. 57(30), 9040 (2018).
[Crossref]

A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photonics Res. 6(3), 168–176 (2018).
[Crossref]

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

2017 (11)

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi- thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 1–10 (2017).
[Crossref]

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering Light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5, 1700368 (2017).
[Crossref]

F. B. Barho, F. Gonzalez-Posada, M. J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” Nanophotonics 7(2), 507–516 (2017).
[Crossref]

I. Kriegel, F. Scotognella, and L. Manna, “Plasmonic doped semiconductor nanocrystals: properties, fabrication, applications and perspectives,” Phys. Rep. 674, 1–52 (2017).
[Crossref]

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[Crossref]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonic Res. 5(6), 536–542 (2017).
[Crossref]

H. Hajian, A. Ghobadi, B. Butun, and E. Ozbay, “Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals,” Opt. Express 25(25), 31970–31987 (2017).
[Crossref]

K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

2016 (15)

Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746–9 (2016).
[Crossref]

H. Peng, Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Broadband and highly absorbing multilayer structure in mid-infrared,” Appl. Opt. 55(31), 8833–8837 (2016).
[Crossref]

S. Fan and X. Zheng, “High-performance ultrathin BiVO4 photoanode on textured polydimethylsiloxane substrates for solar water splitting,” ACS Energy Lett. 1(1), 68–75 (2016).
[Crossref]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

D. Liu, H. Yu, Z. Yang, and Y. Duan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).
[Crossref]

Q. Li, K. Du, K. Mao, X. Fang, D. Zhao, H. Ye, and M. Qiu, “Transmission enhancement based on strong interference in metal- semiconductor layered film for energy harvesting,” Sci. Rep. 6(1), 29195 (2016).
[Crossref]

D. Liu, H. Yu, Y. Duan, Q. Li, and Y. Xuan, “New insight into the angle insensitivity of ultrathin planar optical absorbers for broadband solar energy harvesting,” Sci. Rep. 6(1), 32515 (2016).
[Crossref]

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A fully functionalized metamaterial perfect absorber with simple design and implementation,” Sci. Rep. 6(1), 36244 (2016).
[Crossref]

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

M. Serhatlioglu, S. Ayas, N. Biyikli, A. Dana, and M. E. Solmaz, “Perfectly absorbing ultra thin interference coatings for hydrogen sensing,” Opt. Lett. 41(8), 1724 (2016).
[Crossref]

E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, and D. J. Milliron, “Defect engineering in plasmonic metal oxide nanocrystals,” Nano Lett. 16(5), 3390–3398 (2016).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition of thin films: From fundamentals to devices,” Prog. Mater. Sci. 76, 59–153 (2016).
[Crossref]

H. Robatjazi, S. M. Bahauddin, L. H. Macfarlan, S. Fu, and I. Thomann, “Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication,” Chem. Mater. 28(13), 4546–4553 (2016).
[Crossref]

2015 (9)

L. Shen, C. He, J. Qiu, S. M. Lee, A. Kalita, S. B. Cronin, M. P. Stoykovich, and J. Yoon, “Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers,” ACS Appl. Mater. Interfaces 7(47), 26043–26049 (2015).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

J. W. Cleary, N. Nader, K. D. Leedy, and R. Soref, “Tunable short- to mid-infrared perfectly absorbing thin films utilizing conductive zinc oxide on metal,” Opt. Mater. Express 5(9), 1898 (2015).
[Crossref]

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

V. Steenhoff, M. Theuring, M. Vehse, and K. Von Maydell, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3(2), 182–186 (2015).
[Crossref]

A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

2014 (6)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

A. Calzolari, A. Ruini, and A. Catellani, “Transparent conductive oxides as near-IR plasmonic materials: the case of Al-doped ZnO derivatives,” ACS Photonics 1(8), 703–709 (2014).
[Crossref]

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

K. Yao, R. Toole, P. Basnet, and Y. Zhao, “Highly sensitive double-layered nanorod array gas sensors prepared by oblique angle deposition,” Appl. Phys. Lett. 104(7), 073110 (2014).
[Crossref]

Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014).
[Crossref]

2013 (7)

P. K. B. Palomaki, E. M. Miller, and N. R. Neale, “Control of plasmonic and interband transitions in colloidal indium nitride nanocrystals,” J. Am. Chem. Soc. 135(38), 14142–14150 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013).
[Crossref]

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86(4), 154 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref]

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref]

2012 (2)

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

2011 (2)

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [ Invited ],” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011).
[Crossref]

2009 (1)

2007 (1)

B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
[Crossref]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

2005 (1)

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Abedini Dereshgi, S.

S. Abedini Dereshgi, M. C. Larciprete, M. Centini, A. A. Murthy, K. Tang, J. Wu, V. P. Dravid, and K. Aydin, “Tuning of optical phonons in α-MoO3 –VO2 multilayers,” ACS Appl. Mater. Interfaces 13(41), 48981–48987 (2021).
[Crossref]

S. Abedini Dereshgi, T. G. Folland, A. A. Murthy, X. Song, I. Tanriover, V. P. Dravid, J. D. Caldwell, and K. Aydin, “Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes,” Nat. Commun. 11(1), 5771 (2020).
[Crossref]

Adam, J.

A. Shabani, M. Tsegay Korsa, S. Petersen, M. Khazaei Nezhad, Y. Kumar Mishra, and J. Adam, “Zirconium nitride: optical properties of an emerging intermetallic for plasmonic applications,” Adv. Photonics Res. 2(11), 2100178 (2021).
[Crossref]

Adhyaksa, G. W. P.

I. A. Digdaya, B. J. Trześniewski, G. W. P. Adhyaksa, E. C. Garnett, and W. A. Smith, “General considerations for improving photovoltage in metal−insulator−semiconductor photoanodes,” J. Phys. Chem. C 122(10), 5462–5471 (2018).
[Crossref]

Agrawal, A.

E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, and D. J. Milliron, “Defect engineering in plasmonic metal oxide nanocrystals,” Nano Lett. 16(5), 3390–3398 (2016).
[Crossref]

Ankonina, G.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref]

Atesal, O.

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

Ayas, S.

Aydin, K.

S. Abedini Dereshgi, M. C. Larciprete, M. Centini, A. A. Murthy, K. Tang, J. Wu, V. P. Dravid, and K. Aydin, “Tuning of optical phonons in α-MoO3 –VO2 multilayers,” ACS Appl. Mater. Interfaces 13(41), 48981–48987 (2021).
[Crossref]

S. Abedini Dereshgi, T. G. Folland, A. A. Murthy, X. Song, I. Tanriover, V. P. Dravid, J. D. Caldwell, and K. Aydin, “Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes,” Nat. Commun. 11(1), 5771 (2020).
[Crossref]

Azad, A. K.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Azar, N. S.

N. S. Azar, J. Bullock, S. Balendhran, H. Kim, A. Javey, and K. B. Crozier, “Light-matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics,” ACS Photonics 8(4), 1120–1128 (2021).
[Crossref]

Azmoudeh, E.

Bahauddin, S. M.

H. Robatjazi, S. M. Bahauddin, L. H. Macfarlan, S. Fu, and I. Thomann, “Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication,” Chem. Mater. 28(13), 4546–4553 (2016).
[Crossref]

Bahoura, M.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011).
[Crossref]

Bakan, G.

Balendhran, S.

N. S. Azar, J. Bullock, S. Balendhran, H. Kim, A. Javey, and K. B. Crozier, “Light-matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics,” ACS Photonics 8(4), 1120–1128 (2021).
[Crossref]

Bao, F.

K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

Barho, F. B.

F. B. Barho, F. Gonzalez-Posada, M. J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” Nanophotonics 7(2), 507–516 (2017).
[Crossref]

Barnakov, Y. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011).
[Crossref]

Barranco, A.

A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition of thin films: From fundamentals to devices,” Prog. Mater. Sci. 76, 59–153 (2016).
[Crossref]

Barton, R. A.

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Basnet, P.

K. Yao, R. Toole, P. Basnet, and Y. Zhao, “Highly sensitive double-layered nanorod array gas sensors prepared by oblique angle deposition,” Appl. Phys. Lett. 104(7), 073110 (2014).
[Crossref]

Behera, J. K.

J. K. Behera, K. Liu, M. Lian, and T. Cao, “A reconfigurable hyperbolic metamaterial perfect absorber,” Nanoscale Adv. 3(6), 1758–1766 (2021).
[Crossref]

Bek, A.

M. C. Soydan, A. Ghobadi, D. U. Yildirim, E. S. Duman, A. Bek, V. B. Erturk, and E. Ozbay, “Lithography-free random bismuth nanostructures for full solar spectrum harvesting and mid-infrared sensing,” Adv. Opt. Mater. 8(4), 1901203 (2020).
[Crossref]

Benson, Z. A.

M. Rebello, S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography-free, omnidirectional, CMOS-compatible AlCu alloys for thin-film superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

Berg, F.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

Bergerud, A.

E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, and D. J. Milliron, “Defect engineering in plasmonic metal oxide nanocrystals,” Nano Lett. 16(5), 3390–3398 (2016).
[Crossref]

Bhaskaran, H.

Z. Cheng, T. Milne, P. Salter, J. S. Kim, S. Humphrey, M. Booth, and H. Bhaskaran, “Antimony thin films demonstrate programmable optical nonlinearity,” Sci. Adv. 7(1), 1–10 (2021).
[Crossref]

Q. He, N. Youngblood, Z. Cheng, X. Miao, and H. Bhaskaran, “Dynamically tunable transmissive color filters using ultra-thin phase change materials,” Opt. Express 28(26), 39841 (2020).
[Crossref]

Biagioni, P.

T. Taliercio and P. Biagioni, “Semiconductor infrared plasmonics,” Nanophotonics 8(6), 949–990 (2019).
[Crossref]

Bian, B.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

Bilenberg, B.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Biyikli, N.

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref]

Blank, O.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref]

Boltasseva, A.

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [ Invited ],” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

Bomers, M.

F. B. Barho, F. Gonzalez-Posada, M. J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” Nanophotonics 7(2), 507–516 (2017).
[Crossref]

Booth, M.

Z. Cheng, T. Milne, P. Salter, J. S. Kim, S. Humphrey, M. Booth, and H. Bhaskaran, “Antimony thin films demonstrate programmable optical nonlinearity,” Sci. Adv. 7(1), 1–10 (2021).
[Crossref]

Borras, A.

A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition of thin films: From fundamentals to devices,” Prog. Mater. Sci. 76, 59–153 (2016).
[Crossref]

Bozok, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi- thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 1–10 (2017).
[Crossref]

Bullock, J.

N. S. Azar, J. Bullock, S. Balendhran, H. Kim, A. Javey, and K. B. Crozier, “Light-matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics,” ACS Photonics 8(4), 1120–1128 (2021).
[Crossref]

Butun, B.

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: From narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photonics Res. 6(3), 168–176 (2018).
[Crossref]

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 1–10 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi- thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref]

H. Hajian, A. Ghobadi, B. Butun, and E. Ozbay, “Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals,” Opt. Express 25(25), 31970–31987 (2017).
[Crossref]

Caglayan, H.

A. C. Kosger, A. Ghobadi, A. R. Rashed, H. Caglayan, and E. Ozbay, “Generation of additive colors with near unity amplitude using a multilayer tandem Fabry–Perot cavity,” Opt. Lett. 46(14), 3464 (2021).
[Crossref]

S. Chervinskii, I. Issah, M. Lahikainen, A. R. Rashed, K. Kuntze, A. Priimagi, and H. Caglayan, “Humidity- and temperature-tunable metal–hydrogel–metal reflective filters,” ACS Appl. Mater. Interfaces 13(42), 50564–50572 (2021).
[Crossref]

Cai, L.

