Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multifunctional reflection type anisotropic metasurfaces in the terahertz band

Open Access Open Access

Abstract

Based on the convolution and superposition theorem, we propose a reflective anisotropic metasurface to realize the functions of deflection and superposition of vortex beams, bifocal focusing, and focusing vortex beam. At frequency of 1.04THz, two deflection vortex beams with topological charges of (l=-1 and l=+2) and (l=+1 and l=-2) are generated under x- and y-polarized terahertz wave incidence, respectively. At focal plane, 1200µm from the top layer of the proposed metasurface, one can see that the bifocal focusing along y-axis and x-axis are produced under x- and y-polarized terahertz wave incidence, respectively. Similarly, focusing vortex beams with l=+1 and l=-2 are realized under x- and y-polarized terahertz wave incidence, respectively. The designed metasurface can flexibly manipulate terahertz wave under different polarization waves incidence and has potential application prospects in fields of terahertz communication.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Metasurfaces are two-dimensional artificial composite electromagnetic materials in which subwavelength metal particles are periodically arranged to adjust the polarization, amplitude, phase of electromagnetic waves [1,2] to realize beam deflection [35], metalens [68], vortex beam [911] and holographic imaging [1214]. In recent years, different function metasurfaces have been reported. More recently, multifunctional metasurface have received much attention [1517]. In 2017, Cai et al. [18] revealed microwave bifunctional meta-device to exhibit focusing and wave bending functionalities depending on the incident polarization. In 2018, Zhuang et al. [19] designed a bifunctional metasurface composed of four cross-shaped patches and three dielectric layers to achieve diffuse reflection and transmission focusing. In 2019, Kou et al. [20] demonstrated a linear-polarized terahertz focusing metasurface composed of the upper and lower two composite cruciform metals and a medium dielectric layer under a normal incidence. In 2020, Luan et al. [21] presented an asymmetric meta-device composed of the upper meta-pattern, middle grating and lower metasurface for focusing, vortex and Bessel beam generation operating in optical region. Rajabalipanah et al. [22] designed a two-dimensional reflective array based on vertical graphene-based meta-atoms to realize polarization-multiplexed meta-hologram. In 2021, Liu et al. [23] proposed an all-dielectric metasurface to convert orthogonally polarized fundamental Gaussian modes to HG10 and HG11 modes. However, these mentioned metasurfaces less use the convolution and the superposition theorem to increase the diversity of metasurface functions. Therefore, it’s necessary and meaningful to design metasurface combined with the convolution and the superposition theorem.

In this paper, we design a new reflective anisotropic metasurface, which consists of a metal pattern layer, polyimide layer and metal plate bottom layer. The metal pattern is composed of a rectangular metal plate with a hollow cross and a metal cross structure. Using the convolution and the superposition theorem, the proposed metasurface realizes the functions of deflection and superposition of vortex beams, bifocal focusing, and focusing vortex beam. The simulation results are consistent with the pre-design, and the simulation results show that the proposed metasurface can flexibly manipulate terahertz wave under x-polarized and y-polarized terahertz wave incidence.

2. Structure design and theoretical analysis

The functional diagram realized by the reflective anisotropic metasurface is shown in Fig. 1(a). The metal particle from top to bottom is the metal pattern, the polyimide layer and bottom metal plate, as illustrated in Fig. 1(b). The metal pattern consists of a rectangular metal plate with a hollow cross and a metal cross structure. The structural parameters of the rectangular metal plate with a hollow cross are 90µm and 30µm, respectively. The material is gold, the conductivity σAu = 4.561×107 S/m and the thickness is 1 µm. The thickness of polyimide layer(ɛr = 3.5) is 30µm with period of P = 100µm. The electromagnetic simulation software CST Studio Suite is used to simulate the designed structure. The phases 0°, 90°, 180° and 270° represent “1”, “2”, “3” and “4”, respectively. Figure 2 shows that the reflection amplitudes of the designed anisotropic unit cells are larger than 0.92, and the reflection phases satisfy the gradient phases of 0°, 90°, 180° and 270° distributed at the operating frequency of 1.04THz, under both x-polarized and y-polarized terahertz wave incidence. The optimized size parameters of the anisotropic metal particles are shown in Table 1.

 figure: Fig. 1.

Fig. 1. (a) Functional schematic diagram of the designed anisotropic metasurface; (b) three-dimensional(3D) metal particle.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2.

Fig. 2. Reflection amplitude and phase of 16 metal particles under different polarizations terahertz wave incidence. (a)Metal particle reflection amplitude and (c) reflection phase under x-polarized terahertz wave incidence; (b) Metal particle reflection amplitude and (d) reflection phase under y-polarized terahertz wave incidence (marked line is at the operating frequency of 1.04THz, the numbers before and after “/” indicate the phase states in x-polarization and y-polarization, respectively).

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Size parameters of anisotropic metal particles

3. Performance analysis and discussion

3.1 Deflection and superposition of vortex beams

The designed metasurface electric field distribution and the scattering function of the far field are the Fourier transform pair, which can be given by [24]

$$\textrm{f}(\textrm{x} ){\cdot}{\textrm{e}^{\textrm{jsin}{\theta _0}x}}\mathop \Leftrightarrow \limits^{\textrm{FFT}} \mathrm{F}(\mathrm{sin}{\theta )\ast}\delta ({\mathrm{sin\theta}} - \textrm{sin}{{\theta}_0} )= {\mathrm{F}(\mathrm{sin}{\theta}} - \textrm{sin}{{\theta}_0})$$
where ${\textrm{e}^{\textrm{jsin}{{\theta}_\textrm{0}}\textrm{x}}}$ represents the distribution of scattering amplitude and phase the metasurface. The superposition theorem is a mixed mode obtained by adding two different function modes using the complex addition theorem, and the generating function can be expressed as [25]
$${\textrm{e}^{\textrm{j}{{\varphi }_\textrm{1}}}}\textrm{ + }{\textrm{e}^{\textrm{j}{{\varphi }_\textrm{2}}}}\textrm{ = }{\textrm{e}^{\textrm{j}{{\varphi }_\textrm{0}}}}$$

Among them, φ1 and φ2 are the phase distributions of the two different modes, and φ0 is the phase distribution of the mixed mode obtained after superposition. The phase distribution required for each element structure to produce a deflected vortex beam can be calculated by [26]

$${{\Phi }_\textrm{1}}{(x,\;\ y)\ =\ l}\cdot{\textrm{arctan}}\frac{{y}}{{x}}\textrm{ + }{\textrm{k}_\textrm{0}}{\mathrm{sin}\theta \mathrm{y}}$$
$${\theta =\ {\textrm{arcsin}}(\lambda /\varGamma )}$$
where λ is the wavelength of the operating frequency, l is the number of topological charge, Φ1(x, y) is the phase at the (x, y) on the metasurface, θ and k0 is the deflection angle and the wave number, and Γ is the length of the encoding period. At the operating frequency of 1.04THz, the period Γ1 = 400µm under x-polarized incidence wave, the calculated deflection angle ${{\theta}_\textrm{1}} \approx \mathrm{46^\circ }$. The period Γ2 = 800µm under y-polarized incidence wave, the calculated deflection angle ${{\theta}_\textrm{2}} \approx \mathrm{13^\circ }$.