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light: Sci. Appl. 7(1), 1–10 (2018).
[Crossref]

Caldwell, J. D.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

S. Abedini Dereshgi, T. G. Folland, A. A. Murthy, X. Song, I. Tanriover, V. P. Dravid, J. D. Caldwell, and K. Aydin, “Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes,” Nat. Commun. 11(1), 5771 (2020).
[Crossref]

Caliskan, M. D.

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Calzolari, A.

A. Calzolari, A. Ruini, and A. Catellani, “Transparent conductive oxides as near-IR plasmonic materials: the case of Al-doped ZnO derivatives,” ACS Photonics 1(8), 703–709 (2014).
[Crossref]

Campione, S.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746–9 (2016).
[Crossref]

Cao, R.

C. Lan, Z. Shi, R. Cao, C. Li, and H. Zhang, “2D materials beyond graphene toward Si integrated infrared optoelectronic devices,” Nanoscale 12(22), 11784–11807 (2020).
[Crossref]

Cao, T.

J. K. Behera, K. Liu, M. Lian, and T. Cao, “A reconfigurable hyperbolic metamaterial perfect absorber,” Nanoscale Adv. 3(6), 1758–1766 (2021).
[Crossref]

Capasso, F.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref]

Capolino, F.

Carter, E. A.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

Catchpole, K. R.

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

Catellani, A.

A. Calzolari, A. Ruini, and A. Catellani, “Transparent conductive oxides as near-IR plasmonic materials: the case of Al-doped ZnO derivatives,” ACS Photonics 1(8), 703–709 (2014).
[Crossref]

Celebi, K.

Centini, M.

S. Abedini Dereshgi, M. C. Larciprete, M. Centini, A. A. Murthy, K. Tang, J. Wu, V. P. Dravid, and K. Aydin, “Tuning of optical phonons in α-MoO3 –VO2 multilayers,” ACS Appl. Mater. Interfaces 13(41), 48981–48987 (2021).
[Crossref]

Cerutti, L.

F. B. Barho, F. Gonzalez-Posada, M. J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” Nanophotonics 7(2), 507–516 (2017).
[Crossref]

Chang, T.

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

Chang, Y.

Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Chen, B. R.

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A fully functionalized metamaterial perfect absorber with simple design and implementation,” Sci. Rep. 6(1), 36244 (2016).
[Crossref]

Chen, C.

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

Chen, F.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-area low-cost dielectric perfect absorber by one-step sputtering,” Adv. Opt. Mater. 7, 1801596 (2019).
[Crossref]

Chen, J.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Chen, X.

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Chen, Y.

J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

Cheng, H.

M. Li, D. Liu, H. Cheng, L. Peng, and M. Zu, “Manipulating metals for adaptive thermal camouflage,” Sci. Adv. 6(22), 1–11 (2020).
[Crossref]

L. Peng, D. Liu, H. Cheng, S. Zhou, and M. Zu, “A multilayer film based selective thermal emitter for infrared stealth technology,” Adv. Opt. Mater. 6(23), 1801006 (2018).
[Crossref]

Cheng, Z.

Z. Cheng, T. Milne, P. Salter, J. S. Kim, S. Humphrey, M. Booth, and H. Bhaskaran, “Antimony thin films demonstrate programmable optical nonlinearity,” Sci. Adv. 7(1), 1–10 (2021).
[Crossref]

Q. He, N. Youngblood, Z. Cheng, X. Miao, and H. Bhaskaran, “Dynamically tunable transmissive color filters using ultra-thin phase change materials,” Opt. Express 28(26), 39841 (2020).
[Crossref]

Chervinskii, S.

S. Chervinskii, I. Issah, M. Lahikainen, A. R. Rashed, K. Kuntze, A. Priimagi, and H. Caglayan, “Humidity- and temperature-tunable metal–hydrogel–metal reflective filters,” ACS Appl. Mater. Interfaces 13(42), 50564–50572 (2021).
[Crossref]

Cinel, N.

Cleary, J. W.

Cleri, A.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

Cronin, S. B.

L. Shen, C. He, J. Qiu, S. M. Lee, A. Kalita, S. B. Cronin, M. P. Stoykovich, and J. Yoon, “Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers,” ACS Appl. Mater. Interfaces 7(47), 26043–26049 (2015).
[Crossref]

Crozier, K. B.

N. S. Azar, J. Bullock, S. Balendhran, H. Kim, A. Javey, and K. B. Crozier, “Light-matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics,” ACS Photonics 8(4), 1120–1128 (2021).
[Crossref]

Cui, L.

A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]

Dahlman, C. J.

E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, and D. J. Milliron, “Defect engineering in plasmonic metal oxide nanocrystals,” Nano Lett. 16(5), 3390–3398 (2016).
[Crossref]

Dai, N.

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Dai, P.

F. Liu, H. Shi, X. Zhu, P. Dai, Z. Lin, Y. Long, Z. Xie, Y. Zhou, and H. Duan, “Tunable reflective color filters based on asymmetric Fabry–Perot cavities employing ultrathin Ge2Sb2Te5 as a broadband absorber,” Appl. Opt. 57(30), 9040 (2018).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

Dai, W.

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

Dai, X.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonic Res. 5(6), 536–542 (2017).
[Crossref]

Dalvit, D. A. R.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Dana, A.

Daqiqeh Rezaei, S.

S. Daqiqeh Rezaei, J. Ho, T. Wang, J. K. W. Yang, and S. Ramakrishna, “Direct color printing with an electron beam,” Nano Lett. 20(6), 4422–4429 (2020).
[Crossref]

De Groot, C. H.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Della Valle, G.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86(4), 154 (2013).
[Crossref]

Deng, B.

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

Deo Malviya, K.

Y. Piekner, H. Dotan, A. Tsyganok, K. Deo Malviya, D. A. Grave, O. Kfir, and A. Rothschild, “Implementing strong interference in ultrathin film top absorbers for tandem solar cells,” ACS Photonics 5(12), 5068–5078 (2018).
[Crossref]

Dereshgi, S. A.

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 1–10 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi- thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref]

Desouky, M.

M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Silicon based mid-IR super absorber using hyperbolic metamaterial,” Sci. Rep. 8(1), 2036 (2018).
[Crossref]

Dias, S.

M. Rebello, S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography-free, omnidirectional, CMOS-compatible AlCu alloys for thin-film superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

Digdaya, I. A.

I. A. Digdaya, B. J. Trześniewski, G. W. P. Adhyaksa, E. C. Garnett, and W. A. Smith, “General considerations for improving photovoltage in metal−insulator−semiconductor photoanodes,” J. Phys. Chem. C 122(10), 5462–5471 (2018).
[Crossref]

Dong, D.

Dong, W.

H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 1–8 (2020).
[Crossref]

Dotan, H.

Y. Piekner, H. Dotan, A. Tsyganok, K. Deo Malviya, D. A. Grave, O. Kfir, and A. Rothschild, “Implementing strong interference in ultrathin film top absorbers for tandem solar cells,” ACS Photonics 5(12), 5068–5078 (2018).
[Crossref]

A. Kay, B. Scherrer, Y. Piekner, K. D. Malviya, D. A. Grave, H. Dotan, and A. Rothschild, “Film flip and transfer process to enhance light harvesting in ultrathin absorber films on specular back-reflectors,” Adv. Mater. 30, 1802781 (2018).
[Crossref]

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref]

Dravid, V. P.

S. Abedini Dereshgi, M. C. Larciprete, M. Centini, A. A. Murthy, K. Tang, J. Wu, V. P. Dravid, and K. Aydin, “Tuning of optical phonons in α-MoO3 –VO2 multilayers,” ACS Appl. Mater. Interfaces 13(41), 48981–48987 (2021).
[Crossref]

S. Abedini Dereshgi, T. G. Folland, A. A. Murthy, X. Song, I. Tanriover, V. P. Dravid, J. D. Caldwell, and K. Aydin, “Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes,” Nat. Commun. 11(1), 5771 (2020).
[Crossref]

Du, K.

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light: Sci. Appl. 7(1), 1–10 (2018).
[Crossref]

Q. Li, K. Du, K. Mao, X. Fang, D. Zhao, H. Ye, and M. Qiu, “Transmission enhancement based on strong interference in metal- semiconductor layered film for energy harvesting,” Sci. Rep. 6(1), 29195 (2016).
[Crossref]

Duan, H.

F. Liu, H. Shi, X. Zhu, P. Dai, Z. Lin, Y. Long, Z. Xie, Y. Zhou, and H. Duan, “Tunable reflective color filters based on asymmetric Fabry–Perot cavities employing ultrathin Ge2Sb2Te5 as a broadband absorber,” Appl. Opt. 57(30), 9040 (2018).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

Duan, Y.

D. Liu, H. Yu, Z. Yang, and Y. Duan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).
[Crossref]

D. Liu, H. Yu, Y. Duan, Q. Li, and Y. Xuan, “New insight into the angle insensitivity of ultrathin planar optical absorbers for broadband solar energy harvesting,” Sci. Rep. 6(1), 32515 (2016).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Duman, E. S.

M. C. Soydan, A. Ghobadi, D. U. Yildirim, E. S. Duman, A. Bek, V. B. Erturk, and E. Ozbay, “Lithography-free random bismuth nanostructures for full solar spectrum harvesting and mid-infrared sensing,” Adv. Opt. Mater. 8(4), 1901203 (2020).
[Crossref]

Dumchin, I.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref]

Eftekhari, Z.

Ellis, A. R.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746–9 (2016).
[Crossref]

Englund, D.

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Erturk, V. B.

M. C. Soydan, A. Ghobadi, D. U. Yildirim, E. S. Duman, A. Bek, V. B. Erturk, and E. Ozbay, “Lithography-free random bismuth nanostructures for full solar spectrum harvesting and mid-infrared sensing,” Adv. Opt. Mater. 8(4), 1901203 (2020).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal-tunable metamaterial,” Phys. Status Solidi RRL 14, 2000066 (2020).
[Crossref]

Everitt, H. O.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Fan, R. H.

F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018).
[Crossref]

Fan, S.

S. Fan and X. Zheng, “High-performance ultrathin BiVO4 photoanode on textured polydimethylsiloxane substrates for solar water splitting,” ACS Energy Lett. 1(1), 68–75 (2016).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref]

Fan, Y.

Fang, X.

Q. Li, K. Du, K. Mao, X. Fang, D. Zhao, H. Ye, and M. Qiu, “Transmission enhancement based on strong interference in metal- semiconductor layered film for energy harvesting,” Sci. Rep. 6(1), 29195 (2016).
[Crossref]

Farazi, S.

Fei, Y.

Feng, Y.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Florio, F.

A. Habib, F. Florio, and R. Sundararaman, “Hot carrier dynamics in plasmonic transition metal nitrides,” J. Opt. 20(6), 064001 (2018).
[Crossref]

Folland, T. G.

S. Abedini Dereshgi, T. G. Folland, A. A. Murthy, X. Song, I. Tanriover, V. P. Dravid, J. D. Caldwell, and K. Aydin, “Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes,” Nat. Commun. 11(1), 5771 (2020).
[Crossref]

Fu, C. J.

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005).
[Crossref]

Fu, J.

Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014).
[Crossref]

Fu, S.