The discretized phase distribution shown in Fig. 3 is arranged to obtain the metasurface M1, which consists of 24×24 metal particles. The 3D far-field scattering pattern and the two-dimensional(2D) scattering E-pattern when two different polarizations terahertz wave is incident on the metasurface M1 are obtained by calculation, as given in Fig. 4. As one can see, when the x-polarized terahertz wave incidence, two vortex beams with different deflection directions and different modes appear, which are (l=-1, φ1 = 0°, θ1 = 46°) and (l=+2, φ2 = 270°, θ1 = 46°), respectively. When the y-polarized terahertz wave incidence, two vortex beams with different deflection directions and different modes are generated, which are (l=+1, φ3 = 180°, θ2 = 13°) and (l=-2, φ4 = 90°, θ2 = 13°), respectively. Figure 5 shows the purity of the OAM mode. One can see that the mode purities of OAM with topological charges l=-2, l=-1, l = 1 and l = 2 are 0.471, 0.2316, 0.362, and 0.3878, respectively.

 figure: Fig. 3.

Fig. 3. Design phase distribution of the deflection and superposition vortex beams generated by the proposed metasurface. (a) The corresponding phase distribution of the downward deflection vortex beam, the right deflection vortex beam, and the superposition vortex beam under x-polarized terahertz wave incidence; (b) Phases distribution of the left deflection vortex beam, the upward deflection vortex beam and the superimposition vortex beam under y-polarized terahertz wave incidence; (c) Designed metasurface M1.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. At frequency of 1.04THz, (a) 3D far-field scattering pattern and 2D scattering E-pattern curve in Cartesian coordinate of multi-vortex beam under x-polarized terahertz wave incidence; (a) 3D far-field scattering pattern and 2D scattering E-pattern curve in Cartesian coordinate of multi-vortex beam under y-polarized terahertz wave incidence.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5.

Fig. 5. The purity of the OAM mode with different topological charges.

Download Full Size | PPT Slide | PDF

3.2 Bifocal focusing

The compensation phase required to achieve focusing for each unit cell can be calculated by the following equation [27]:

$${{\Phi }_2}{(x, y) = }\frac{{\mathrm{2\pi }}}{{\lambda }}\textrm{(}\sqrt {{{{(x\ \pm m)}}^{2}}{ + }{{y}^{2}}{ + z}_{f}^{2}} { - }{{z}_{f}})\; $$
$${{\Phi }_3}{(x, y) = }\frac{{{2\pi }}}{{\lambda }}{(}\sqrt {{{x}^{2}}{ + }{{({{y\ \pm n}} )}^{2}}{ + z}_{f}^{2}} { - }{{z}_{f}})$$
where λ is the wavelength, m and n are the deviation distance in the positive direction of the x-axis and y-axis, respectively, m = n = 600µm, and the focal length zf=1200µm.

According to the discretized phase distribution of bifocal focusing, the metasurface M2 is arranged as shown in Fig. 6(c). Figure 7 provides the electric field distributions and normalized electric field intensity curves in the focal plane at zf=1200µm when x-polarized and y-polarized terahertz wave is incident. In this article, we set the operating frequency of 1.04THz and the focal plane at zf=1200µm. Figures 7(a) and 7(d) shows two focal points along y-axis and x-axis under x-polarized and y-polarized terahertz wave incidence. Corresponding normalized electric field intensity curves are illustrated in Figs. 7(b) and 7(e). From the figure, one can see that the full width at half maximum (FWHM) of normalized electric field intensity are FWHM1 = 241µm≈0.837λ and FWHM2 = 259µm≈0.899λ under x-polarized terahertz wave incidence, FWHM3 = 259µm≈0.899λ and FWHM4 = 241µm≈0.837λ under y-polarized terahertz wave incidence. The focal point position moves from the center to the sides as the focal length increases under different polarization, as depicted in Figs. 7(c) and 7(f). At the focal plane zf =1200µm, we can find that the maximum value of electric field intensity of four focal points locates in (x= -582µm, y = 0µm), (x = 582µm, y = 0µm), (x = 0µm, y=-582µm) and (x = 0µm, y = 582µm). Here, the four pre-designed positions are (x= -600µm, y = 0µm), (x = 600µm, y = 0µm), (x = 0µm, y=-600µm) and (x = 0µm, y = 600µm). One can see that there is a slight deviation between the simulation results and the preset values.

 figure: Fig. 6.

Fig. 6. The design phase distribution of the bifocal focusing realized by the proposed metasurface. (a) The phase distributions of downward deviation focusing, upward deviation focusing and bifocal focusing under x-polarized terahertz wave incidence; (b) Phase distributions of left deviation focusing, right deviation focusing and bifocal focusing under y-polarized terahertz wave incidence; (c) the designed metasurface M2.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7.

Fig. 7. At frequency of 1.04THz and in the focal plane of zf = 1200µm, (a) The electric field distribution and (b) normalized electric field intensity under x-polarized terahertz wave incidence; (c)The variation of focal point position and normalized electric field intensity with different focal length under x-pol; (d)The electric field distribution and (e) normalized electric field intensity under y-polarized terahertz wave incidence; (f)The variation of focal point position and normalized electric field intensity with different focal length under y-pol.

Download Full Size | PPT Slide | PDF

3.3 Focusing vortex beam

The helical phase distribution of the focusing vortex beam can be obtained by adding the phase distribution of the focusing lens and the vortex beam [28]:

$${{\Phi }_4}{(x, \ y)\ =\ l}\cdot{\textrm{arctan}}\frac{{y}}{{x}}{ + }\frac{{{2\pi }}}{{\lambda }}{(}\sqrt {{{x}^{2}}{ + }{{y}^{2}}{ + z}_{f}^{2}} { - }{{z}_{f}})$$

The metasurface M3 is arranged according to the discretized phase distribution that realizes the focusing vortex beam, as shown in Fig. 8. To characterize the performance of focusing vortex beam, the electric field distributions and normalized electric field intensity curves in the focal plane at zf=1200µm are provided in Fig. 8 under x-polarized and y-polarized terahertz wave incidence. At the operating frequency of 1.04THz and in the focal plane of zf=1200µm, when the x-polarized terahertz wave incidence, a focusing vortex beam with l=+1 appears. The electric field distribution and the phase distribution in the focal plane are shown in Fig. 9(a) and 9(b), respectively. When the y-polarized terahertz wave incidence, a focusing vortex beam with l=-2 appears, the electric field distribution and the phase distribution in the focal plane are displayed in Fig. 9(d) and 9(d).

 figure: Fig. 8.

Fig. 8. The design focusing vortex phase distribution realized by the proposed metasurface. (a) The phase distributions of vortex beam with (l=+1), focusing lens, and focusing vortex beam under x-polarized terahertz wave incidence; (b) The phase distributions of vortex beam with (l=-2), focusing lens, and focusing vortex beam under y-polarized terahertz wave incidence; (c) The designed metasurface M3.

Download Full Size | PPT Slide | PDF

 figure: Fig. 9.

Fig. 9. At frequency of 1.04THz and in the focal plane of zf = 1200µm, the distribution of the electric field (a) and phase (b) under the x-polarized wave incidence. The distribution of electric field (c) and phase (d) under the y-polarized wave incidence.

Download Full Size | PPT Slide | PDF

4. Conclusion

To sum up, we proposed a reflective anisotropic metasurface, which can produce different regulation functions for x-polarized and y-polarized terahertz wave incidence without changing the metasurface arrangement. The designed metasurface based on the convolution and superposition theorem can realize three functions, such as deflection and superposition of vortex beams, bifocal focusing and focusing vortex beam. The simulation results are consistent with the theoretical predesigns. The reflective anisotropic metasurface is simple and can flexibly control terahertz wave. The results display that the designed terahertz metasurface device has widely application prospects in the field of terahertz system in the future.

Funding

National Natural Science Foundation of China (61831012, 61871355); Talent project of Zhejiang Provincial Department of Science and Technology (2018R52043); Zhejiang Key R & D Project of China (2021C03153, 2022C03166); Research Funds for the Provincial Universities of Zhejiang (2020YW20, 2021YW86).

Disclosures

The authors declare no conflicts of interest.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

1. Q. Ma, G. D. Bai, H. Jing, C. Yang, L. Li, and T. Cui, “Smart metasurface with self-adaptively reprogrammable functions,” Light Sci Appl 8(1), 1–12 (2019). [CrossRef]  

2. S. Zhang, C. L. Wong, S. Zeng, R. Bi, K. Tai, K. Dholakia, and M. Olivo, “Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective,” Nanophotonics 10(1), 259–293 (2020). [CrossRef]  

3. Y. Saifullah, A. Waqas, G. Yang, and F. Xu, “Multi-bit dielectric coding metasurface for EM wave manipulation and anomalous reflection,” Opt. Express 28(2), 1139–1149 (2020). [CrossRef]  

4. Z. Li, W. Wang, S. Deng, J. Qu, Y. Li, B. Lv, W. Li, X. Gao, Z. Zhu, C. Guan, and J. Shi, “Active beam manipulation and convolution operation in VO2-integrated coding terahertz metasurfaces,” Opt. Lett. 47(2), 441–444 (2022). [CrossRef]  

5. Q. Ma, C. Shi, G. Bai, T. Chen, A. Noor, and T. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017). [CrossRef]  

6. X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019). [CrossRef]  

7. S. Tian, H. Guo, J. Hu, and S. Zhuang, “Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency,” Opt. Express 27(2), 680–688 (2019). [CrossRef]  

8. Z. Shen, S. Zhou, S. Ge, W. Duan, L. Ma, Y. Lu, and W. Hu, “Liquid crystal tunable terahertz lens with spin-selected focusing property,” Opt. Express 27(6), 8800 (2019). [CrossRef]  

9. D. Zhang, X. Cao, H. Yang, J. Gao, and X. Zhu, “Multiple OAM vortex beams generation using 1-bit metasurface,” Opt. Express 26(19), 24804–24815 (2018). [CrossRef]  

10. K. Liu, G. Wang, T. Cai, B. Dai, Y. Xiao, H. Li, and W. Guo, “Dual-frequency geometric phase metasurface for dual-mode vortex beam generator,” J. Phys. D: Appl. Phys. 52(25), 255002 (2019). [CrossRef]  

11. L. Wang, Y. Yang, S. Li, L. Deng, W. Hong, C. Zhang, J. Zhu, and D. Mcgloin, “Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide,” IEEE Photonics J. 12(3), 1–12 (2020). [CrossRef]  

12. Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021). [CrossRef]  

13. F. Yue, C. Zhang, X. Zang, D. Wen, B. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light: Sci. Appl. 7(1), 17129 (2018). [CrossRef]  

14. Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020). [CrossRef]  

15. K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021). [CrossRef]  

16. T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022). [CrossRef]  

17. T. Liu, Y. Meng, H. Ma, J. Wang, X. Wang, R. Zhu, H. Wang, J. Yang, Y. Li, and S. Qu, “Generating diverse functionalities simultaneously and independently for arbitrary linear polarized illumination enabled by a chiral transmission-reflection-selective bifunctional metasurface,” Opt. Express 30(5), 7124–7136 (2022). [CrossRef]  

18. T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017). [CrossRef]  

19. Y. Zhuang, G. Wang, T. Cai, and Q. Zhang, “Design of bifunctional metasurface based on independent control of transmission and reflection,” Opt. Express 26(3), 3594–3603 (2018). [CrossRef]  

20. W. Kou, Y. Zhang, T. Chen, Z. Yang, and S. Liang, “Multifunctional linear-polarized terahertz focusing metasurface,” Microw. Opt. Technol. Lett. 62(8), 2721–2727 (2020). [CrossRef]  

21. J. Luan, S. Yang, D. Liu, and M. Zhang, “Polarization and direction-controlled asymmetric multifunctional metadevice for focusing, vortex and Bessel beam generation,” Opt. Express 28(3), 3732–3744 (2020). [CrossRef]  

22. H. Rajabalipanah, K. Rouhi, A. Abdolali, S. Iqbal, L. Zhang, and S. Liu, “Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms,” Nanophotonics 9(9), 2861–2877 (2020). [CrossRef]  

23. W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021). [CrossRef]  

24. S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016). [CrossRef]  

25. R. Wu, C. Shi, S. Liu, W. Wu, and T. Cui, “Addition theorem for digital coding metamaterials,” Adv. Opt. Mater. 6(5), 1701236 (2018). [CrossRef]  

26. W. Guo, G. Wang, X. Luo, H. Hou, K. Chen, and Y. Feng, “Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring,” Ann. Phys. 532(3), 1900472 (2020). [CrossRef]  

27. R. Wang, J. Han, J. Liu, H. Tian, W. Sun, L. Li, and X. Chen, “Multi-foci metalens for terahertz polarization detection,” Opt. Lett. 45(13), 3506–3509 (2020). [CrossRef]  

28. W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021). [CrossRef]  

References

  • View by:

  1. Q. Ma, G. D. Bai, H. Jing, C. Yang, L. Li, and T. Cui, “Smart metasurface with self-adaptively reprogrammable functions,” Light Sci Appl 8(1), 1–12 (2019).
    [Crossref]
  2. S. Zhang, C. L. Wong, S. Zeng, R. Bi, K. Tai, K. Dholakia, and M. Olivo, “Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective,” Nanophotonics 10(1), 259–293 (2020).
    [Crossref]
  3. Y. Saifullah, A. Waqas, G. Yang, and F. Xu, “Multi-bit dielectric coding metasurface for EM wave manipulation and anomalous reflection,” Opt. Express 28(2), 1139–1149 (2020).
    [Crossref]
  4. Z. Li, W. Wang, S. Deng, J. Qu, Y. Li, B. Lv, W. Li, X. Gao, Z. Zhu, C. Guan, and J. Shi, “Active beam manipulation and convolution operation in VO2-integrated coding terahertz metasurfaces,” Opt. Lett. 47(2), 441–444 (2022).
    [Crossref]
  5. Q. Ma, C. Shi, G. Bai, T. Chen, A. Noor, and T. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
    [Crossref]
  6. X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
    [Crossref]
  7. S. Tian, H. Guo, J. Hu, and S. Zhuang, “Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency,” Opt. Express 27(2), 680–688 (2019).
    [Crossref]
  8. Z. Shen, S. Zhou, S. Ge, W. Duan, L. Ma, Y. Lu, and W. Hu, “Liquid crystal tunable terahertz lens with spin-selected focusing property,” Opt. Express 27(6), 8800 (2019).
    [Crossref]
  9. D. Zhang, X. Cao, H. Yang, J. Gao, and X. Zhu, “Multiple OAM vortex beams generation using 1-bit metasurface,” Opt. Express 26(19), 24804–24815 (2018).
    [Crossref]
  10. K. Liu, G. Wang, T. Cai, B. Dai, Y. Xiao, H. Li, and W. Guo, “Dual-frequency geometric phase metasurface for dual-mode vortex beam generator,” J. Phys. D: Appl. Phys. 52(25), 255002 (2019).
    [Crossref]
  11. L. Wang, Y. Yang, S. Li, L. Deng, W. Hong, C. Zhang, J. Zhu, and D. Mcgloin, “Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide,” IEEE Photonics J. 12(3), 1–12 (2020).
    [Crossref]
  12. Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
    [Crossref]
  13. F. Yue, C. Zhang, X. Zang, D. Wen, B. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light: Sci. Appl. 7(1), 17129 (2018).
    [Crossref]
  14. Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
    [Crossref]
  15. K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021).
    [Crossref]
  16. T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022).
    [Crossref]
  17. T. Liu, Y. Meng, H. Ma, J. Wang, X. Wang, R. Zhu, H. Wang, J. Yang, Y. Li, and S. Qu, “Generating diverse functionalities simultaneously and independently for arbitrary linear polarized illumination enabled by a chiral transmission-reflection-selective bifunctional metasurface,” Opt. Express 30(5), 7124–7136 (2022).
    [Crossref]
  18. T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
    [Crossref]
  19. Y. Zhuang, G. Wang, T. Cai, and Q. Zhang, “Design of bifunctional metasurface based on independent control of transmission and reflection,” Opt. Express 26(3), 3594–3603 (2018).
    [Crossref]
  20. W. Kou, Y. Zhang, T. Chen, Z. Yang, and S. Liang, “Multifunctional linear-polarized terahertz focusing metasurface,” Microw. Opt. Technol. Lett. 62(8), 2721–2727 (2020).
    [Crossref]
  21. J. Luan, S. Yang, D. Liu, and M. Zhang, “Polarization and direction-controlled asymmetric multifunctional metadevice for focusing, vortex and Bessel beam generation,” Opt. Express 28(3), 3732–3744 (2020).
    [Crossref]
  22. H. Rajabalipanah, K. Rouhi, A. Abdolali, S. Iqbal, L. Zhang, and S. Liu, “Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms,” Nanophotonics 9(9), 2861–2877 (2020).
    [Crossref]
  23. W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021).
    [Crossref]
  24. S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
    [Crossref]
  25. R. Wu, C. Shi, S. Liu, W. Wu, and T. Cui, “Addition theorem for digital coding metamaterials,” Adv. Opt. Mater. 6(5), 1701236 (2018).
    [Crossref]
  26. W. Guo, G. Wang, X. Luo, H. Hou, K. Chen, and Y. Feng, “Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring,” Ann. Phys. 532(3), 1900472 (2020).
    [Crossref]
  27. R. Wang, J. Han, J. Liu, H. Tian, W. Sun, L. Li, and X. Chen, “Multi-foci metalens for terahertz polarization detection,” Opt. Lett. 45(13), 3506–3509 (2020).
    [Crossref]
  28. W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
    [Crossref]

2022 (3)

2021 (4)

Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
[Crossref]

K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021).
[Crossref]

W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021).
[Crossref]

W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
[Crossref]

2020 (9)

W. Guo, G. Wang, X. Luo, H. Hou, K. Chen, and Y. Feng, “Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring,” Ann. Phys. 532(3), 1900472 (2020).
[Crossref]

R. Wang, J. Han, J. Liu, H. Tian, W. Sun, L. Li, and X. Chen, “Multi-foci metalens for terahertz polarization detection,” Opt. Lett. 45(13), 3506–3509 (2020).
[Crossref]

W. Kou, Y. Zhang, T. Chen, Z. Yang, and S. Liang, “Multifunctional linear-polarized terahertz focusing metasurface,” Microw. Opt. Technol. Lett. 62(8), 2721–2727 (2020).
[Crossref]

J. Luan, S. Yang, D. Liu, and M. Zhang, “Polarization and direction-controlled asymmetric multifunctional metadevice for focusing, vortex and Bessel beam generation,” Opt. Express 28(3), 3732–3744 (2020).
[Crossref]

H. Rajabalipanah, K. Rouhi, A. Abdolali, S. Iqbal, L. Zhang, and S. Liu, “Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms,” Nanophotonics 9(9), 2861–2877 (2020).
[Crossref]

L. Wang, Y. Yang, S. Li, L. Deng, W. Hong, C. Zhang, J. Zhu, and D. Mcgloin, “Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

S. Zhang, C. L. Wong, S. Zeng, R. Bi, K. Tai, K. Dholakia, and M. Olivo, “Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective,” Nanophotonics 10(1), 259–293 (2020).
[Crossref]

Y. Saifullah, A. Waqas, G. Yang, and F. Xu, “Multi-bit dielectric coding metasurface for EM wave manipulation and anomalous reflection,” Opt. Express 28(2), 1139–1149 (2020).
[Crossref]

2019 (5)

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
[Crossref]

S. Tian, H. Guo, J. Hu, and S. Zhuang, “Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency,” Opt. Express 27(2), 680–688 (2019).
[Crossref]

Z. Shen, S. Zhou, S. Ge, W. Duan, L. Ma, Y. Lu, and W. Hu, “Liquid crystal tunable terahertz lens with spin-selected focusing property,” Opt. Express 27(6), 8800 (2019).
[Crossref]

Q. Ma, G. D. Bai, H. Jing, C. Yang, L. Li, and T. Cui, “Smart metasurface with self-adaptively reprogrammable functions,” Light Sci Appl 8(1), 1–12 (2019).
[Crossref]

K. Liu, G. Wang, T. Cai, B. Dai, Y. Xiao, H. Li, and W. Guo, “Dual-frequency geometric phase metasurface for dual-mode vortex beam generator,” J. Phys. D: Appl. Phys. 52(25), 255002 (2019).
[Crossref]

2018 (4)

F. Yue, C. Zhang, X. Zang, D. Wen, B. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light: Sci. Appl. 7(1), 17129 (2018).
[Crossref]

D. Zhang, X. Cao, H. Yang, J. Gao, and X. Zhu, “Multiple OAM vortex beams generation using 1-bit metasurface,” Opt. Express 26(19), 24804–24815 (2018).
[Crossref]

Y. Zhuang, G. Wang, T. Cai, and Q. Zhang, “Design of bifunctional metasurface based on independent control of transmission and reflection,” Opt. Express 26(3), 3594–3603 (2018).
[Crossref]

R. Wu, C. Shi, S. Liu, W. Wu, and T. Cui, “Addition theorem for digital coding metamaterials,” Adv. Opt. Mater. 6(5), 1701236 (2018).
[Crossref]

2017 (2)

Q. Ma, C. Shi, G. Bai, T. Chen, A. Noor, and T. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

2016 (1)

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Abdolali, A.