H. Robatjazi, S. M. Bahauddin, L. H. Macfarlan, S. Fu, and I. Thomann, “Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication,” Chem. Mater. 28(13), 4546–4553 (2016).
[Crossref]

Fu, S. M.

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A fully functionalized metamaterial perfect absorber with simple design and implementation,” Sci. Rep. 6(1), 36244 (2016).
[Crossref]

Fu, Y.

Furube, A.

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

Gai, Z.

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14(5), 5268–5277 (2020).
[Crossref]

Gan, Q.

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Gan, X.

Garmire, E.

Garnett, E. C.

I. A. Digdaya, B. J. Trześniewski, G. W. P. Adhyaksa, E. C. Garnett, and W. A. Smith, “General considerations for improving photovoltage in metal−insulator−semiconductor photoanodes,” J. Phys. Chem. C 122(10), 5462–5471 (2018).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref]

Ghobadi, A.

A. C. Kosger, A. Ghobadi, A. R. Rashed, H. Caglayan, and E. Ozbay, “Generation of additive colors with near unity amplitude using a multilayer tandem Fabry–Perot cavity,” Opt. Lett. 46(14), 3464 (2021).
[Crossref]

Z. Eftekhari, A. Ghobadi, M. C. Soydan, D. U. Yildirim, N. Cinel, and E. Ozbay, “Strong light emission from a defective hexagonal boron nitride monolayer coupled to near-touching random plasmonic nanounits,” Opt. Lett. 46(7), 1664 (2021).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal-tunable metamaterial,” Phys. Status Solidi RRL 14, 2000066 (2020).
[Crossref]

Z. Eftekhari, A. Ghobadi, and E. Ozbay, “Lithography-free disordered metal–insulator–metal nanoantennas for colorimetric sensing,” Opt. Lett. 45(24), 6719 (2020).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, E. S. Duman, A. Bek, V. B. Erturk, and E. Ozbay, “Lithography-free random bismuth nanostructures for full solar spectrum harvesting and mid-infrared sensing,” Adv. Opt. Mater. 8(4), 1901203 (2020).
[Crossref]

A. Ghobadi, T. G. Ulusoy Ghobadi, F. Karadas, and E. Ozbay, “Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications,” Adv. Opt. Mater. 7(14), 1900028 (2019).
[Crossref]

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: From narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photonics Res. 6(3), 168–176 (2018).
[Crossref]

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

T. G. U. Ghobadi, A. Ghobadi, E. Ozbay, and F. Karadas, “Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting,” ChemPhotoChem 2(3), 161–182 (2018).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 1–10 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi- thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref]

H. Hajian, A. Ghobadi, B. Butun, and E. Ozbay, “Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals,” Opt. Express 25(25), 31970–31987 (2017).
[Crossref]

Ghobadi, T. G. U.

T. G. U. Ghobadi, A. Ghobadi, E. Ozbay, and F. Karadas, “Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting,” ChemPhotoChem 2(3), 161–182 (2018).
[Crossref]

Gholipour, B.

A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]

Ghosh, P.

H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light: Sci. Appl. 7(1), 1–10 (2018).
[Crossref]

Giebink, N. C.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

Giessen, H.

A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]

Gokbayrak, M.

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: From narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

Gong, C.

M. Rebello, S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography-free, omnidirectional, CMOS-compatible AlCu alloys for thin-film superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

Gonzalez-Elipe, A. R.

A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition of thin films: From fundamentals to devices,” Prog. Mater. Sci. 76, 59–153 (2016).
[Crossref]

Gonzalez-Posada, F.

F. B. Barho, F. Gonzalez-Posada, M. J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” Nanophotonics 7(2), 507–516 (2017).
[Crossref]

Grave, D. A.

A. Kay, B. Scherrer, Y. Piekner, K. D. Malviya, D. A. Grave, H. Dotan, and A. Rothschild, “Film flip and transfer process to enhance light harvesting in ultrathin absorber films on specular back-reflectors,” Adv. Mater. 30, 1802781 (2018).
[Crossref]

Y. Piekner, H. Dotan, A. Tsyganok, K. Deo Malviya, D. A. Grave, O. Kfir, and A. Rothschild, “Implementing strong interference in ultrathin film top absorbers for tandem solar cells,” ACS Photonics 5(12), 5068–5078 (2018).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Grimley, E. D.

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

Gross, M.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref]

Gu, G.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Gu, L.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011).
[Crossref]

Guan, Z.

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

Guclu, C.

Guler, U.

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

Guo, J.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonic Res. 5(6), 536–542 (2017).
[Crossref]

Guo, L. J.

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering Light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5, 1700368 (2017).
[Crossref]

Guo, Q.

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

Habib, A.

A. Habib, F. Florio, and R. Sundararaman, “Hot carrier dynamics in plasmonic transition metal nitrides,” J. Opt. 20(6), 064001 (2018).
[Crossref]

Hajian, H.

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: From narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photonics Res. 6(3), 168–176 (2018).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 1–10 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi- thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref]

H. Hajian, A. Ghobadi, B. Butun, and E. Ozbay, “Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals,” Opt. Express 25(25), 31970–31987 (2017).
[Crossref]

Halas, N. J.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Hamilton, T.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Hao, J.

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Haque, M. A.

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

He, C.

L. Shen, C. He, J. Qiu, S. M. Lee, A. Kalita, S. B. Cronin, M. P. Stoykovich, and J. Yoon, “Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers,” ACS Appl. Mater. Interfaces 7(47), 26043–26049 (2015).
[Crossref]

He, Q.

He, S.

H. Shen, L. Yang, Y. Jin, and S. He, “Perfect mid-infrared dual-band optical absorption realized by a simple lithography-free polar dielectric/metal double-layer nanostructure,” Opt. Express 28(21), 31414 (2020).
[Crossref]

K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

He, Y.

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014).
[Crossref]

Ho, J.

S. Daqiqeh Rezaei, J. Ho, T. Wang, J. K. W. Yang, and S. Ramakrishna, “Direct color printing with an electron beam,” Nano Lett. 20(6), 4422–4429 (2020).
[Crossref]

Hong, Y.

H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Hopkins, P. E.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

Hou, M.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-area low-cost dielectric perfect absorber by one-step sputtering,” Adv. Opt. Mater. 7, 1801596 (2019).
[Crossref]

Hu, R.

R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C. W. Qiu, “Thermal camouflaging metamaterials,” Mater. Today 45, 120–141 (2021).
[Crossref]

Hu, X.

J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
[Crossref]

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

Huang, S.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Hugonin, J. P.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746–9 (2016).
[Crossref]

Humphrey, S.

Z. Cheng, T. Milne, P. Salter, J. S. Kim, S. Humphrey, M. Booth, and H. Bhaskaran, “Antimony thin films demonstrate programmable optical nonlinearity,” Sci. Adv. 7(1), 1–10 (2021).
[Crossref]

Hunter, G. W.

Imperatore, M. V.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

Issah, I.

S. Chervinskii, I. Issah, M. Lahikainen, A. R. Rashed, K. Kuntze, A. Priimagi, and H. Caglayan, “Humidity- and temperature-tunable metal–hydrogel–metal reflective filters,” ACS Appl. Mater. Interfaces 13(42), 50564–50572 (2021).
[Crossref]

Janssens, E.

U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, “Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection,” APL Mater. 7(7), 071102 (2019).
[Crossref]

Javey, A.

N. S. Azar, J. Bullock, S. Balendhran, H. Kim, A. Javey, and K. B. Crozier, “Light-matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics,” ACS Photonics 8(4), 1120–1128 (2021).
[Crossref]

Ji, C.

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering Light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5, 1700368 (2017).
[Crossref]

Ji, D.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Ji, R.

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-area low-cost dielectric perfect absorber by one-step sputtering,” Adv. Opt. Mater. 7, 1801596 (2019).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Jiang, X.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonic Res. 5(6), 536–542 (2017).
[Crossref]

Jiang, Y.

Jin, Y.

Johns, R. W.

E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, and D. J. Milliron, “Defect engineering in plasmonic metal oxide nanocrystals,” Nano Lett. 16(5), 3390–3398 (2016).
[Crossref]

Kalita, A.

L. Shen, C. He, J. Qiu, S. M. Lee, A. Kalita, S. B. Cronin, M. P. Stoykovich, and J. Yoon, “Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers,” ACS Appl. Mater. Interfaces 7(47), 26043–26049 (2015).
[Crossref]

Karadas, F.

A. Ghobadi, T. G. Ulusoy Ghobadi, F. Karadas, and E. Ozbay, “Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications,” Adv. Opt. Mater. 7(14), 1900028 (2019).
[Crossref]

T. G. U. Ghobadi, A. Ghobadi, E. Ozbay, and F. Karadas, “Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting,” ChemPhotoChem 2(3), 161–182 (2018).
[Crossref]

Kats, M. A.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref]

Kaur, S.

H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Kawawaki, T.

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

Kay, A.

A. Kay, B. Scherrer, Y. Piekner, K. D. Malviya, D. A. Grave, H. Dotan, and A. Rothschild, “Film flip and transfer process to enhance light harvesting in ultrathin absorber films on specular back-reflectors,” Adv. Mater. 30, 1802781 (2018).
[Crossref]

Kelley, K. P.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

Kfir, O.

Y. Piekner, H. Dotan, A. Tsyganok, K. Deo Malviya, D. A. Grave, O. Kfir, and A. Rothschild, “Implementing strong interference in ultrathin film top absorbers for tandem solar cells,” ACS Photonics 5(12), 5068–5078 (2018).
[Crossref]

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref]

Khazaei Nezhad, M.

A. Shabani, M. Tsegay Korsa, S. Petersen, M. Khazaei Nezhad, Y. Kumar Mishra, and J. Adam, “Zirconium nitride: optical properties of an emerging intermetallic for plasmonic applications,” Adv. Photonics Res. 2(11), 2100178 (2021).
[Crossref]

Kim, H.

N. S. Azar, J. Bullock, S. Balendhran, H. Kim, A. Javey, and K. B. Crozier, “Light-matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics,” ACS Photonics 8(4), 1120–1128 (2021).
[Crossref]

Kim, J.

J. Lee, J. Kim, and M. Lee, “High-purity reflective color filters based on thin film cavities embedded with an ultrathin Ge2Sb2Te5 absorption layer,” Nanoscale Adv. 2(10), 4930–4937 (2020).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [ Invited ],” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

Kim, J. S.

Z. Cheng, T. Milne, P. Salter, J. S. Kim, S. Humphrey, M. Booth, and H. Bhaskaran, “Antimony thin films demonstrate programmable optical nonlinearity,” Sci. Adv. 7(1), 1–10 (2021).
[Crossref]

Kim, M.

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

Kimura, M.

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

King, N. S.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Klem, J. F.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746–9 (2016).
[Crossref]

Klump, A.

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

Knight, M. W.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Kong, X.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

Kort-Kamp, W. J. M.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Kosger, A. C.

Kramadhati, S.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Krauter, C. M.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

Kriegel, I.

I. Kriegel, F. Scotognella, and L. Manna, “Plasmonic doped semiconductor nanocrystals: properties, fabrication, applications and perspectives,” Phys. Rep. 674, 1–52 (2017).
[Crossref]

Kullak-Ublick, G. A.

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14(5), 5268–5277 (2020).
[Crossref]

Kumar, I.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

Kumar Mishra, Y.

A. Shabani, M. Tsegay Korsa, S. Petersen, M. Khazaei Nezhad, Y. Kumar Mishra, and J. Adam, “Zirconium nitride: optical properties of an emerging intermetallic for plasmonic applications,” Adv. Photonics Res. 2(11), 2100178 (2021).
[Crossref]

Kuntze, K.

S. Chervinskii, I. Issah, M. Lahikainen, A. R. Rashed, K. Kuntze, A. Priimagi, and H. Caglayan, “Humidity- and temperature-tunable metal–hydrogel–metal reflective filters,” ACS Appl. Mater. Interfaces 13(42), 50564–50572 (2021).
[Crossref]

Lahikainen, M.

S. Chervinskii, I. Issah, M. Lahikainen, A. R. Rashed, K. Kuntze, A. Priimagi, and H. Caglayan, “Humidity- and temperature-tunable metal–hydrogel–metal reflective filters,” ACS Appl. Mater. Interfaces 13(42), 50564–50572 (2021).
[Crossref]

Lan, C.

C. Lan, Z. Shi, R. Cao, C. Li, and H. Zhang, “2D materials beyond graphene toward Si integrated infrared optoelectronic devices,” Nanoscale 12(22), 11784–11807 (2020).
[Crossref]

Lanzani, G.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86(4), 154 (2013).
[Crossref]

Larciprete, M. C.

S. Abedini Dereshgi, M. C. Larciprete, M. Centini, A. A. Murthy, K. Tang, J. Wu, V. P. Dravid, and K. Aydin, “Tuning of optical phonons in α-MoO3 –VO2 multilayers,” ACS Appl. Mater. Interfaces 13(41), 48981–48987 (2021).
[Crossref]

Lebeau, J. M.

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

Lee, B. J.

B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
[Crossref]

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005).
[Crossref]

Lee, J.

J. Lee, J. Kim, and M. Lee, “High-purity reflective color filters based on thin film cavities embedded with an ultrathin Ge2Sb2Te5 absorption layer,” Nanoscale Adv. 2(10), 4930–4937 (2020).
[Crossref]

Lee, K. T.

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering Light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5, 1700368 (2017).
[Crossref]

Lee, M.

J. Lee, J. Kim, and M. Lee, “High-purity reflective color filters based on thin film cavities embedded with an ultrathin Ge2Sb2Te5 absorption layer,” Nanoscale Adv. 2(10), 4930–4937 (2020).
[Crossref]

Lee, S. M.

L. Shen, C. He, J. Qiu, S. M. Lee, A. Kalita, S. B. Cronin, M. P. Stoykovich, and J. Yoon, “Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers,” ACS Appl. Mater. Interfaces 7(47), 26043–26049 (2015).
[Crossref]

Leedy, K. D.

Leite, M. S.

M. Rebello, S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography-free, omnidirectional, CMOS-compatible AlCu alloys for thin-film superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

Li, C.

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

C. Lan, Z. Shi, R. Cao, C. Li, and H. Zhang, “2D materials beyond graphene toward Si integrated infrared optoelectronic devices,” Nanoscale 12(22), 11784–11807 (2020).
[Crossref]

Li, J.

Li, M.

M. Li, D. Liu, H. Cheng, L. Peng, and M. Zu, “Manipulating metals for adaptive thermal camouflage,” Sci. Adv. 6(22), 1–11 (2020).
[Crossref]

Li, Q.

H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
[Crossref]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light: Sci. Appl. 7(1), 1–10 (2018).
[Crossref]

D. Liu, H. Yu, Y. Duan, Q. Li, and Y. Xuan, “New insight into the angle insensitivity of ultrathin planar optical absorbers for broadband solar energy harvesting,” Sci. Rep. 6(1), 32515 (2016).
[Crossref]

Q. Li, K. Du, K. Mao, X. Fang, D. Zhao, H. Ye, and M. Qiu, “Transmission enhancement based on strong interference in metal- semiconductor layered film for energy harvesting,” Sci. Rep. 6(1), 29195 (2016).
[Crossref]

Li, S.

R. Zhou, S. Yang, Q. Lin, L. Tang, D. Liu, K. Ullah, S. Li, and Y. Zhao, “Recent advances in graphene and black phosphorus nonlinear plasmonics,” Nanophotonics 9(7), 1695–1715 (2020).
[Crossref]

Li, X.

X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013).
[Crossref]

Li, Y.

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

Li, Z.

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Lian, M.

J. K. Behera, K. Liu, M. Lian, and T. Cao, “A reconfigurable hyperbolic metamaterial perfect absorber,” Nanoscale Adv. 3(6), 1758–1766 (2021).
[Crossref]

Liem, N. Q.

U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, “Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection,” APL Mater. 7(7), 071102 (2019).
[Crossref]

Lin, A.

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A fully functionalized metamaterial perfect absorber with simple design and implementation,” Sci. Rep. 6(1), 36244 (2016).
[Crossref]

Lin, Q.

R. Zhou, S. Yang, Q. Lin, L. Tang, D. Liu, K. Ullah, S. Li, and Y. Zhao, “Recent advances in graphene and black phosphorus nonlinear plasmonics,” Nanophotonics 9(7), 1695–1715 (2020).
[Crossref]

Lin, Z.

Liu, C.

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Liu, D.

R. Zhou, S. Yang, Q. Lin, L. Tang, D. Liu, K. Ullah, S. Li, and Y. Zhao, “Recent advances in graphene and black phosphorus nonlinear plasmonics,” Nanophotonics 9(7), 1695–1715 (2020).
[Crossref]

M. Li, D. Liu, H. Cheng, L. Peng, and M. Zu, “Manipulating metals for adaptive thermal camouflage,” Sci. Adv. 6(22), 1–11 (2020).
[Crossref]

L. Peng, D. Liu, H. Cheng, S. Zhou, and M. Zu, “A multilayer film based selective thermal emitter for infrared stealth technology,” Adv. Opt. Mater. 6(23), 1801006 (2018).
[Crossref]

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

D. Liu, H. Yu, Y. Duan, Q. Li, and Y. Xuan, “New insight into the angle insensitivity of ultrathin planar optical absorbers for broadband solar energy harvesting,” Sci. Rep. 6(1), 32515 (2016).
[Crossref]

D. Liu, H. Yu, Z. Yang, and Y. Duan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).
[Crossref]

Liu, F.

Liu, G.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Liu, H.

H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 1–8 (2020).
[Crossref]

Liu, K.

J. K. Behera, K. Liu, M. Lian, and T. Cao, “A reconfigurable hyperbolic metamaterial perfect absorber,” Nanoscale Adv. 3(6), 1758–1766 (2021).
[Crossref]

Liu, L.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Liu, S.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

Liu, X.

J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
[Crossref]

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Liu, Y.

R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C. W. Qiu, “Thermal camouflaging metamaterials,” Mater. Today 45, 120–141 (2021).
[Crossref]

D. Dong, Y. Liu, Y. Fei, Y. Fan, J. Li, Y. Feng, and Y. Fu, “Designing a nearly perfect infrared absorber in monolayer black phosphorus,” Appl. Opt. 58(14), 3862 (2019).
[Crossref]

F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018).
[Crossref]

Liu, Z.

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

H. Peng, Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Broadband and highly absorbing multilayer structure in mid-infrared,” Appl. Opt. 55(31), 8833–8837 (2016).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Livenere, J.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011).
[Crossref]

Long, Y.

Longhi, S.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86(4), 154 (2013).
[Crossref]

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

Lu, H.

Lu, J.

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Lu, L.

H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 1–8 (2020).
[Crossref]

Lu, W.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-area low-cost dielectric perfect absorber by one-step sputtering,” Adv. Opt. Mater. 7, 1801596 (2019).
[Crossref]

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Lu, X.

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

Luk, T. S.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746–9 (2016).
[Crossref]

Luo, X.

R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C. W. Qiu, “Thermal camouflaging metamaterials,” Mater. Today 45, 120–141 (2021).
[Crossref]

Luo, Y.

Ma, C.

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

Ma, Z. J.

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

Macfarlan, L. H.

H. Robatjazi, S. M. Bahauddin, L. H. Macfarlan, S. Fu, and I. Thomann, “Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication,” Chem. Mater. 28(13), 4546–4553 (2016).
[Crossref]

Mahmoud, A. M.

M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Silicon based mid-IR super absorber using hyperbolic metamaterial,” Sci. Rep. 8(1), 2036 (2018).
[Crossref]

Malagari, S. D.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Malviya, K. D.

A. Kay, B. Scherrer, Y. Piekner, K. D. Malviya, D. A. Grave, H. Dotan, and A. Rothschild, “Film flip and transfer process to enhance light harvesting in ultrathin absorber films on specular back-reflectors,” Adv. Mater. 30, 1802781 (2018).
[Crossref]

Manjavacas, A.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

Manna, L.

I. Kriegel, F. Scotognella, and L. Manna, “Plasmonic doped semiconductor nanocrystals: properties, fabrication, applications and perspectives,” Phys. Rep. 674, 1–52 (2017).
[Crossref]

Mao, D.

Mao, K.

Q. Li, K. Du, K. Mao, X. Fang, D. Zhao, H. Ye, and M. Qiu, “Transmission enhancement based on strong interference in metal- semiconductor layered film for energy harvesting,” Sci. Rep. 6(1), 29195 (2016).
[Crossref]

Mao, Z.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

Marder, S. R.

Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Maria, J. P.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

Marquier, F.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746–9 (2016).
[Crossref]

Maté, B.

Matsunaga, H.

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

Matsuzaki, H.

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

McClain, M. J.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

McLeod, E.

J. E. Melzer and E. McLeod, “3D Nanophotonic device fabrication using discrete components,” Nanophotonics 9(6), 1373–1390 (2020).
[Crossref]

Melzer, J. E.

J. E. Melzer and E. McLeod, “3D Nanophotonic device fabrication using discrete components,” Nanophotonics 9(6), 1373–1390 (2020).
[Crossref]

Mengali, S.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Mi, H.

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

Miao, X.

Michel, A. U.

A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]

Milla, M. J.

F. B. Barho, F. Gonzalez-Posada, M. J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” Nanophotonics 7(2), 507–516 (2017).
[Crossref]

Miller, E. M.

P. K. B. Palomaki, E. M. Miller, and N. R. Neale, “Control of plasmonic and interband transitions in colloidal indium nitride nanocrystals,” J. Am. Chem. Soc. 135(38), 14142–14150 (2013).
[Crossref]

Milliron, D. J.

E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, and D. J. Milliron, “Defect engineering in plasmonic metal oxide nanocrystals,” Nano Lett. 16(5), 3390–3398 (2016).
[Crossref]

Milne, T.

Z. Cheng, T. Milne, P. Salter, J. S. Kim, S. Humphrey, M. Booth, and H. Bhaskaran, “Antimony thin films demonstrate programmable optical nonlinearity,” Sci. Adv. 7(1), 1–10 (2021).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Mundle, R.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011).
[Crossref]

Murthy, A. A.

S. Abedini Dereshgi, M. C. Larciprete, M. Centini, A. A. Murthy, K. Tang, J. Wu, V. P. Dravid, and K. Aydin, “Tuning of optical phonons in α-MoO3 –VO2 multilayers,” ACS Appl. Mater. Interfaces 13(41), 48981–48987 (2021).
[Crossref]

S. Abedini Dereshgi, T. G. Folland, A. A. Murthy, X. Song, I. Tanriover, V. P. Dravid, J. D. Caldwell, and K. Aydin, “Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes,” Nat. Commun. 11(1), 5771 (2020).
[Crossref]

Muskens, O. L.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Nader, N.

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [ Invited ],” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

Narimanov, E. E.

Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Neale, N. R.