H. Rajabalipanah, K. Rouhi, A. Abdolali, S. Iqbal, L. Zhang, and S. Liu, “Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms,” Nanophotonics 9(9), 2861–2877 (2020).
[Crossref]

Bai, G.

Q. Ma, C. Shi, G. Bai, T. Chen, A. Noor, and T. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Bai, G. D.

Q. Ma, G. D. Bai, H. Jing, C. Yang, L. Li, and T. Cui, “Smart metasurface with self-adaptively reprogrammable functions,” Light Sci Appl 8(1), 1–12 (2019).
[Crossref]

Balakin, A.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
[Crossref]

Bi, R.

S. Zhang, C. L. Wong, S. Zeng, R. Bi, K. Tai, K. Dholakia, and M. Olivo, “Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective,” Nanophotonics 10(1), 259–293 (2020).
[Crossref]

Burokur, S.

K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021).
[Crossref]

Cai, T.

K. Liu, G. Wang, T. Cai, B. Dai, Y. Xiao, H. Li, and W. Guo, “Dual-frequency geometric phase metasurface for dual-mode vortex beam generator,” J. Phys. D: Appl. Phys. 52(25), 255002 (2019).
[Crossref]

Y. Zhuang, G. Wang, T. Cai, and Q. Zhang, “Design of bifunctional metasurface based on independent control of transmission and reflection,” Opt. Express 26(3), 3594–3603 (2018).
[Crossref]

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Cao, X.

Chang, S.

W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
[Crossref]

Chen, K.

W. Guo, G. Wang, X. Luo, H. Hou, K. Chen, and Y. Feng, “Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring,” Ann. Phys. 532(3), 1900472 (2020).
[Crossref]

Chen, L.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
[Crossref]

Chen, T.

W. Kou, Y. Zhang, T. Chen, Z. Yang, and S. Liang, “Multifunctional linear-polarized terahertz focusing metasurface,” Microw. Opt. Technol. Lett. 62(8), 2721–2727 (2020).
[Crossref]

Q. Ma, C. Shi, G. Bai, T. Chen, A. Noor, and T. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Chen, X.

R. Wang, J. Han, J. Liu, H. Tian, W. Sun, L. Li, and X. Chen, “Multi-foci metalens for terahertz polarization detection,” Opt. Lett. 45(13), 3506–3509 (2020).
[Crossref]

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
[Crossref]

F. Yue, C. Zhang, X. Zang, D. Wen, B. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light: Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Chen, Y.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Cheng, Q.

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Cui, T.

Q. Ma, G. D. Bai, H. Jing, C. Yang, L. Li, and T. Cui, “Smart metasurface with self-adaptively reprogrammable functions,” Light Sci Appl 8(1), 1–12 (2019).
[Crossref]

R. Wu, C. Shi, S. Liu, W. Wu, and T. Cui, “Addition theorem for digital coding metamaterials,” Adv. Opt. Mater. 6(5), 1701236 (2018).
[Crossref]

Q. Ma, C. Shi, G. Bai, T. Chen, A. Noor, and T. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Dai, B.

K. Liu, G. Wang, T. Cai, B. Dai, Y. Xiao, H. Li, and W. Guo, “Dual-frequency geometric phase metasurface for dual-mode vortex beam generator,” J. Phys. D: Appl. Phys. 52(25), 255002 (2019).
[Crossref]

Deng, L.

L. Wang, Y. Yang, S. Li, L. Deng, W. Hong, C. Zhang, J. Zhu, and D. Mcgloin, “Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

Deng, S.

Deng, Z.

Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
[Crossref]

Dholakia, K.

S. Zhang, C. L. Wong, S. Zeng, R. Bi, K. Tai, K. Dholakia, and M. Olivo, “Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective,” Nanophotonics 10(1), 259–293 (2020).
[Crossref]

Ding, H.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
[Crossref]

Ding, X.

K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021).
[Crossref]

Duan, H.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Duan, W.

Feng, Y.

W. Guo, G. Wang, X. Luo, H. Hou, K. Chen, and Y. Feng, “Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring,” Ann. Phys. 532(3), 1900472 (2020).
[Crossref]

Feng, Z.

Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
[Crossref]

Gao, J.

Gao, X.

Ge, S.

Gerardot, B.

F. Yue, C. Zhang, X. Zang, D. Wen, B. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light: Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Gu, J.

W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021).
[Crossref]

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Guan, C.

Guo, H.

Guo, K.

W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
[Crossref]

Guo, W.

W. Guo, G. Wang, X. Luo, H. Hou, K. Chen, and Y. Feng, “Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring,” Ann. Phys. 532(3), 1900472 (2020).
[Crossref]

K. Liu, G. Wang, T. Cai, B. Dai, Y. Xiao, H. Li, and W. Guo, “Dual-frequency geometric phase metasurface for dual-mode vortex beam generator,” J. Phys. D: Appl. Phys. 52(25), 255002 (2019).
[Crossref]

Guo, Z.

W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
[Crossref]

Han, J.

W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021).
[Crossref]

R. Wang, J. Han, J. Liu, H. Tian, W. Sun, L. Li, and X. Chen, “Multi-foci metalens for terahertz polarization detection,” Opt. Lett. 45(13), 3506–3509 (2020).
[Crossref]

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

He, Q.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Hong, W.

L. Wang, Y. Yang, S. Li, L. Deng, W. Hong, C. Zhang, J. Zhu, and D. Mcgloin, “Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

Hou, H.

W. Guo, G. Wang, X. Luo, H. Hou, K. Chen, and Y. Feng, “Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring,” Ann. Phys. 532(3), 1900472 (2020).
[Crossref]

Hu, J.

Hu, W.

Hu, Y.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Intaravanne, Y.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
[Crossref]

Iqbal, S.

H. Rajabalipanah, K. Rouhi, A. Abdolali, S. Iqbal, L. Zhang, and S. Liu, “Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms,” Nanophotonics 9(9), 2861–2877 (2020).
[Crossref]

Jiang, X.

W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021).
[Crossref]

Jin, L.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Jing, H.

Q. Ma, G. D. Bai, H. Jing, C. Yang, L. Li, and T. Cui, “Smart metasurface with self-adaptively reprogrammable functions,” Light Sci Appl 8(1), 1–12 (2019).
[Crossref]

Kang, Q.

W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
[Crossref]

Ke, Q.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
[Crossref]

Kou, W.

W. Kou, Y. Zhang, T. Chen, Z. Yang, and S. Liang, “Multifunctional linear-polarized terahertz focusing metasurface,” Microw. Opt. Technol. Lett. 62(8), 2721–2727 (2020).
[Crossref]

Li, G.

T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022).
[Crossref]

Li, H.