P. K. B. Palomaki, E. M. Miller, and N. R. Neale, “Control of plasmonic and interband transitions in colloidal indium nitride nanocrystals,” J. Am. Chem. Soc. 135(38), 14142–14150 (2013).
[Crossref]

Neubrech, F.

A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]

Ning, R.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

Noginov, M. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011).
[Crossref]

Nolen, J. R.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

Nordlander, J.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

Nordlander, P.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Norris, T. B.

Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Othman, M. A. K.

Ou, C.

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

Ozbay, E.

Z. Eftekhari, A. Ghobadi, M. C. Soydan, D. U. Yildirim, N. Cinel, and E. Ozbay, “Strong light emission from a defective hexagonal boron nitride monolayer coupled to near-touching random plasmonic nanounits,” Opt. Lett. 46(7), 1664 (2021).
[Crossref]

A. C. Kosger, A. Ghobadi, A. R. Rashed, H. Caglayan, and E. Ozbay, “Generation of additive colors with near unity amplitude using a multilayer tandem Fabry–Perot cavity,” Opt. Lett. 46(14), 3464 (2021).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal-tunable metamaterial,” Phys. Status Solidi RRL 14, 2000066 (2020).
[Crossref]

Z. Eftekhari, A. Ghobadi, and E. Ozbay, “Lithography-free disordered metal–insulator–metal nanoantennas for colorimetric sensing,” Opt. Lett. 45(24), 6719 (2020).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, E. S. Duman, A. Bek, V. B. Erturk, and E. Ozbay, “Lithography-free random bismuth nanostructures for full solar spectrum harvesting and mid-infrared sensing,” Adv. Opt. Mater. 8(4), 1901203 (2020).
[Crossref]

A. Ghobadi, T. G. Ulusoy Ghobadi, F. Karadas, and E. Ozbay, “Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications,” Adv. Opt. Mater. 7(14), 1900028 (2019).
[Crossref]

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: From narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photonics Res. 6(3), 168–176 (2018).
[Crossref]

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

T. G. U. Ghobadi, A. Ghobadi, E. Ozbay, and F. Karadas, “Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting,” ChemPhotoChem 2(3), 161–182 (2018).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 1–10 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi- thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref]

H. Hajian, A. Ghobadi, B. Butun, and E. Ozbay, “Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals,” Opt. Express 25(25), 31970–31987 (2017).
[Crossref]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Ozgur, E.

Padilla, W. J.

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids. Vol. 3 (Academic, 1998).

Palinski, T. J.

Palmero, A.

A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition of thin films: From fundamentals to devices,” Prog. Mater. Sci. 76, 59–153 (2016).
[Crossref]

Palomaki, P. K. B.

P. K. B. Palomaki, E. M. Miller, and N. R. Neale, “Control of plasmonic and interband transitions in colloidal indium nitride nanocrystals,” J. Am. Chem. Soc. 135(38), 14142–14150 (2013).
[Crossref]

Pan, M.

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light: Sci. Appl. 7(1), 1–10 (2018).
[Crossref]

Pan, P.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Pardo, M. G.

Park, H. J.

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering Light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5, 1700368 (2017).
[Crossref]

Peláez, R. J.

Peng, H.

Peng, L.

M. Li, D. Liu, H. Cheng, L. Peng, and M. Zu, “Manipulating metals for adaptive thermal camouflage,” Sci. Adv. 6(22), 1–11 (2020).
[Crossref]

L. Peng, D. Liu, H. Cheng, S. Zhou, and M. Zu, “A multilayer film based selective thermal emitter for infrared stealth technology,” Adv. Opt. Mater. 6(23), 1801006 (2018).
[Crossref]

Peng, R. W.

F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018).
[Crossref]

Petersen, S.

A. Shabani, M. Tsegay Korsa, S. Petersen, M. Khazaei Nezhad, Y. Kumar Mishra, and J. Adam, “Zirconium nitride: optical properties of an emerging intermetallic for plasmonic applications,” Adv. Photonics Res. 2(11), 2100178 (2021).
[Crossref]

Piekner, Y.

A. Kay, B. Scherrer, Y. Piekner, K. D. Malviya, D. A. Grave, H. Dotan, and A. Rothschild, “Film flip and transfer process to enhance light harvesting in ultrathin absorber films on specular back-reflectors,” Adv. Mater. 30, 1802781 (2018).
[Crossref]

Y. Piekner, H. Dotan, A. Tsyganok, K. Deo Malviya, D. A. Grave, O. Kfir, and A. Rothschild, “Implementing strong interference in ultrathin film top absorbers for tandem solar cells,” ACS Photonics 5(12), 5068–5078 (2018).
[Crossref]

Podolskiy, V. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Pradhan, A. K.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011).
[Crossref]

Priimagi, A.

S. Chervinskii, I. Issah, M. Lahikainen, A. R. Rashed, K. Kuntze, A. Priimagi, and H. Caglayan, “Humidity- and temperature-tunable metal–hydrogel–metal reflective filters,” ACS Appl. Mater. Interfaces 13(42), 50564–50572 (2021).
[Crossref]

Pu, Y.

Qiu, C. W.

R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C. W. Qiu, “Thermal camouflaging metamaterials,” Mater. Today 45, 120–141 (2021).
[Crossref]

Qiu, G.

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14(5), 5268–5277 (2020).
[Crossref]

Qiu, J.

L. Shen, C. He, J. Qiu, S. M. Lee, A. Kalita, S. B. Cronin, M. P. Stoykovich, and J. Yoon, “Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers,” ACS Appl. Mater. Interfaces 7(47), 26043–26049 (2015).
[Crossref]

Qiu, M.

J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
[Crossref]

H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light: Sci. Appl. 7(1), 1–10 (2018).
[Crossref]

Q. Li, K. Du, K. Mao, X. Fang, D. Zhao, H. Ye, and M. Qiu, “Transmission enhancement based on strong interference in metal- semiconductor layered film for energy harvesting,” Sci. Rep. 6(1), 29195 (2016).
[Crossref]

Qu, Y.

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light: Sci. Appl. 7(1), 1–10 (2018).
[Crossref]

Quiambao-Tomko, K.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

Ramakrishna, S.

S. Daqiqeh Rezaei, J. Ho, T. Wang, J. K. W. Yang, and S. Ramakrishna, “Direct color printing with an electron beam,” Nano Lett. 20(6), 4422–4429 (2020).
[Crossref]

Ramanathan, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

Ramos, N.

Ranasinghe, C. S. K.

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

Rashed, A. R.

S. Chervinskii, I. Issah, M. Lahikainen, A. R. Rashed, K. Kuntze, A. Priimagi, and H. Caglayan, “Humidity- and temperature-tunable metal–hydrogel–metal reflective filters,” ACS Appl. Mater. Interfaces 13(42), 50564–50572 (2021).
[Crossref]

A. C. Kosger, A. Ghobadi, A. R. Rashed, H. Caglayan, and E. Ozbay, “Generation of additive colors with near unity amplitude using a multilayer tandem Fabry–Perot cavity,” Opt. Lett. 46(14), 3464 (2021).
[Crossref]

A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photonics Res. 6(3), 168–176 (2018).
[Crossref]

Rebello, M.

M. Rebello, S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography-free, omnidirectional, CMOS-compatible AlCu alloys for thin-film superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

Reiten, M. T.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Rensberg, J.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

Rephaeli, E.

Richter, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

Riedel, C. A.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Ringe, E.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

Robatjazi, H.

H. Robatjazi, S. M. Bahauddin, L. H. Macfarlan, S. Fu, and I. Thomann, “Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication,” Chem. Mater. 28(13), 4546–4553 (2016).
[Crossref]

Ronning, C.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

Rothschild, A.

Y. Piekner, H. Dotan, A. Tsyganok, K. Deo Malviya, D. A. Grave, O. Kfir, and A. Rothschild, “Implementing strong interference in ultrathin film top absorbers for tandem solar cells,” ACS Photonics 5(12), 5068–5078 (2018).
[Crossref]

A. Kay, B. Scherrer, Y. Piekner, K. D. Malviya, D. A. Grave, H. Dotan, and A. Rothschild, “Film flip and transfer process to enhance light harvesting in ultrathin absorber films on specular back-reflectors,” Adv. Mater. 30, 1802781 (2018).
[Crossref]

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref]

Ruan, Q.

H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 1–8 (2020).
[Crossref]

Ruan, X.

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

Ruini, A.

A. Calzolari, A. Ruini, and A. Catellani, “Transparent conductive oxides as near-IR plasmonic materials: the case of Al-doped ZnO derivatives,” ACS Photonics 1(8), 703–709 (2014).
[Crossref]

Runnerstrom, E. L.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, and D. J. Milliron, “Defect engineering in plasmonic metal oxide nanocrystals,” Nano Lett. 16(5), 3390–3398 (2016).
[Crossref]

Ryckman, J. D.

J. D. Ryckman, “Random coherent perfect absorption with 2D atomic materials mediated by Anderson localization,” ACS Photonics 5(2), 574–580 (2018).
[Crossref]

Sachet, E.

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

Sakamoto, M.

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

Salter, P.

Z. Cheng, T. Milne, P. Salter, J. S. Kim, S. Humphrey, M. Booth, and H. Bhaskaran, “Antimony thin films demonstrate programmable optical nonlinearity,” Sci. Adv. 7(1), 1–10 (2021).
[Crossref]

Schäferling, M.

A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]

Scherrer, B.

A. Kay, B. Scherrer, Y. Piekner, K. D. Malviya, D. A. Grave, H. Dotan, and A. Rothschild, “Film flip and transfer process to enhance light harvesting in ultrathin absorber films on specular back-reflectors,” Adv. Mater. 30, 1802781 (2018).
[Crossref]

Schlather, A. E.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

Schmidt-grund, R.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

Schmitt, J.

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14(5), 5268–5277 (2020).
[Crossref]

Schöppe, P.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

Scotognella, F.

I. Kriegel, F. Scotognella, and L. Manna, “Plasmonic doped semiconductor nanocrystals: properties, fabrication, applications and perspectives,” Phys. Rep. 674, 1–52 (2017).
[Crossref]

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86(4), 154 (2013).
[Crossref]

Selbach, S. M.

E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, and D. J. Milliron, “Defect engineering in plasmonic metal oxide nanocrystals,” Nano Lett. 16(5), 3390–3398 (2016).
[Crossref]

Serhatlioglu, M.

Serna, R.

Shabani, A.

A. Shabani, M. Tsegay Korsa, S. Petersen, M. Khazaei Nezhad, Y. Kumar Mishra, and J. Adam, “Zirconium nitride: optical properties of an emerging intermetallic for plasmonic applications,” Adv. Photonics Res. 2(11), 2100178 (2021).
[Crossref]

Shalaev, V. M.

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

Sharlin, E.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref]

Shelton, C. T.

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

Shen, H.

Shen, L.

L. Shen, C. He, J. Qiu, S. M. Lee, A. Kalita, S. B. Cronin, M. P. Stoykovich, and J. Yoon, “Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers,” ACS Appl. Mater. Interfaces 7(47), 26043–26049 (2015).
[Crossref]

Shen, W.

H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Shen, X.

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Shi, H.

Shi, K.

K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

Shi, Z.

C. Lan, Z. Shi, R. Cao, C. Li, and H. Zhang, “2D materials beyond graphene toward Si integrated infrared optoelectronic devices,” Nanoscale 12(22), 11784–11807 (2020).
[Crossref]

Shu, F. Z.

F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018).
[Crossref]

Simeoni, M.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Simpson, R. E.

H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 1–8 (2020).
[Crossref]

Sinclair, M. B.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746–9 (2016).
[Crossref]

Singh, A.

E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, and D. J. Milliron, “Defect engineering in plasmonic metal oxide nanocrystals,” Nano Lett. 16(5), 3390–3398 (2016).
[Crossref]

Sitar, Z.

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

Smith, W. A.

I. A. Digdaya, B. J. Trześniewski, G. W. P. Adhyaksa, E. C. Garnett, and W. A. Smith, “General considerations for improving photovoltage in metal−insulator−semiconductor photoanodes,” J. Phys. Chem. C 122(10), 5462–5471 (2018).
[Crossref]

Solmaz, M. E.

Song, H.

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

Song, J.

R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C. W. Qiu, “Thermal camouflaging metamaterials,” Mater. Today 45, 120–141 (2021).
[Crossref]

Song, X.

S. Abedini Dereshgi, T. G. Folland, A. A. Murthy, X. Song, I. Tanriover, V. P. Dravid, J. D. Caldwell, and K. Aydin, “Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes,” Nat. Commun. 11(1), 5771 (2020).
[Crossref]

Soref, R.

Soydan, M. C.

Z. Eftekhari, A. Ghobadi, M. C. Soydan, D. U. Yildirim, N. Cinel, and E. Ozbay, “Strong light emission from a defective hexagonal boron nitride monolayer coupled to near-touching random plasmonic nanounits,” Opt. Lett. 46(7), 1664 (2021).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal-tunable metamaterial,” Phys. Status Solidi RRL 14, 2000066 (2020).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, E. S. Duman, A. Bek, V. B. Erturk, and E. Ozbay, “Lithography-free random bismuth nanostructures for full solar spectrum harvesting and mid-infrared sensing,” Adv. Opt. Mater. 8(4), 1901203 (2020).
[Crossref]

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Srimath Kandada, A. R.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86(4), 154 (2013).
[Crossref]

Steenhoff, V.

V. Steenhoff, M. Theuring, M. Vehse, and K. Von Maydell, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3(2), 182–186 (2015).
[Crossref]

Stoykovich, M. P.

L. Shen, C. He, J. Qiu, S. M. Lee, A. Kalita, S. B. Cronin, M. P. Stoykovich, and J. Yoon, “Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers,” ACS Appl. Mater. Interfaces 7(47), 26043–26049 (2015).
[Crossref]

Suen, J. Y.

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

Sun, K.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Sun, L.

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Sundararaman, R.

A. Habib, F. Florio, and R. Sundararaman, “Hot carrier dynamics in plasmonic transition metal nitrides,” J. Opt. 20(6), 064001 (2018).
[Crossref]

Sung, E.

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

Swillam, M. A.

M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Silicon based mid-IR super absorber using hyperbolic metamaterial,” Sci. Rep. 8(1), 2036 (2018).
[Crossref]

Tadimety, A.

Taliercio, T.

T. Taliercio and P. Biagioni, “Semiconductor infrared plasmonics,” Nanophotonics 8(6), 949–990 (2019).
[Crossref]

F. B. Barho, F. Gonzalez-Posada, M. J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” Nanophotonics 7(2), 507–516 (2017).
[Crossref]

Tan, Y.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Tan, Y. S.

H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 1–8 (2020).
[Crossref]

Tang, K.

R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C. W. Qiu, “Thermal camouflaging metamaterials,” Mater. Today 45, 120–141 (2021).
[Crossref]

S. Abedini Dereshgi, M. C. Larciprete, M. Centini, A. A. Murthy, K. Tang, J. Wu, V. P. Dravid, and K. Aydin, “Tuning of optical phonons in α-MoO3 –VO2 multilayers,” ACS Appl. Mater. Interfaces 13(41), 48981–48987 (2021).
[Crossref]

Tang, L.

R. Zhou, S. Yang, Q. Lin, L. Tang, D. Liu, K. Ullah, S. Li, and Y. Zhao, “Recent advances in graphene and black phosphorus nonlinear plasmonics,” Nanophotonics 9(7), 1695–1715 (2020).
[Crossref]

Taniguchi, T.

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

Tanriover, I.

S. Abedini Dereshgi, T. G. Folland, A. A. Murthy, X. Song, I. Tanriover, V. P. Dravid, J. D. Caldwell, and K. Aydin, “Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes,” Nat. Commun. 11(1), 5771 (2020).
[Crossref]

Tao, C.

H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Tao, Y.

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14(5), 5268–5277 (2020).
[Crossref]

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

Tassone, F.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86(4), 154 (2013).
[Crossref]

Taubner, T.

A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]

Teranishi, T.

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

Theuring, M.

V. Steenhoff, M. Theuring, M. Vehse, and K. Von Maydell, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3(2), 182–186 (2015).
[Crossref]

Thomann, I.

H. Robatjazi, S. M. Bahauddin, L. H. Macfarlan, S. Fu, and I. Thomann, “Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication,” Chem. Mater. 28(13), 4546–4553 (2016).
[Crossref]

Thuy, N. T.

U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, “Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection,” APL Mater. 7(7), 071102 (2019).
[Crossref]

Thuy, U. T. D.

U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, “Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection,” APL Mater. 7(7), 071102 (2019).
[Crossref]

Tian, S.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

Tittl, A.

A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]

Tomko, J.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

Toole, R.

K. Yao, R. Toole, P. Basnet, and Y. Zhao, “Highly sensitive double-layered nanorod array gas sensors prepared by oblique angle deposition,” Appl. Phys. Lett. 104(7), 073110 (2014).
[Crossref]

Toprak, A.

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Torunoglu, G.

Toudert, J.

Tournié, E.

F. B. Barho, F. Gonzalez-Posada, M. J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” Nanophotonics 7(2), 507–516 (2017).
[Crossref]

Trase, I.

Trzesniewski, B. J.

I. A. Digdaya, B. J. Trześniewski, G. W. P. Adhyaksa, E. C. Garnett, and W. A. Smith, “General considerations for improving photovoltage in metal−insulator−semiconductor photoanodes,” J. Phys. Chem. C 122(10), 5462–5471 (2018).
[Crossref]

Tsegay Korsa, M.

A. Shabani, M. Tsegay Korsa, S. Petersen, M. Khazaei Nezhad, Y. Kumar Mishra, and J. Adam, “Zirconium nitride: optical properties of an emerging intermetallic for plasmonic applications,” Adv. Photonics Res. 2(11), 2100178 (2021).
[Crossref]

Tsyganok, A.

Y. Piekner, H. Dotan, A. Tsyganok, K. Deo Malviya, D. A. Grave, O. Kfir, and A. Rothschild, “Implementing strong interference in ultrathin film top absorbers for tandem solar cells,” ACS Photonics 5(12), 5068–5078 (2018).
[Crossref]

Tu, M. H.

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A fully functionalized metamaterial perfect absorber with simple design and implementation,” Sci. Rep. 6(1), 36244 (2016).
[Crossref]

Tung, N. T.

U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, “Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection,” APL Mater. 7(7), 071102 (2019).
[Crossref]

Ullah, K.

R. Zhou, S. Yang, Q. Lin, L. Tang, D. Liu, K. Ullah, S. Li, and Y. Zhao, “Recent advances in graphene and black phosphorus nonlinear plasmonics,” Nanophotonics 9(7), 1695–1715 (2020).
[Crossref]

Ulusoy Ghobadi, T. G.

A. Ghobadi, T. G. Ulusoy Ghobadi, F. Karadas, and E. Ozbay, “Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications,” Adv. Opt. Mater. 7(14), 1900028 (2019).
[Crossref]

Urbani, A.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Vehse, M.

V. Steenhoff, M. Theuring, M. Vehse, and K. Von Maydell, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3(2), 182–186 (2015).
[Crossref]

Vequizo, J. J. M.

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

Von Maydell, K.

V. Steenhoff, M. Theuring, M. Vehse, and K. Von Maydell, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3(2), 182–186 (2015).
[Crossref]

Vyhnalek, B. E.

Wan, C.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

Wang, D.

J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
[Crossref]

Wang, H.

H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 1–8 (2020).
[Crossref]

Wang, J.

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14(5), 5268–5277 (2020).
[Crossref]

Wang, M.

F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018).
[Crossref]

Wang, Q. J.

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

Wang, S.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-area low-cost dielectric perfect absorber by one-step sputtering,” Adv. Opt. Mater. 7, 1801596 (2019).
[Crossref]

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Wang, T.

S. Daqiqeh Rezaei, J. Ho, T. Wang, J. K. W. Yang, and S. Ramakrishna, “Direct color printing with an electron beam,” Nano Lett. 20(6), 4422–4429 (2020).
[Crossref]

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Wang, W.

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

Wang, X.

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonic Res. 5(6), 536–542 (2017).
[Crossref]

Wang, Y.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

Wang, Z. H.

F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018).
[Crossref]

Wasserman, D.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Watanabe, K.

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

Wen, Z.

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

White, T. P.

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

Whitmire, K. H.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

Wu, J.

R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C. W. Qiu, “Thermal camouflaging metamaterials,” Mater. Today 45, 120–141 (2021).
[Crossref]

S. Abedini Dereshgi, M. C. Larciprete, M. Centini, A. A. Murthy, K. Tang, J. Wu, V. P. Dravid, and K. Aydin, “Tuning of optical phonons in α-MoO3 –VO2 multilayers,” ACS Appl. Mater. Interfaces 13(41), 48981–48987 (2021).
[Crossref]

Wu, M.

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Wu, T.

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

Wuttig, M.

A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]

Xi, W.

R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C. W. Qiu, “Thermal camouflaging metamaterials,” Mater. Today 45, 120–141 (2021).
[Crossref]

Xia, F.

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

Xia, Z.

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

Xiang, Y.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonic Res. 5(6), 536–542 (2017).
[Crossref]

Xiao, D.

X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013).
[Crossref]

Xie, Z.

Xiong, B.

F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018).
[Crossref]

Xiong, K.

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

Xu, H.

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Xu, J.

H. Peng, Y. Luo, X. Ying, Y. Pu, Y. Jiang, J. Xu, and Z. Liu, “Broadband and highly absorbing multilayer structure in mid-infrared,” Appl. Opt. 55(31), 8833–8837 (2016).
[Crossref]

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Xu, Q.

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

Xu, T.

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering Light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5, 1700368 (2017).
[Crossref]

Xu, Z.

H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Xuan, Y.

D. Liu, H. Yu, Y. Duan, Q. Li, and Y. Xuan, “New insight into the angle insensitivity of ultrathin planar optical absorbers for broadband solar energy harvesting,” Sci. Rep. 6(1), 32515 (2016).
[Crossref]

Yamakata, A.

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

Yang, D.

Yang, J. K. W.

S. Daqiqeh Rezaei, J. Ho, T. Wang, J. K. W. Yang, and S. Ramakrishna, “Direct color printing with an electron beam,” Nano Lett. 20(6), 4422–4429 (2020).
[Crossref]

H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 1–8 (2020).
[Crossref]

Yang, L.

H. Shen, L. Yang, Y. Jin, and S. He, “Perfect mid-infrared dual-band optical absorption realized by a simple lithography-free polar dielectric/metal double-layer nanostructure,” Opt. Express 28(21), 31414 (2020).
[Crossref]

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

Yang, S.

R. Zhou, S. Yang, Q. Lin, L. Tang, D. Liu, K. Ullah, S. Li, and Y. Zhao, “Recent advances in graphene and black phosphorus nonlinear plasmonics,” Nanophotonics 9(7), 1695–1715 (2020).
[Crossref]

Yang, Z.

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

D. Liu, H. Yu, Z. Yang, and Y. Duan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).
[Crossref]

Yao, K.

K. Yao, R. Toole, P. Basnet, and Y. Zhao, “Highly sensitive double-layered nanorod array gas sensors prepared by oblique angle deposition,” Appl. Phys. Lett. 104(7), 073110 (2014).
[Crossref]

Ye, H.

Q. Li, K. Du, K. Mao, X. Fang, D. Zhao, H. Ye, and M. Qiu, “Transmission enhancement based on strong interference in metal- semiconductor layered film for energy harvesting,” Sci. Rep. 6(1), 29195 (2016).
[Crossref]

Yi, F.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-area low-cost dielectric perfect absorber by one-step sputtering,” Adv. Opt. Mater. 7, 1801596 (2019).
[Crossref]

Yildirim, D. U.

Z. Eftekhari, A. Ghobadi, M. C. Soydan, D. U. Yildirim, N. Cinel, and E. Ozbay, “Strong light emission from a defective hexagonal boron nitride monolayer coupled to near-touching random plasmonic nanounits,” Opt. Lett. 46(7), 1664 (2021).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal-tunable metamaterial,” Phys. Status Solidi RRL 14, 2000066 (2020).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, E. S. Duman, A. Bek, V. B. Erturk, and E. Ozbay, “Lithography-free random bismuth nanostructures for full solar spectrum harvesting and mid-infrared sensing,” Adv. Opt. Mater. 8(4), 1901203 (2020).
[Crossref]

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Yin, X.

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]

Ying, X.

Ying, Y.

J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
[Crossref]

Yoon, J.

L. Shen, C. He, J. Qiu, S. M. Lee, A. Kalita, S. B. Cronin, M. P. Stoykovich, and J. Yoon, “Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers,” ACS Appl. Mater. Interfaces 7(47), 26043–26049 (2015).
[Crossref]

Yoshinaga, T.

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

You, Q.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonic Res. 5(6), 536–542 (2017).
[Crossref]

Youngblood, N.

Yu, F. F.

F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018).
[Crossref]

Yu, H.

D. Liu, H. Yu, Y. Duan, Q. Li, and Y. Xuan, “New insight into the angle insensitivity of ultrathin planar optical absorbers for broadband solar energy harvesting,” Sci. Rep. 6(1), 32515 (2016).
[Crossref]

D. Liu, H. Yu, Z. Yang, and Y. Duan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).
[Crossref]

Yu, X.

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

Yu, Z.

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Yuan, S.

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

Zalkovskij, M.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Zavelani-Rossi, M.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86(4), 154 (2013).
[Crossref]

Zhang, B.

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Zhang, C.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

Zhang, D.

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

Zhang, H.

C. Lan, Z. Shi, R. Cao, C. Li, and H. Zhang, “2D materials beyond graphene toward Si integrated infrared optoelectronic devices,” Nanoscale 12(22), 11784–11807 (2020).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

Zhang, J.

J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
[Crossref]

Zhang, J. X. J.

Zhang, P.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Zhang, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Zhang, T.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-area low-cost dielectric perfect absorber by one-step sputtering,” Adv. Opt. Mater. 7, 1801596 (2019).
[Crossref]

Zhang, X.

J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
[Crossref]

Zhang, Y.

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Zhang, Z.

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013).
[Crossref]

Zhang, Z. M.

B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
[Crossref]

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005).
[Crossref]

Zhao, D.

Q. Li, K. Du, K. Mao, X. Fang, D. Zhao, H. Ye, and M. Qiu, “Transmission enhancement based on strong interference in metal- semiconductor layered film for energy harvesting,” Sci. Rep. 6(1), 29195 (2016).
[Crossref]

Zhao, J.

Zhao, X.

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

Zhao, Y.

R. Zhou, S. Yang, Q. Lin, L. Tang, D. Liu, K. Ullah, S. Li, and Y. Zhao, “Recent advances in graphene and black phosphorus nonlinear plasmonics,” Nanophotonics 9(7), 1695–1715 (2020).
[Crossref]

Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014).
[Crossref]

K. Yao, R. Toole, P. Basnet, and Y. Zhao, “Highly sensitive double-layered nanorod array gas sensors prepared by oblique angle deposition,” Appl. Phys. Lett. 104(7), 073110 (2014).
[Crossref]

Zheng, J.

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Zheng, W.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-area low-cost dielectric perfect absorber by one-step sputtering,” Adv. Opt. Mater. 7, 1801596 (2019).
[Crossref]

Zheng, X.

S. Fan and X. Zheng, “High-performance ultrathin BiVO4 photoanode on textured polydimethylsiloxane substrates for solar water splitting,” ACS Energy Lett. 1(1), 68–75 (2016).
[Crossref]

Zhong, Y.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Zhong, Y. K.

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A fully functionalized metamaterial perfect absorber with simple design and implementation,” Sci. Rep. 6(1), 36244 (2016).
[Crossref]

Zhong, Z.

Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Zhou, H.

J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
[Crossref]

Zhou, J.

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering Light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5, 1700368 (2017).
[Crossref]

Zhou, L.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

Zhou, M.

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

Zhou, R.

R. Zhou, S. Yang, Q. Lin, L. Tang, D. Liu, K. Ullah, S. Li, and Y. Zhao, “Recent advances in graphene and black phosphorus nonlinear plasmonics,” Nanophotonics 9(7), 1695–1715 (2020).
[Crossref]

Zhou, S.

L. Peng, D. Liu, H. Cheng, S. Zhou, and M. Zu, “A multilayer film based selective thermal emitter for infrared stealth technology,” Adv. Opt. Mater. 6(23), 1801006 (2018).
[Crossref]

Zhou, Y.

F. Liu, H. Shi, X. Zhu, P. Dai, Z. Lin, Y. Long, Z. Xie, Y. Zhou, and H. Duan, “Tunable reflective color filters based on asymmetric Fabry–Perot cavities employing ultrathin Ge2Sb2Te5 as a broadband absorber,” Appl. Opt. 57(30), 9040 (2018).
[Crossref]

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

Zhou, Z.

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

Zhu, B.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Zhu, G.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011).
[Crossref]

Zhu, H.

H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

Zhu, J.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Zhu, X.

Zhu, Y.

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

Zhu, Y. Y.

F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018).
[Crossref]

Zu, M.

M. Li, D. Liu, H. Cheng, L. Peng, and M. Zu, “Manipulating metals for adaptive thermal camouflage,” Sci. Adv. 6(22), 1–11 (2020).
[Crossref]

L. Peng, D. Liu, H. Cheng, S. Zhou, and M. Zu, “A multilayer film based selective thermal emitter for infrared stealth technology,” Adv. Opt. Mater. 6(23), 1801006 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (4)

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

L. Shen, C. He, J. Qiu, S. M. Lee, A. Kalita, S. B. Cronin, M. P. Stoykovich, and J. Yoon, “Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers,” ACS Appl. Mater. Interfaces 7(47), 26043–26049 (2015).
[Crossref]

S. Chervinskii, I. Issah, M. Lahikainen, A. R. Rashed, K. Kuntze, A. Priimagi, and H. Caglayan, “Humidity- and temperature-tunable metal–hydrogel–metal reflective filters,” ACS Appl. Mater. Interfaces 13(42), 50564–50572 (2021).
[Crossref]

S. Abedini Dereshgi, M. C. Larciprete, M. Centini, A. A. Murthy, K. Tang, J. Wu, V. P. Dravid, and K. Aydin, “Tuning of optical phonons in α-MoO3 –VO2 multilayers,” ACS Appl. Mater. Interfaces 13(41), 48981–48987 (2021).
[Crossref]

ACS Energy Lett. (1)

S. Fan and X. Zheng, “High-performance ultrathin BiVO4 photoanode on textured polydimethylsiloxane substrates for solar water splitting,” ACS Energy Lett. 1(1), 68–75 (2016).
[Crossref]

ACS Nano (3)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14(5), 5268–5277 (2020).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

ACS Photonics (11)

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. De Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

J. D. Ryckman, “Random coherent perfect absorption with 2D atomic materials mediated by Anderson localization,” ACS Photonics 5(2), 574–580 (2018).
[Crossref]

Y. Piekner, H. Dotan, A. Tsyganok, K. Deo Malviya, D. A. Grave, O. Kfir, and A. Rothschild, “Implementing strong interference in ultrathin film top absorbers for tandem solar cells,” ACS Photonics 5(12), 5068–5078 (2018).
[Crossref]

K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

N. S. Azar, J. Bullock, S. Balendhran, H. Kim, A. Javey, and K. B. Crozier, “Light-matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics,” ACS Photonics 8(4), 1120–1128 (2021).
[Crossref]

A. Calzolari, A. Ruini, and A. Catellani, “Transparent conductive oxides as near-IR plasmonic materials: the case of Al-doped ZnO derivatives,” ACS Photonics 1(8), 703–709 (2014).
[Crossref]

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. Lebeau, Z. Sitar, J. Y. Suen, W. J. Padilla, and J. P. Maria, “Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials,” ACS Photonics 6(5), 1139–1145 (2019).
[Crossref]

Adv. Mater. (3)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

A. Kay, B. Scherrer, Y. Piekner, K. D. Malviya, D. A. Grave, H. Dotan, and A. Rothschild, “Film flip and transfer process to enhance light harvesting in ultrathin absorber films on specular back-reflectors,” Adv. Mater. 30, 1802781 (2018).
[Crossref]

A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]

Adv. Opt. Mater. (9)

V. Steenhoff, M. Theuring, M. Vehse, and K. Von Maydell, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Adv. Opt. Mater. 3(2), 182–186 (2015).
[Crossref]

L. Peng, D. Liu, H. Cheng, S. Zhou, and M. Zu, “A multilayer film based selective thermal emitter for infrared stealth technology,” Adv. Opt. Mater. 6(23), 1801006 (2018).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, E. S. Duman, A. Bek, V. B. Erturk, and E. Ozbay, “Lithography-free random bismuth nanostructures for full solar spectrum harvesting and mid-infrared sensing,” Adv. Opt. Mater. 8(4), 1901203 (2020).
[Crossref]

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-area low-cost dielectric perfect absorber by one-step sputtering,” Adv. Opt. Mater. 7, 1801596 (2019).
[Crossref]

M. Rebello, S. Dias, C. Gong, Z. A. Benson, and M. S. Leite, “Lithography-free, omnidirectional, CMOS-compatible AlCu alloys for thin-film superabsorbers,” Adv. Opt. Mater. 6(2), 1700830 (2018).
[Crossref]

A. Ghobadi, T. G. Ulusoy Ghobadi, F. Karadas, and E. Ozbay, “Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications,” Adv. Opt. Mater. 7(14), 1900028 (2019).
[Crossref]

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering Light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5, 1700368 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

F. Z. Shu, F. F. Yu, R. W. Peng, Y. Y. Zhu, B. Xiong, R. H. Fan, Z. H. Wang, Y. Liu, and M. Wang, “Dynamic plasmonic color generation based on phase transition of vanadium dioxide,” Adv. Opt. Mater. 6, 1700939 (2018).
[Crossref]

Adv. Photonics Res. (1)

A. Shabani, M. Tsegay Korsa, S. Petersen, M. Khazaei Nezhad, Y. Kumar Mishra, and J. Adam, “Zirconium nitride: optical properties of an emerging intermetallic for plasmonic applications,” Adv. Photonics Res. 2(11), 2100178 (2021).
[Crossref]

APL Mater. (1)

U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, “Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection,” APL Mater. 7(7), 071102 (2019).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005).
[Crossref]

K. Yao, R. Toole, P. Basnet, and Y. Zhao, “Highly sensitive double-layered nanorod array gas sensors prepared by oblique angle deposition,” Appl. Phys. Lett. 104(7), 073110 (2014).
[Crossref]

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101–4 (2011).
[Crossref]

Chem. Mater. (1)

H. Robatjazi, S. M. Bahauddin, L. H. Macfarlan, S. Fu, and I. Thomann, “Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication,” Chem. Mater. 28(13), 4546–4553 (2016).
[Crossref]

ChemPhotoChem (1)

T. G. U. Ghobadi, A. Ghobadi, E. Ozbay, and F. Karadas, “Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting,” ChemPhotoChem 2(3), 161–182 (2018).
[Crossref]

Eur. Phys. J. B (1)

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86(4), 154 (2013).
[Crossref]

Front. Phys. (1)

Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

P. K. B. Palomaki, E. M. Miller, and N. R. Neale, “Control of plasmonic and interband transitions in colloidal indium nitride nanocrystals,” J. Am. Chem. Soc. 135(38), 14142–14150 (2013).
[Crossref]

J. Heat Transfer (1)

B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
[Crossref]

J. Nanophotonics (1)

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

J. Opt. (1)

A. Habib, F. Florio, and R. Sundararaman, “Hot carrier dynamics in plasmonic transition metal nitrides,” J. Opt. 20(6), 064001 (2018).
[Crossref]

J. Phys. Chem. C (1)

I. A. Digdaya, B. J. Trześniewski, G. W. P. Adhyaksa, E. C. Garnett, and W. A. Smith, “General considerations for improving photovoltage in metal−insulator−semiconductor photoanodes,” J. Phys. Chem. C 122(10), 5462–5471 (2018).
[Crossref]

Light: Sci. Appl. (1)

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light: Sci. Appl. 7(1), 1–10 (2018).
[Crossref]

Mater. Today (2)

R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C. W. Qiu, “Thermal camouflaging metamaterials,” Mater. Today 45, 120–141 (2021).
[Crossref]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

Nano Lett. (4)

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref]

S. Daqiqeh Rezaei, J. Ho, T. Wang, J. K. W. Yang, and S. Ramakrishna, “Direct color printing with an electron beam,” Nano Lett. 20(6), 4422–4429 (2020).
[Crossref]

E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, and D. J. Milliron, “Defect engineering in plasmonic metal oxide nanocrystals,” Nano Lett. 16(5), 3390–3398 (2016).
[Crossref]

Nano Res. (1)

D. Liu, H. Yu, Z. Yang, and Y. Duan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).
[Crossref]

Nanophotonics (7)

F. B. Barho, F. Gonzalez-Posada, M. J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” Nanophotonics 7(2), 507–516 (2017).
[Crossref]

J. Zhang, D. Wang, Y. Ying, H. Zhou, X. Liu, X. Hu, Y. Chen, Q. Li, X. Zhang, and M. Qiu, “Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display,” Nanophotonics 10(16), 4125–4131 (2021).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: From narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

J. E. Melzer and E. McLeod, “3D Nanophotonic device fabrication using discrete components,” Nanophotonics 9(6), 1373–1390 (2020).
[Crossref]

T. Taliercio and P. Biagioni, “Semiconductor infrared plasmonics,” Nanophotonics 8(6), 949–990 (2019).
[Crossref]

R. Zhou, S. Yang, Q. Lin, L. Tang, D. Liu, K. Ullah, S. Li, and Y. Zhao, “Recent advances in graphene and black phosphorus nonlinear plasmonics,” Nanophotonics 9(7), 1695–1715 (2020).
[Crossref]

X. Ruan, W. Dai, W. Wang, C. Ou, Q. Xu, Z. Zhou, Z. Wen, C. Liu, J. Hao, Z. Guan, and H. Xu, “Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials,” Nanophotonics 10(6), 1683–1690 (2021).
[Crossref]

Nanoscale (2)

X. Liu, Z. Li, Z. Wen, M. Wu, J. Lu, X. Chen, X. Zhao, T. Wang, R. Ji, Y. Zhang, L. Sun, B. Zhang, H. Xu, J. Zhou, J. Hao, S. Wang, X. Chen, N. Dai, W. Lu, and X. Shen, “Large-area, lithography-free, narrow-band and highly directional thermal emitter,” Nanoscale 11(42), 19742–19750 (2019).
[Crossref]

C. Lan, Z. Shi, R. Cao, C. Li, and H. Zhang, “2D materials beyond graphene toward Si integrated infrared optoelectronic devices,” Nanoscale 12(22), 11784–11807 (2020).
[Crossref]

Nanoscale Adv. (2)

J. K. Behera, K. Liu, M. Lian, and T. Cao, “A reconfigurable hyperbolic metamaterial perfect absorber,” Nanoscale Adv. 3(6), 1758–1766 (2021).
[Crossref]

J. Lee, J. Kim, and M. Lee, “High-purity reflective color filters based on thin film cavities embedded with an ultrathin Ge2Sb2Te5 absorption layer,” Nanoscale Adv. 2(10), 4930–4937 (2020).
[Crossref]

Nat. Commun. (5)

M. Sakamoto, T. Kawawaki, M. Kimura, T. Yoshinaga, J. J. M. Vequizo, H. Matsunaga, C. S. K. Ranasinghe, A. Yamakata, H. Matsuzaki, A. Furube, and T. Teranishi, “Clear and transparent nanocrystals for infrared-responsive carrier transfer,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu, and Q. J. Wang, “Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection,” Nat. Commun. 9(1), 1–8 (2018).
[Crossref]

Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, “Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling,” Nat. Commun. 12(1), 1–8 (2021).
[Crossref]

S. Abedini Dereshgi, T. G. Folland, A. A. Murthy, X. Song, I. Tanriover, V. P. Dravid, J. D. Caldwell, and K. Aydin, “Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes,” Nat. Commun. 11(1), 5771 (2020).
[Crossref]

Nat. Mater. (2)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref]

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref]

Nat. Photonics (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

New J. Phys. (1)

X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013).
[Crossref]

Opt. Express (9)

T. J. Palinski, A. Tadimety, I. Trase, B. E. Vyhnalek, G. W. Hunter, E. Garmire, and J. X. J. Zhang, “Vibrant reflective sensors with percolation film Fabry-Pérot nanocavities,” Opt. Express 29(16), 25000 (2021).
[Crossref]

Q. He, N. Youngblood, Z. Cheng, X. Miao, and H. Bhaskaran, “Dynamically tunable transmissive color filters using ultra-thin phase change materials,” Opt. Express 28(26), 39841 (2020).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref]

H. Shen, L. Yang, Y. Jin, and S. He, “Perfect mid-infrared dual-band optical absorption realized by a simple lithography-free polar dielectric/metal double-layer nanostructure,” Opt. Express 28(21), 31414 (2020).
[Crossref]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[Crossref]

J. Toudert, R. Serna, M. G. Pardo, N. Ramos, R. J. Peláez, and B. Maté, “Mid-to-far infrared tunable perfect absorption by a sub - λ/100 nanofilm in a fractal phasor resonant cavity,” Opt. Express 26(26), 34043 (2018).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref]

E. Azmoudeh and S. Farazi, “Ultrafast and low power all-optical switching in the mid-infrared region based on nonlinear highly doped semiconductor hyperbolic metamaterials,” Opt. Express 29(9), 13504 (2021).
[Crossref]

H. Hajian, A. Ghobadi, B. Butun, and E. Ozbay, “Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals,” Opt. Express 25(25), 31970–31987 (2017).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (2)

Photonic Res. (1)

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonic Res. 5(6), 536–542 (2017).
[Crossref]

Photonics Res. (1)

A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photonics Res. 6(3), 168–176 (2018).
[Crossref]

Phys. B (1)

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

Phys. Rep. (1)

I. Kriegel, F. Scotognella, and L. Manna, “Plasmonic doped semiconductor nanocrystals: properties, fabrication, applications and perspectives,” Phys. Rep. 674, 1–52 (2017).
[Crossref]

Phys. Rev. Lett. (1)

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers,” Phys. Rev. Lett. 8(1), 014009 (2017).
[Crossref]

Phys. Rev. Mater. (1)

A. Cleri, J. Tomko, K. Quiambao-Tomko, M. V. Imperatore, Y. Zhu, J. R. Nolen, J. Nordlander, J. D. Caldwell, Z. Mao, N. C. Giebink, K. P. Kelley, E. L. Runnerstrom, P. E. Hopkins, and J. P. Maria, “Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide,” Phys. Rev. Mater. 5(3), 035202 (2021).
[Crossref]

Phys. Status Solidi A (1)

J. Toudert, “Spectrally tailored light-matter interaction in lithography-free functional nanomaterials,” Phys. Status Solidi A 217, 1900677 (2020).
[Crossref]

Phys. Status Solidi RRL (1)

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal-tunable metamaterial,” Phys. Status Solidi RRL 14, 2000066 (2020).
[Crossref]

Prog. Mater. Sci. (1)

A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition of thin films: From fundamentals to devices,” Prog. Mater. Sci. 76, 59–153 (2016).
[Crossref]

Sci. Adv. (6)

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 1–8 (2020).
[Crossref]

Z. Cheng, T. Milne, P. Salter, J. S. Kim, S. Humphrey, M. Booth, and H. Bhaskaran, “Antimony thin films demonstrate programmable optical nonlinearity,” Sci. Adv. 7(1), 1–10 (2021).
[Crossref]

M. Li, D. Liu, H. Cheng, L. Peng, and M. Zu, “Manipulating metals for adaptive thermal camouflage,” Sci. Adv. 6(22), 1–11 (2020).
[Crossref]

Z. Xia, H. Song, M. Kim, M. Zhou, T. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, F. Xia, Z. Yu, Z. J. Ma, and Q. Gan, “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Sci. Adv. 3(7), 1–9 (2017).
[Crossref]

C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo, C. Li, C. Ma, S. Yuan, E. Sung, K. Watanabe, T. Taniguchi, L. Yang, and F. Xia, “Widely tunable mid-infrared light emission in thin-film black phosphorus,” Sci. Adv. 6(7), 1–8 (2020).
[Crossref]

Sci. Rep. (7)

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746–9 (2016).
[Crossref]

M. Desouky, A. M. Mahmoud, and M. A. Swillam, “Silicon based mid-IR super absorber using hyperbolic metamaterial,” Sci. Rep. 8(1), 2036 (2018).
[Crossref]

Q. Li, K. Du, K. Mao, X. Fang, D. Zhao, H. Ye, and M. Qiu, “Transmission enhancement based on strong interference in metal- semiconductor layered film for energy harvesting,” Sci. Rep. 6(1), 29195 (2016).
[Crossref]

D. Liu, H. Yu, Y. Duan, Q. Li, and Y. Xuan, “New insight into the angle insensitivity of ultrathin planar optical absorbers for broadband solar energy harvesting,” Sci. Rep. 6(1), 32515 (2016).
[Crossref]

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A fully functionalized metamaterial perfect absorber with simple design and implementation,” Sci. Rep. 6(1), 36244 (2016).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi- thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 1–10 (2017).
[Crossref]

Science (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids. Vol. 3 (Academic, 1998).

Data availability

No data were generated or analyzed in the presented research.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. Schematic illustration of lithography-free fabrication routes.
Fig. 2.
Fig. 2. Possible absorber materials for the realization of LFMAs in different portions of the optical spectrum.