K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021).
[Crossref]

K. Liu, G. Wang, T. Cai, B. Dai, Y. Xiao, H. Li, and W. Guo, “Dual-frequency geometric phase metasurface for dual-mode vortex beam generator,” J. Phys. D: Appl. Phys. 52(25), 255002 (2019).
[Crossref]

Li, J.

W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
[Crossref]

Li, L.

R. Wang, J. Han, J. Liu, H. Tian, W. Sun, L. Li, and X. Chen, “Multi-foci metalens for terahertz polarization detection,” Opt. Lett. 45(13), 3506–3509 (2020).
[Crossref]

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Q. Ma, G. D. Bai, H. Jing, C. Yang, L. Li, and T. Cui, “Smart metasurface with self-adaptively reprogrammable functions,” Light Sci Appl 8(1), 1–12 (2019).
[Crossref]

Li, S.

L. Wang, Y. Yang, S. Li, L. Deng, W. Hong, C. Zhang, J. Zhu, and D. Mcgloin, “Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

Li, W.

T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022).
[Crossref]

Z. Li, W. Wang, S. Deng, J. Qu, Y. Li, B. Lv, W. Li, X. Gao, Z. Zhu, C. Guan, and J. Shi, “Active beam manipulation and convolution operation in VO2-integrated coding terahertz metasurfaces,” Opt. Lett. 47(2), 441–444 (2022).
[Crossref]

Li, X.

Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
[Crossref]

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Li, Y.

Li, Z.

Liang, S.

W. Kou, Y. Zhang, T. Chen, Z. Yang, and S. Liang, “Multifunctional linear-polarized terahertz focusing metasurface,” Microw. Opt. Technol. Lett. 62(8), 2721–2727 (2020).
[Crossref]

Liu, D.

Liu, J.

K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021).
[Crossref]

R. Wang, J. Han, J. Liu, H. Tian, W. Sun, L. Li, and X. Chen, “Multi-foci metalens for terahertz polarization detection,” Opt. Lett. 45(13), 3506–3509 (2020).
[Crossref]

Liu, K.

K. Liu, G. Wang, T. Cai, B. Dai, Y. Xiao, H. Li, and W. Guo, “Dual-frequency geometric phase metasurface for dual-mode vortex beam generator,” J. Phys. D: Appl. Phys. 52(25), 255002 (2019).
[Crossref]

Liu, S.

H. Rajabalipanah, K. Rouhi, A. Abdolali, S. Iqbal, L. Zhang, and S. Liu, “Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms,” Nanophotonics 9(9), 2861–2877 (2020).
[Crossref]

R. Wu, C. Shi, S. Liu, W. Wu, and T. Cui, “Addition theorem for digital coding metamaterials,” Adv. Opt. Mater. 6(5), 1701236 (2018).
[Crossref]

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Liu, T.

T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022).
[Crossref]

T. Liu, Y. Meng, H. Ma, J. Wang, X. Wang, R. Zhu, H. Wang, J. Yang, Y. Li, and S. Qu, “Generating diverse functionalities simultaneously and independently for arbitrary linear polarized illumination enabled by a chiral transmission-reflection-selective bifunctional metasurface,” Opt. Express 30(5), 7124–7136 (2022).
[Crossref]

Liu, W.

W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021).
[Crossref]

Liu, X.

W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
[Crossref]

Lu, Y.

Luan, J.

Luo, X.

W. Guo, G. Wang, X. Luo, H. Hou, K. Chen, and Y. Feng, “Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring,” Ann. Phys. 532(3), 1900472 (2020).
[Crossref]

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Luo, Y.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Lv, B.

Ma, H.

T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022).
[Crossref]

T. Liu, Y. Meng, H. Ma, J. Wang, X. Wang, R. Zhu, H. Wang, J. Yang, Y. Li, and S. Qu, “Generating diverse functionalities simultaneously and independently for arbitrary linear polarized illumination enabled by a chiral transmission-reflection-selective bifunctional metasurface,” Opt. Express 30(5), 7124–7136 (2022).
[Crossref]

Ma, L.

Ma, Q.

Q. Ma, G. D. Bai, H. Jing, C. Yang, L. Li, and T. Cui, “Smart metasurface with self-adaptively reprogrammable functions,” Light Sci Appl 8(1), 1–12 (2019).
[Crossref]

Q. Ma, C. Shi, G. Bai, T. Chen, A. Noor, and T. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Mcgloin, D.

L. Wang, Y. Yang, S. Li, L. Deng, W. Hong, C. Zhang, J. Zhu, and D. Mcgloin, “Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

Meng, M.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Meng, Y.

T. Liu, Y. Meng, H. Ma, J. Wang, X. Wang, R. Zhu, H. Wang, J. Yang, Y. Li, and S. Qu, “Generating diverse functionalities simultaneously and independently for arbitrary linear polarized illumination enabled by a chiral transmission-reflection-selective bifunctional metasurface,” Opt. Express 30(5), 7124–7136 (2022).
[Crossref]

T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022).
[Crossref]

Noor, A.

Q. Ma, C. Shi, G. Bai, T. Chen, A. Noor, and T. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Olivo, M.

S. Zhang, C. L. Wong, S. Zeng, R. Bi, K. Tai, K. Dholakia, and M. Olivo, “Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective,” Nanophotonics 10(1), 259–293 (2020).
[Crossref]

Peng, Y.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
[Crossref]

Qi, M.

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Qiao, X.

Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
[Crossref]

Qiu, C. W.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Qu, J.

Qu, S.

T. Liu, Y. Meng, H. Ma, J. Wang, X. Wang, R. Zhu, H. Wang, J. Yang, Y. Li, and S. Qu, “Generating diverse functionalities simultaneously and independently for arbitrary linear polarized illumination enabled by a chiral transmission-reflection-selective bifunctional metasurface,” Opt. Express 30(5), 7124–7136 (2022).
[Crossref]

T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022).
[Crossref]

Rajabalipanah, H.

H. Rajabalipanah, K. Rouhi, A. Abdolali, S. Iqbal, L. Zhang, and S. Liu, “Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms,” Nanophotonics 9(9), 2861–2877 (2020).
[Crossref]

Ratni, B.

K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021).
[Crossref]

Rouhi, K.

H. Rajabalipanah, K. Rouhi, A. Abdolali, S. Iqbal, L. Zhang, and S. Liu, “Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms,” Nanophotonics 9(9), 2861–2877 (2020).
[Crossref]

Saifullah, Y.

Shen, Z.

Shi, C.

R. Wu, C. Shi, S. Liu, W. Wu, and T. Cui, “Addition theorem for digital coding metamaterials,” Adv. Opt. Mater. 6(5), 1701236 (2018).
[Crossref]

Q. Ma, C. Shi, G. Bai, T. Chen, A. Noor, and T. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Shi, H.

T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022).
[Crossref]

Shi, J.

Shi, T.

Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
[Crossref]

Shi, Y.

W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
[Crossref]

Shkurinov, A.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
[Crossref]

Sui, S.

T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022).
[Crossref]

Sun, J.

W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
[Crossref]

Sun, S.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Sun, W.

Tai, K.

S. Zhang, C. L. Wong, S. Zeng, R. Bi, K. Tai, K. Dholakia, and M. Olivo, “Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective,” Nanophotonics 10(1), 259–293 (2020).
[Crossref]

Tan, J.

K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021).
[Crossref]

Tang, S.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Tang, W.

T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022).
[Crossref]

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Tian, H.

Tian, S.

Tu, Q.

Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
[Crossref]

Wan, X.

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Wang, G.

Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
[Crossref]

W. Guo, G. Wang, X. Luo, H. Hou, K. Chen, and Y. Feng, “Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring,” Ann. Phys. 532(3), 1900472 (2020).
[Crossref]

K. Liu, G. Wang, T. Cai, B. Dai, Y. Xiao, H. Li, and W. Guo, “Dual-frequency geometric phase metasurface for dual-mode vortex beam generator,” J. Phys. D: Appl. Phys. 52(25), 255002 (2019).
[Crossref]

Y. Zhuang, G. Wang, T. Cai, and Q. Zhang, “Design of bifunctional metasurface based on independent control of transmission and reflection,” Opt. Express 26(3), 3594–3603 (2018).
[Crossref]

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Wang, H.

T. Liu, Y. Meng, H. Ma, J. Wang, X. Wang, R. Zhu, H. Wang, J. Yang, Y. Li, and S. Qu, “Generating diverse functionalities simultaneously and independently for arbitrary linear polarized illumination enabled by a chiral transmission-reflection-selective bifunctional metasurface,” Opt. Express 30(5), 7124–7136 (2022).
[Crossref]

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Wang, J.

T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022).
[Crossref]

T. Liu, Y. Meng, H. Ma, J. Wang, X. Wang, R. Zhu, H. Wang, J. Yang, Y. Li, and S. Qu, “Generating diverse functionalities simultaneously and independently for arbitrary linear polarized illumination enabled by a chiral transmission-reflection-selective bifunctional metasurface,” Opt. Express 30(5), 7124–7136 (2022).
[Crossref]

Wang, K.

W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021).
[Crossref]

Wang, L.

L. Wang, Y. Yang, S. Li, L. Deng, W. Hong, C. Zhang, J. Zhu, and D. Mcgloin, “Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

Wang, Q.

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Wang, R.

Wang, W.

Z. Li, W. Wang, S. Deng, J. Qu, Y. Li, B. Lv, W. Li, X. Gao, Z. Zhu, C. Guan, and J. Shi, “Active beam manipulation and convolution operation in VO2-integrated coding terahertz metasurfaces,” Opt. Lett. 47(2), 441–444 (2022).
[Crossref]

W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
[Crossref]

Wang, X.

Wang, Y.

Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
[Crossref]

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Wang, Z.

Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
[Crossref]

Waqas, A.

Wen, D.

F. Yue, C. Zhang, X. Zang, D. Wen, B. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light: Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Wong, C. L.

S. Zhang, C. L. Wong, S. Zeng, R. Bi, K. Tai, K. Dholakia, and M. Olivo, “Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective,” Nanophotonics 10(1), 259–293 (2020).
[Crossref]

Wu, Q.

K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021).
[Crossref]

Wu, R.

R. Wu, C. Shi, S. Liu, W. Wu, and T. Cui, “Addition theorem for digital coding metamaterials,” Adv. Opt. Mater. 6(5), 1701236 (2018).
[Crossref]

Wu, T.

W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021).
[Crossref]

Wu, W.

R. Wu, C. Shi, S. Liu, W. Wu, and T. Cui, “Addition theorem for digital coding metamaterials,” Adv. Opt. Mater. 6(5), 1701236 (2018).
[Crossref]

Xiao, S.

Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
[Crossref]

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Xiao, Y.

K. Liu, G. Wang, T. Cai, B. Dai, Y. Xiao, H. Li, and W. Guo, “Dual-frequency geometric phase metasurface for dual-mode vortex beam generator,” J. Phys. D: Appl. Phys. 52(25), 255002 (2019).
[Crossref]

Xie, J.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
[Crossref]

Xu, F.

Xu, H.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Xu, Q.

W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021).
[Crossref]

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Yang, C.

Q. Ma, G. D. Bai, H. Jing, C. Yang, L. Li, and T. Cui, “Smart metasurface with self-adaptively reprogrammable functions,” Light Sci Appl 8(1), 1–12 (2019).
[Crossref]

Yang, G.

Yang, H.

Yang, J.

Yang, Q.

W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021).
[Crossref]

Yang, S.

Yang, Y.

L. Wang, Y. Yang, S. Li, L. Deng, W. Hong, C. Zhang, J. Zhu, and D. Mcgloin, “Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

Yang, Z.

W. Kou, Y. Zhang, T. Chen, Z. Yang, and S. Liang, “Multifunctional linear-polarized terahertz focusing metasurface,” Microw. Opt. Technol. Lett. 62(8), 2721–2727 (2020).
[Crossref]

Yuan, Y.

K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021).
[Crossref]

Yue, F.

F. Yue, C. Zhang, X. Zang, D. Wen, B. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light: Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Zang, X.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
[Crossref]

F. Yue, C. Zhang, X. Zang, D. Wen, B. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light: Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Zeng, S.

S. Zhang, C. L. Wong, S. Zeng, R. Bi, K. Tai, K. Dholakia, and M. Olivo, “Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective,” Nanophotonics 10(1), 259–293 (2020).
[Crossref]

Zhang, C.

L. Wang, Y. Yang, S. Li, L. Deng, W. Hong, C. Zhang, J. Zhu, and D. Mcgloin, “Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

F. Yue, C. Zhang, X. Zang, D. Wen, B. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light: Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Zhang, D.

Zhang, K.

K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021).
[Crossref]

Zhang, L.

H. Rajabalipanah, K. Rouhi, A. Abdolali, S. Iqbal, L. Zhang, and S. Liu, “Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms,” Nanophotonics 9(9), 2861–2877 (2020).
[Crossref]

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Zhang, M.

Zhang, Q.

Zhang, S.

S. Zhang, C. L. Wong, S. Zeng, R. Bi, K. Tai, K. Dholakia, and M. Olivo, “Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective,” Nanophotonics 10(1), 259–293 (2020).
[Crossref]

F. Yue, C. Zhang, X. Zang, D. Wen, B. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light: Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Zhang, W.

W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021).
[Crossref]

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Zhang, Y.

W. Kou, Y. Zhang, T. Chen, Z. Yang, and S. Liang, “Multifunctional linear-polarized terahertz focusing metasurface,” Microw. Opt. Technol. Lett. 62(8), 2721–2727 (2020).
[Crossref]

Zhao, R.

W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
[Crossref]

Zhou, L.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Zhou, S.

Zhou, X.

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Zhu, J.

L. Wang, Y. Yang, S. Li, L. Deng, W. Hong, C. Zhang, J. Zhu, and D. Mcgloin, “Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

Zhu, R.

Zhu, X.

Zhu, Z.

Zhuang, S.

Zhuang, Y.

Adv. Mater. (1)

Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, X. Qiao, G. Wang, S. Xiao, and X. Li, “Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography,” Adv. Mater. 33(43), 2103472 (2021).
[Crossref]

Adv. Opt. Mater. (5)

T. Liu, W. Li, Y. Meng, H. Ma, W. Tang, G. Li, H. Shi, S. Sui, J. Wang, and S. Qu, “Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information,” Adv. Opt. Mater. 10, 2102638 (2022).
[Crossref]

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Q. Ma, C. Shi, G. Bai, T. Chen, A. Noor, and T. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang, “Multifunctional all-dielectric metasurfaces for terahertz multiplexing,” Adv. Opt. Mater. 9(19), 2100506 (2021).
[Crossref]

R. Wu, C. Shi, S. Liu, W. Wu, and T. Cui, “Addition theorem for digital coding metamaterials,” Adv. Opt. Mater. 6(5), 1701236 (2018).
[Crossref]

Adv. Sci. (1)

S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Adv. Sci. 3(10), 1600156 (2016).
[Crossref]

Ann. Phys. (1)

W. Guo, G. Wang, X. Luo, H. Hou, K. Chen, and Y. Feng, “Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring,” Ann. Phys. 532(3), 1900472 (2020).
[Crossref]

IEEE Photonics J. (1)

L. Wang, Y. Yang, S. Li, L. Deng, W. Hong, C. Zhang, J. Zhu, and D. Mcgloin, “Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

J. Phys. D: Appl. Phys. (1)

K. Liu, G. Wang, T. Cai, B. Dai, Y. Xiao, H. Li, and W. Guo, “Dual-frequency geometric phase metasurface for dual-mode vortex beam generator,” J. Phys. D: Appl. Phys. 52(25), 255002 (2019).
[Crossref]

Laser Photonics Rev. (2)

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. Balakin, A. Shkurinov, and X. Chen, “A multi-foci metalens with polarization-rotated focal points,” Laser Photonics Rev. 13(12), 1900182 (2019).
[Crossref]

K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. Burokur, and J. Tan, “Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing,” Laser Photonics Rev. 15(1), 2000351 (2021).
[Crossref]

Light Sci Appl (1)

Q. Ma, G. D. Bai, H. Jing, C. Yang, L. Li, and T. Cui, “Smart metasurface with self-adaptively reprogrammable functions,” Light Sci Appl 8(1), 1–12 (2019).
[Crossref]

Light: Sci. Appl. (1)

F. Yue, C. Zhang, X. Zang, D. Wen, B. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light: Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Microw. Opt. Technol. Lett. (1)

W. Kou, Y. Zhang, T. Chen, Z. Yang, and S. Liang, “Multifunctional linear-polarized terahertz focusing metasurface,” Microw. Opt. Technol. Lett. 62(8), 2721–2727 (2020).
[Crossref]

Nano Lett. (1)

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C. W. Qiu, and H. Duan, “Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface,” Nano Lett. 20(2), 994–1002 (2020).
[Crossref]

Nanomaterials (1)

W. Wang, R. Zhao, S. Chang, J. Li, Y. Shi, X. Liu, J. Sun, Q. Kang, K. Guo, and Z. Guo, “High-efficiency spin-related vortex metalenses,” Nanomaterials 11(6), 1485 (2021).
[Crossref]

Nanophotonics (2)

H. Rajabalipanah, K. Rouhi, A. Abdolali, S. Iqbal, L. Zhang, and S. Liu, “Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms,” Nanophotonics 9(9), 2861–2877 (2020).
[Crossref]

S. Zhang, C. L. Wong, S. Zeng, R. Bi, K. Tai, K. Dholakia, and M. Olivo, “Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective,” Nanophotonics 10(1), 259–293 (2020).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Functional schematic diagram of the designed anisotropic metasurface; (b) three-dimensional(3D) metal particle.
Fig. 2.
Fig. 2. Reflection amplitude and phase of 16 metal particles under different polarizations terahertz wave incidence. (a)Metal particle reflection amplitude and (c) reflection phase under x-polarized terahertz wave incidence; (b) Metal particle reflection amplitude and (d) reflection phase under y-polarized terahertz wave incidence (marked line is at the operating frequency of 1.04THz, the numbers before and after “/” indicate the phase states in x-polarization and y-polarization, respectively).
Fig. 3.
Fig. 3. Design phase distribution of the deflection and superposition vortex beams generated by the proposed metasurface. (a) The corresponding phase distribution of the downward deflection vortex beam, the right deflection vortex beam, and the superposition vortex beam under x-polarized terahertz wave incidence; (b) Phases distribution of the left deflection vortex beam, the upward deflection vortex beam and the superimposition vortex beam under y-polarized terahertz wave incidence; (c) Designed metasurface M1.
Fig. 4.
Fig. 4. At frequency of 1.04THz, (a) 3D far-field scattering pattern and 2D scattering E-pattern curve in Cartesian coordinate of multi-vortex beam under x-polarized terahertz wave incidence; (a) 3D far-field scattering pattern and 2D scattering E-pattern curve in Cartesian coordinate of multi-vortex beam under y-polarized terahertz wave incidence.
Fig. 5.
Fig. 5. The purity of the OAM mode with different topological charges.
Fig. 6.
Fig. 6. The design phase distribution of the bifocal focusing realized by the proposed metasurface. (a) The phase distributions of downward deviation focusing, upward deviation focusing and bifocal focusing under x-polarized terahertz wave incidence; (b) Phase distributions of left deviation focusing, right deviation focusing and bifocal focusing under y-polarized terahertz wave incidence; (c) the designed metasurface M2.
Fig. 7.
Fig. 7. At frequency of 1.04THz and in the focal plane of zf = 1200µm, (a) The electric field distribution and (b) normalized electric field intensity under x-polarized terahertz wave incidence; (c)The variation of focal point position and normalized electric field intensity with different focal length under x-pol; (d)The electric field distribution and (e) normalized electric field intensity under y-polarized terahertz wave incidence; (f)The variation of focal point position and normalized electric field intensity with different focal length under y-pol.
Fig. 8.
Fig. 8. The design focusing vortex phase distribution realized by the proposed metasurface. (a) The phase distributions of vortex beam with (l=+1), focusing lens, and focusing vortex beam under x-polarized terahertz wave incidence; (b) The phase distributions of vortex beam with (l=-2), focusing lens, and focusing vortex beam under y-polarized terahertz wave incidence; (c) The designed metasurface M3.
Fig. 9.
Fig. 9. At frequency of 1.04THz and in the focal plane of zf = 1200µm, the distribution of the electric field (a) and phase (b) under the x-polarized wave incidence. The distribution of electric field (c) and phase (d) under the y-polarized wave incidence.

Tables (1)

Tables Icon

Table 1. Size parameters of anisotropic metal particles

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f ( x ) e jsin θ 0 x FFT F ( s i n θ ) δ ( s i n θ sin θ 0 ) = F ( s i n θ sin θ 0 )
e j φ 1  +  e j φ 2  =  e j φ 0
Φ 1 ( x ,   y )   =   l arctan y x  +  k 0 s i n θ y
θ =   arcsin ( λ / Γ )
Φ 2 ( x , y ) = 2 π λ ( ( x   ± m ) 2 + y 2 + z f 2 z f )
Φ 3 ( x , y ) = 2 π λ ( x 2 + ( y   ± n ) 2 + z f 2 z f )
Φ 4 ( x ,   y )   =   l arctan y x + 2 π λ ( x 2 + y 2 + z f 2 z f )

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved