Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Perfluoroalkyl acrylate functionalized soft cubic optical microstructure with enhanced electric-field responsiveness

Open Access Open Access

Abstract

An advisable perfluoroalkyl acrylates functionalized system is proposed and experimentally demonstrated to drastically enhance the electric-field responsiveness of blue phase liquid crystal (BPLC), which overcomes the common tradeoff between the driving voltage and response time dependent on the polymer concentration. On one hand, a quick electrical response can be readily obtained from a denser polymer network due to the participation of perfluoroalkyl acrylates in photo-crosslinking; on the other hand, the large rising trend of driving voltage with the growing polymer concentration can be alleviated due to the reduced anchoring energy between the BPLC and surrounding polymer attributed to the lower surface tension of perfluoroalkyl acrylate. In consequence, a faster decay time of 0.54 ms and almost hysteresis-free electro-optical (E-O) performance of the BPLC is achieved, with an efficient reduction by almost half in the driving voltage.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

As a ubiquitous existence in nature, the optical microstructure with periodic superstructure has become a widespread topic during past decades due to its distinct structural color and unique optical properties [14]. More prominently, inspired by the self-adaptive manipulation of structural color, for instance the tunable reflection color of chameleon [5,6], artificial soft superstructures composed of liquid crystals (LCs) have drawn enormous interests for great advantages such as multifunctional properties and flexible response to various external stimuli [7,8]. Therefore, it is potential in a variety of applications like fast electro-optic components [9,10], optical field modulators [11], and tunable photonic devices [8,12].

Blue phase liquid crystal (BPLC) exhibits self-organized three-dimensional soft cubic optical microstructure formed by the stacking of double twisted cylinders (DTCs) [13,14]. In detail, with the decreasing temperature, the DTCs sequentially stack into a fog-like phase [15], simple cubic lattice, and body-centered cubic lattice, referring to different subphases as BPIII, BPII and BPI [13,14]. Despite the remarkable progress made in display [16,17], micro-lasers [11,18,19], and biosensing [7,20], BPLCs normally suffer from the narrow temperature range (about 0.5∼2 °C) which limits more developments. Tremendous explorations and efficient endeavors have been devoted to broaden the temperature range of BPLCs. By means of doping monomers [21], nanoparticles [22,23] as well as modifying the geometry of LC host [2426], the BPLCs can successfully remain stable over large thermal variations, which originates from the reduction of free energy costs in defects during temperature change [21,27]. In some cases, the temperature range can be drastically expanded over 60 °C [21], thus providing the BPLC-based multifunctional devices with improved thermal compatibility. In particular, the stabilization of BPLC by polymer networks is considered as the preferable approach due to the ability to provide broader temperature range and excellent electro-optical (E-O) responsiveness [2830]. However, constrained by the strong anchoring energy between LC molecules and polymer networks, driving BPLCs by electrical field is burdened with the applied voltage commonly greater than 100 V [3133]. According to the previous works, the driving voltage is dependent on the unwinding ability of the DTCs, which is directly related to the dielectric and viscous properties. While the viscous property is positively correlated to the anchoring energy between the polymer and LC [34]. Although the relative driving voltage can be reduced by decreasing the polymer content, it usually deteriorates the E-O performance of BPLCs, as evidenced by slow response time and severe hysteresis over 5% [33,35]. In view of the tradeoff of polymer content, various approaches have been demonstrated to further reduce the relative driving voltage of BPLCs, such as doping ion-suppressor [36], nano-particles [37] and configuring a hydrogen-bond-contained component to replace partial common polymer [38,39]. However, the effects are all limited due to the restriction of strong anchoring energy of common polymer has not been fundamentally alleviated.

More remarkably, by modifying the polymer properties of BPLCs with fluorine-containing compounds, not only a wide temperature range of BPLCs but also considerable improvements in E-O performances can be obtained [4043]. Fluorine materials can effectively reduce the anchoring energy between the polymer networks and BPLCs on account of small radius and large negative charges [44], thus relieving the obstacles of LC reorientation under applied voltage. In particular, fluorinated monomers, by virtue of higher fluorine content, have been introduced to be polymerized with the common polymer system and integrally incorporated into the BPLCs [42,43]. Perfluoroalkyl acrylates, characterized as a kind of fluorinated monomer, consist of aromatic methacrylate and flexible side chains with fluorocarbon (C-F) bonds. After polymerization, the side fluorine tightly winds the main chain and forms a shielding layer [45], resulting in a lower surface tension, which further reduces the anchoring energy between the BPLCs and the polymers [4648]. Taking advantage of the relieved constraint of perfluoroalkyl acrylates to LC molecules, the perfluoroalkyl acrylates functionalized BPLCs have presented the enhanced E-O performance in a single respect such as lower driving voltage less than 100 V [42], faster responsiveness and free-hysteresis [43]. However, the comprehensive improvement of E-O performance in all respects remains challenging.

In this work, an advisable perfluoroalkyl acrylates functionalized polymer stabilized BPLC is proposed and experimentally demonstrated to achieve the excellent E-O performance under an undemanding electrical stimulation. The side-chain fluorinated dopant enables a lower anchoring energy of polymer, thus alleviating the constrain to the BPLCs under the electrical field. The systematic investigation suggests that at a condense polymer network with a 12 wt% total polymer concentration, the driving voltage can be decreased almost in half relative to the common polymer with the same concentration, while maintaining a sub-millisecond and hysteresis-free electrical response. Furthermore, the critical relationship between the concentration of perfluoroalkyl acrylates and stability of BPLCs is studied for the first time. We anticipate this work may provide a promising approach to enhance the electrical modulation of the BPLCs, thereby opening up new possibilities and removing current obstacles for applications such as high-refresh displays and low-power tunable photonic devices.

2. Experimental

2.1 Materials

The BPLC consists of the nematic LC host TEB300 (Slichem, China, Δn = 0.166 at 589 nm, Δɛ = 29.3 at 1 kHz, clearing point at 63 °C), and the common chiral dopant R5011 (HCCH, China). The common polymer was composed of RM257 (supported by Merck) and TMPTA (1,1,1-Trimethylolpropane, Aldrich, USA), with the weight ratio of 2:1. The perfluoroalkyl acrylates marked as n-Fs where n = 6, 13, 17 (2,2,3,4,4,4-hexafluorobutyl methacrylate, 6-Fs; 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate, 13-Fs; 1H,1H,2H,2H-heptadecafluorodecyl acrylate, 17-Fs, all from Aldrich) were doped with the weight ratio of 3 wt% and 7 wt%, whose chemical structures are schematically illustrated in Fig. 1(a). In addition, a small amount of photo initiator (Irgacure 184 (I-184), provided by BASF) was doped to promote photo-crosslinking in the monomers. Table 1 lists the compositions of pre-polymerized samples including different contents of perfluoroalkyl acrylates. The mixtures were uniformly stirred, then injected into a 12 µm-thick cell with the inter-digital stripe-shaped electrodes on one substrate (width of the electrodes: 15 µm; the gap between adjacent electrodes: 15 µm).

 figure: Fig. 1.

Fig. 1. (a) Chemical structure of the perfluoroalkyl acrylates n-Fs, where n stands for the number of C-F bonds. (b) Schematic of the polymer stabilized BPLCs with fluorinated polymer dopants.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Chemical components of the different BPLC samples.

2.2 Sample testing

Since the temperature range of BPLCs is varied among the samples with different doping species and concentration of perfluoroalkyl acrylate, a temperature hot stage (HCS410, Instec) with the cooling rate of 0.2 °C min−1 was settled to precisely guide the formation of BP structure, and a polarizing optical microscope (POM, Eclipse LV100POL, Nikon) equipped with a charge-coupled device (CCD, DS-U3, Nikon) and a fiber spectrometer (ULS2048, Avantes) was used to observe the phase transition behavior. Each sample in Table 1 was controlled to generate the BP-I arrangement (Fig. S1). The following photo-polymerization was implemented by UV exposure (365 nm, 1.5 mW cm−2) for about 30 minutes to form the polymer stabilization. A contact angle measuring device (SDC-80, SINDIN) and a scanning electron microscope (SEM, S-3400N, Hitachi) were used to measure the contact angle and morphology of the pure polymer film, where the film was immersed into acetone for 12 hours to squeeze the involved LCs out. The Kössel diagram was collected by a monochromatic laser source (455 nm) and a high numerical aperture (NA) oil-immersed objective (×100, NA = 1.25, Nikon). A 633-nm probing laser was used and a 1 kHz AC voltage was applied to the sample to study the E-O performance of BPLCs. The response time was measured by a photoelectric detector connected to an oscilloscope (detailed in Fig. S3). All the tests were performed at room temperature (25 °C).

3. Results and discussion

In our scheme, the doped perfluoroalkyl acrylate forms a polymer network with reduced anchoring energy, which improves the E-O performance of BPLCs. Figure 1(b) illustrates the framework involving both the common and fluorinated polymer as well as BPLCs. The common crosslinking polymer forms a tight network to stabilize the DTC stacking architecture of BPLCs [49]. While the fluorinated polymer dispersed around the interface between the common polymer and DTCs makes a dual contribution that: both consolidates the density of polymer network and reduces its strong anchoring force, thus effectively relieving the burdensome constrain to the BPLCs.

In correspondence, Fig. 2 shows the E-O performance of a variety of fluorinated BPLC systems with different fluorinated components and varying doping concentrations in Table 1. Note that the concentration of fluorinated dopant 6-Fs was kept as 3 wt% (Sample B1) since excessive dopants result in the instability of BPLCs after photo-polymerization. Different from the general rule that a higher polymer concentration often causes an increasing of relative driving voltage [28], as shown in Fig. 2(a), the relative driving voltages of non-fluorinated sample A1 (containing only 5 wt% common polymer) and 3 wt%-doped Sample B1, C1 and D1 (8 wt% total concentration including the common and fluorinated polymer) are almost equivalent as 55 V. Notably, compared to the non-fluorinated Sample A1, a series of decreasing hysteresis is observed from Sample B1 to D1 which involve the respective dopants as 6-Fs, 13-Fs and 17-Fs. Correspondingly, as shown in Fig. 2(b), the reduced rise time (τon) among the samples implies more simplicity to drive the BPLCs; and the decay time (τoff) of BPLCs is significantly reduced by 0.37 ms due to the increase of total polymer concentration from 5 wt% to 8 wt%.

 figure: Fig. 2.

Fig. 2. The E-O performance of the different BPLC samples. (a) Measured normalized voltage transmittance curves at 25 °C. The relative driving voltage as indicated by the dotted line (blue and orange), and the direction of the arrow represents the decreasing trend of the driving voltage. δ is the voltage difference at the normalized transmittance of 0.5 during the processes as increasing and decreasing the driving voltage; the hysteresis is evaluated by the ratio between δ and the corresponding driving voltage. Lines with same color stands for the BPLCs with the same total concentration of polymer among i-iv. (b) Measured response time under driving voltage, and data group with same background color stands for the BPLCs with the same total concentration of fluorinated dopants. (c) Light intensity curve of sample C2 during the time period as switching on and off the driving voltage. Inset: the POM images corresponding to the ‘on’ and ‘off’ states.

Download Full Size | PPT Slide | PDF

To investigate the influence by larger fluorinated concentration, the 13-Fs and 17-Fs contents are increased to the maximum as 7 wt% (more doping concentration will cause the instability of BPLCs as shown in Table 1). Similarly, the decent E-O performance with negligible hysteresis is also maintained in both cases. On the other hand, from the perspective of electrical response rate including the rise and decay time (τon and τoff), as shown in Fig. 2(b), the values of τoff in different groups present a declining gradient with the ascending doping concentration spanning zero (i.e., without perfluoroalkyl acrylate), 3 wt% and 7 wt%. While for a constant ratio of dopants (data group with same background color), τoff increases along the different fluorinated polymer as 6-Fs, 13-Fs and 17-Fs. According to the overall investigation among all the samples, sample C2 with 7 wt% 13-Fs was validated to enable the optimal E-O performance of BPLCs, where the electrical response holds an almost hysteresis-free property and fastest decay time as 0.54 ms. Compared to typical BPLCs, where growing polymer concentration to 12 wt% results in a significant rise on the relative driving voltage (greater than 50 V), the sample C2 only displays a negligible 7.5 V increasement [25,33]. It is worth noting that the responsiveness and hysteresis are better than current researches while maintaining a relatively low driving voltage.

Since the electrical response of BPLC is strongly dependent on both the molecular geometry and doping concentration of fluorinated polymer, the respective anchoring energy and polymer density among different fluorinated components (6-Fs, 13-Fs and 17-Fs) and doping ratio (3 wt%, 7 wt%) as aforementioned are investigated to explain their different influence on the relative driving voltage and response time of BPLCs. The Oseen-Frank theory has described the stability of BPLC with the free energy equation, and the hysteresis and responsiveness would be improved with more stable BPLC. According to the equation, the second term shows the anchoring energy between the DTCs and polymer-containing defect core, which is positively correlated to the surface tension (see S2 in Supplement 1 for details) [21,27]. Therefore, the perfluoroalkyl acrylates with low surface tension would increase the stability of BPLC through reducing the free energy of system. In view of which the property of contact angle that implies the surface tension is measured to evaluate the anchoring energy of each individual perfluoroalkyl-acrylate-doped BPLCs [50,51]. As shown in Fig. 3, the contact angle of LCs on fluorinated polymer surface gradually increases with the increasing fluorocarbon tail chain lengths among 6-Fs, 13-Fs and 17-Fs. On the other hand, the contact angle also becomes larger as the mass ratios of the 13-Fs and 17-Fs increase from 3 wt% to 7 wt%. Overall, both the longer fluorocarbon tail chain and rising ratio of fluorine atoms would induce a lower anchoring energy between the BPLCs and surrounding polymer, which correspondingly alleviates the rising trend of relative driving voltage with the growing total concentration of polymer and decreases the constrain of LC molecules. However, since the robustness of BPLC structure is highly relied on the polymer localized in the disclination core [21], an excess of fluorinated dopants such as over 7-wt%-doped 17-Fs (sample D2), whose contact angle reaches over 92°, will reduce the solubility between the polymer and the LC host, and consequently break down the stable DTCs structure of BPLCs owing to the insufficient anchoring force [50]. The same conclusion can be drawn from the dissipative particle dynamics (DPD) method that simulates the contact angle of polymer and LCs induced by the microscopic particle interaction force (see detailed information in S4 of Supplement 1, Fig. S4) [5153].

 figure: Fig. 3.

Fig. 3. Measured contact angle at the interface between the LC droplet and polymer film. The image of contact angle is also shown above the corresponding column.

Download Full Size | PPT Slide | PDF

From the other perspective, the morphology of polymer film suggests that the differences in polymer density have a critical impact on the electrical response time [54]. In principle, a denser polymer network highlights the electrical response with a faster decay time because the increasing stability of BPLCs. As shown in Fig. 4-(i) to 4-iii, the respective SEM images with a 3-wt% doping of 6-Fs, 13-Fs and 17-Fs exactly imply a series of less compact polymer network, which confirms to the descending tendency among the measured response time as shown in Fig. 2(b). These phenomena are attributed to the decreasing molar concentration of fluorinated dopants converted from the constant doping mass fraction. Likewise, with the increasing doping concentration of the respective 13-Fs and 17-Fs from 3 wt% to 7 wt% (sample C2 and D2), the formed polymer network also becomes denser (for example the SEM image from 7 wt%-doped 13-Fs is exhibited in Fig. 4-iv), thus further enhancing the E-O performance with quicker response. It is noted that the SEM topographies of sample B1 and sample C2 are similar due to the close molar concentration between both systems. As the dopant concentration increases, the solubility of LCs in the polymer decreases with the growing molecular weight of the perfluoroalkyl acrylates during the photo-crosslinking process, until the phase separation occurs [55]. In consequence, the optimal E-O performance of BPLCs from sample C2 can be convincingly explained from the lower surface tension and dense polymer network of the fluorinated polymer system, which are comprehensively evidenced by the molecular geometry of the perfluoroalkyl acrylate, the contact angle, the content of the BPLC mixture, and the morphology of polymer network. Furthermore, a faster rise time τon of 0.15 ms can be obtained as an overdriving voltage of 75 V is applied to the sample C2 (Fig. S5).

 figure: Fig. 4.

Fig. 4. SEM topography and schematic of polymer density with different fluorinated components.

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusion, we have proposed an advisable perfluoroalkyl acrylates functionalized BPLC with significantly enhanced E-O performance. From the mechanism, the doped fluorinated monomer has a two-fold influence on the electric- responsiveness of BPLCs. On one hand, the fluorinated monomers with polymerizable acrylate terminal group provide a denser polymer network, thereby realizing a sub-millisecond faster decay time; on the other hand, the lower surface tension of perfluoroalkyl acrylate drives down the anchoring energy between the BPLCs and surrounding polymer, which alleviates the large rising trend of relative driving voltage with the growing total polymer concentration. To be specific, for the BPLC system containing 5 wt% common polymers and 7 wt% 13-Fs fluorinated dopants, a faster decay time of 0.54 ms and almost hysteresis-free E-O performance is achieved, with an efficient reduction by almost half in the relative driving voltage. Furthermore, the measured contact angle and polymer morphology indicates the underlying mechanism that the growth of fluorocarbon chain and increasing polymer network density contribute to the enhance electrical response. In correspondence, the critical relationship between the concentration of fluorinated dopant and stability of BPLCs is demonstrated. Such a bi-functional perfluoroalkyl acrylates system with both the fast responsiveness and undemanding relative driving voltage holds great promise for various applications such as color sequential displays and low-power tunable photonic devices.

Funding

National Natural Science Foundation of China (51873060, 61822504, 62035008); Shanghai Municipal Education Commission (2021-01-07-00-02-E00107); Shanghai Education Development Foundation (21SG29).

Acknowledgements

The authors acknowledge the support from the National Science Foundation of China (grant nos. 61822504, 51873060, and 62035008), Innovation Program of Shanghai Municipal Education Commission, Scientific Committee of Shanghai (2021-01-07-00-02-E00107), and “Shuguang Program” of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (21SG29).

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Supplemental document

See Supplement 1 for supporting content.

References

1. J. A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8(1), 15854 (2017). [CrossRef]  

2. C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017). [CrossRef]  

3. Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016). [CrossRef]  

4. Y. Yang, L. Wang, H. Yang, and Q. Li, “3D chiral photonic nanostructures based on blue-phase liquid crystals,” Small Science 1(6), 2100007 (2021). [CrossRef]  

5. R. K. Cersonsky, J. Antonaglia, B. D. Dice, and S. C. Glotzer, “The diversity of three-dimensional photonic crystals,” Nat. Commun. 12(1), 2543 (2021). [CrossRef]  

6. J. Teyssier, S. V. Saenko, D. van der Marel, and M. C. Milinkovitch, “Photonic crystals cause active colour change in chameleons,” Nat. Commun. 6(1), 6368 (2015). [CrossRef]  

7. Y. Yang, X. Zhang, Y. Chen, X. Yang, J. Ma, J. Wang, L. Wang, and W. Feng, “Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks,” ACS. Appl. Mater. Interfaces. 13(34), 41102–41111 (2021). [CrossRef]  

8. M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017). [CrossRef]  

9. X. Xu, Z. Liu, Y. Liu, X. Zhang, Z. Zheng, D. Luo, and X. Sun, “Electrically switchable, hyper-reflective blue phase liquid crystals films,” Adv. Opt. Mater. 6(3), 1700891 (2018). [CrossRef]  

10. D. Luo, H. T. Dai, and X. W. Sun, “Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal,” Opt. Express 21(25), 31318–31323 (2013). [CrossRef]  

11. Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017). [CrossRef]  

12. D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020). [CrossRef]  

13. H. Kikuchi, Structure. Bonding, T. Kato, ed., (Springer Berlin Heidelberg, 2008,), pp. 99–117.

14. S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (John Wiley & Sons, 2006,), pp. 445–476.

15. S. S. Gandhi and L. C. Chien, “Unraveling the mystery of the blue Fog: structure, properties, and applications of amorphous blue phase III,” Adv. Mater. 29(47), 1704296 (2017). [CrossRef]  

16. G. Tan, Y. H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D: Appl. Phys. 50(49), 493001 (2017). [CrossRef]  

17. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009). [CrossRef]  

18. F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012). [CrossRef]  

19. R. Liao, X. Zhan, X. Xu, Y. Liu, F. Wang, and D. Luo, “Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell,” Liq. Cryst. 47(5), 715–722 (2020). [CrossRef]  

20. M.-J. Lee, C.-H. Chang, and W. Lee, “Label-free protein sensing by employing blue phase liquid crystal,” Biomed. Opt. Express 8(3), 1712–1720 (2017). [CrossRef]  

21. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002). [CrossRef]  

22. E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010). [CrossRef]  

23. H. Yoshida, K. Inoue, H. Kubo, and M. Ozaki, “Phase-dependence of gold nanoparticle dispersibility in blue phase and chiral nematic liquid crystals,” Opt. Mater. Express 3(6), 842–852 (2013). [CrossRef]  

24. W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021). [CrossRef]  

25. W. Q. Yang, G. Q. Cai, Z. Liu, X. Q. Wang, W. Feng, Y. Feng, D. Shen, and Z. G. Zheng, “Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material,” J. Mater. Chem. C. 5(3), 690–696 (2017). [CrossRef]  

26. H. Liu, D. Shen, X. Wang, Z. Zheng, and S. Li, “Wide blue phase range induced by bent-shaped molecules with acrylate end groups,” Opt. Mater. Express 6(2), 436–443 (2016). [CrossRef]  

27. S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216–1219 (1981). [CrossRef]  

28. D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014). [CrossRef]  

29. Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014). [CrossRef]  

30. I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, and T. Michael, “Stabilising liquid crystalline Blue Phases,” Soft Matter 8(16), 4355–4362 (2012). [CrossRef]  

31. Y. Li, S. Huang, P. Zhou, S. Liu, J. Lu, X. Li, and Y. Su, “Polymer-stabilized blue phase liquid crystals for photonic applications,” Adv Mater. Technol. 1(8), 1600102 (2016). [CrossRef]  

32. C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015). [CrossRef]  

33. J. Yan and S. Wu, “Effect of polymer concentration and composition on blue phase liquid crystals,” J. Display Technol. 7(9), 490–493 (2011). [CrossRef]  

34. N. Avci, “The influence of diluter system on polymer-stabilised blue-phase liquid crystals,” Liq. Cryst. 45(3), 459–467 (2018). [CrossRef]  

35. T. N. Oo, T. Mizunuma, Y. Nagano, H. Ma, Y. Ogawa, Y. Haseba, H. Higuchi, Y. Okumura, and H. Kikuchi, “Effects of monomer/liquid crystal compositions on electro-optical properties of polymer-stabilized blue phase liquid crystal,” Opt. Mater. Express 1(8), 1502–1510 (2011). [CrossRef]  

36. P. C. Wu, H. L. Chen, N. V. Rudakova, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound,” J. Mol. Liq. 267, 138–143 (2018). [CrossRef]  

37. L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013). [CrossRef]  

38. W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020). [CrossRef]  

39. H. Li, W. Huang, Q. Mo, B. Liu, D. Shen, W. Zhang, and Z. G. Zheng, “Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system,” J. Mater. Chem. C 7(13), 3952–3957 (2019). [CrossRef]  

40. L. Gao, K. M. Wang, R. Zhao, H. M. Ma, and Y. B. Sun, “Effect of a dual functional polymer on the electro-optical properties of blue phase liquid crystals,” Polymers 11(7), 1128 (2019). [CrossRef]  

41. L. Gao, H. Ma, and Y. Sun, “Doping effects of fluorinated chiral dopant in blue phase liquid crystals and its electro-optical behavior,” Liq. Cryst. 47(2), 284–290 (2020). [CrossRef]  

42. X. Li, W. Q. Yang, C. L. Yuan, Z. Liu, K. Zhou, X. Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017). [CrossRef]  

43. P. J. Hsieh and H. M. P. Chen, “Hysteresis-free polymer-stabilised blue phase liquid crystals comprising low surface tension monomers,” Liq. Cryst. 42(2), 216–221 (2015). [CrossRef]  

44. W. Yao, Y. Li, and X. Huang, “Fluorinated poly(meth)acrylate: synthesis and properties,” Polymer 55(24), 6197–6211 (2014). [CrossRef]  

45. M. Hu, Y. Zhang, U. Azhar, L. Zhang, Z. Chen, S. Zhang, and C. Zong, “Free radical copolymerization of trifluoroethyl methacrylate with perfluoroalkyl ethyl acrylates for superhydrophobic coating application,” J. Coat. Technol. Res. 16(3), 711–719 (2019). [CrossRef]  

46. Z. Wang and Z. Wang, “Synthesis of cross-linkable fluorinated core–shell latex nanoparticles and the hydrophobic stability of films,” Polymer 74, 216–223 (2015). [CrossRef]  

47. L. Hao, Q. An, W. Xu, D. Zhang, and M. Zhang, “Effect of polymerizable emulsifier and fluorine monomer on properties of self-crosslinking fluorinated polyacrylate soap-free latexes,” J. Polym. Res. 20(7), 174 (2013). [CrossRef]  

48. G. Alessandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, and L. Toniolo, “Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone,” J. Appl. Polym. Sci. 76(6), 962–977 (2000). [CrossRef]  

49. T. Iwata, K. Suzuki, N. Amaya, H. Higuchi, H. Masunaga, S. Sasaki, and H. Kikuchi, “Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases,” Macromolecules 42(6), 2002–2008 (2009). [CrossRef]  

50. C. N. Pereira and G. C. Vebber, “A novel semi-empirical method for adjusting solubility parameters to surface tension based on the use of Stefan's rule,” J. Mol. Liq. 272, 520–527 (2018). [CrossRef]  

51. J. Li and F. Wang, “Water graphene contact surface investigated by pairwise potentials from force-matching PAW-PBE with dispersion correction,” J. Chem. Phys. 146(5), 054702 (2017). [CrossRef]  

52. T. Zhao and X. Wang, “Dissipative particle dynamics study of translational diffusion of rigid-chain rodlike polymer in nematic phase,” J. Chem. Phys. 139(10), 104902 (2013). [CrossRef]  

53. C. F. Fan and T. Caǧin, “Wetting of crystalline polymer surfaces: A molecular dynamics simulation,” J. Chem. Phys. 103(20), 9053–9061 (1995). [CrossRef]  

54. Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020). [CrossRef]  

55. K. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, and T. Aida, “Nematic-to-columnar mesophase transition by in situ supramolecular polymerization,” Science 363(6423), 161–165 (2019). [CrossRef]  

References

  • View by:

  1. J. A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8(1), 15854 (2017).
    [Crossref]
  2. C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
    [Crossref]
  3. Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
    [Crossref]
  4. Y. Yang, L. Wang, H. Yang, and Q. Li, “3D chiral photonic nanostructures based on blue-phase liquid crystals,” Small Science 1(6), 2100007 (2021).
    [Crossref]
  5. R. K. Cersonsky, J. Antonaglia, B. D. Dice, and S. C. Glotzer, “The diversity of three-dimensional photonic crystals,” Nat. Commun. 12(1), 2543 (2021).
    [Crossref]
  6. J. Teyssier, S. V. Saenko, D. van der Marel, and M. C. Milinkovitch, “Photonic crystals cause active colour change in chameleons,” Nat. Commun. 6(1), 6368 (2015).
    [Crossref]
  7. Y. Yang, X. Zhang, Y. Chen, X. Yang, J. Ma, J. Wang, L. Wang, and W. Feng, “Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks,” ACS. Appl. Mater. Interfaces. 13(34), 41102–41111 (2021).
    [Crossref]
  8. M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017).
    [Crossref]
  9. X. Xu, Z. Liu, Y. Liu, X. Zhang, Z. Zheng, D. Luo, and X. Sun, “Electrically switchable, hyper-reflective blue phase liquid crystals films,” Adv. Opt. Mater. 6(3), 1700891 (2018).
    [Crossref]
  10. D. Luo, H. T. Dai, and X. W. Sun, “Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal,” Opt. Express 21(25), 31318–31323 (2013).
    [Crossref]
  11. Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
    [Crossref]
  12. D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
    [Crossref]
  13. H. Kikuchi, Structure. Bonding, T. Kato, ed., (Springer Berlin Heidelberg, 2008,), pp. 99–117.
  14. S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (John Wiley & Sons, 2006,), pp. 445–476.
  15. S. S. Gandhi and L. C. Chien, “Unraveling the mystery of the blue Fog: structure, properties, and applications of amorphous blue phase III,” Adv. Mater. 29(47), 1704296 (2017).
    [Crossref]
  16. G. Tan, Y. H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D: Appl. Phys. 50(49), 493001 (2017).
    [Crossref]
  17. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
    [Crossref]
  18. F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
    [Crossref]
  19. R. Liao, X. Zhan, X. Xu, Y. Liu, F. Wang, and D. Luo, “Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell,” Liq. Cryst. 47(5), 715–722 (2020).
    [Crossref]
  20. M.-J. Lee, C.-H. Chang, and W. Lee, “Label-free protein sensing by employing blue phase liquid crystal,” Biomed. Opt. Express 8(3), 1712–1720 (2017).
    [Crossref]
  21. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
    [Crossref]
  22. E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010).
    [Crossref]
  23. H. Yoshida, K. Inoue, H. Kubo, and M. Ozaki, “Phase-dependence of gold nanoparticle dispersibility in blue phase and chiral nematic liquid crystals,” Opt. Mater. Express 3(6), 842–852 (2013).
    [Crossref]
  24. W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
    [Crossref]
  25. W. Q. Yang, G. Q. Cai, Z. Liu, X. Q. Wang, W. Feng, Y. Feng, D. Shen, and Z. G. Zheng, “Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material,” J. Mater. Chem. C. 5(3), 690–696 (2017).
    [Crossref]
  26. H. Liu, D. Shen, X. Wang, Z. Zheng, and S. Li, “Wide blue phase range induced by bent-shaped molecules with acrylate end groups,” Opt. Mater. Express 6(2), 436–443 (2016).
    [Crossref]
  27. S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216–1219 (1981).
    [Crossref]
  28. D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
    [Crossref]
  29. Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
    [Crossref]
  30. I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, and T. Michael, “Stabilising liquid crystalline Blue Phases,” Soft Matter 8(16), 4355–4362 (2012).
    [Crossref]
  31. Y. Li, S. Huang, P. Zhou, S. Liu, J. Lu, X. Li, and Y. Su, “Polymer-stabilized blue phase liquid crystals for photonic applications,” Adv Mater. Technol. 1(8), 1600102 (2016).
    [Crossref]
  32. C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
    [Crossref]
  33. J. Yan and S. Wu, “Effect of polymer concentration and composition on blue phase liquid crystals,” J. Display Technol. 7(9), 490–493 (2011).
    [Crossref]
  34. N. Avci, “The influence of diluter system on polymer-stabilised blue-phase liquid crystals,” Liq. Cryst. 45(3), 459–467 (2018).
    [Crossref]
  35. T. N. Oo, T. Mizunuma, Y. Nagano, H. Ma, Y. Ogawa, Y. Haseba, H. Higuchi, Y. Okumura, and H. Kikuchi, “Effects of monomer/liquid crystal compositions on electro-optical properties of polymer-stabilized blue phase liquid crystal,” Opt. Mater. Express 1(8), 1502–1510 (2011).
    [Crossref]
  36. P. C. Wu, H. L. Chen, N. V. Rudakova, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound,” J. Mol. Liq. 267, 138–143 (2018).
    [Crossref]
  37. L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
    [Crossref]
  38. W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
    [Crossref]
  39. H. Li, W. Huang, Q. Mo, B. Liu, D. Shen, W. Zhang, and Z. G. Zheng, “Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system,” J. Mater. Chem. C 7(13), 3952–3957 (2019).
    [Crossref]
  40. L. Gao, K. M. Wang, R. Zhao, H. M. Ma, and Y. B. Sun, “Effect of a dual functional polymer on the electro-optical properties of blue phase liquid crystals,” Polymers 11(7), 1128 (2019).
    [Crossref]
  41. L. Gao, H. Ma, and Y. Sun, “Doping effects of fluorinated chiral dopant in blue phase liquid crystals and its electro-optical behavior,” Liq. Cryst. 47(2), 284–290 (2020).
    [Crossref]
  42. X. Li, W. Q. Yang, C. L. Yuan, Z. Liu, K. Zhou, X. Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
    [Crossref]
  43. P. J. Hsieh and H. M. P. Chen, “Hysteresis-free polymer-stabilised blue phase liquid crystals comprising low surface tension monomers,” Liq. Cryst. 42(2), 216–221 (2015).
    [Crossref]
  44. W. Yao, Y. Li, and X. Huang, “Fluorinated poly(meth)acrylate: synthesis and properties,” Polymer 55(24), 6197–6211 (2014).
    [Crossref]
  45. M. Hu, Y. Zhang, U. Azhar, L. Zhang, Z. Chen, S. Zhang, and C. Zong, “Free radical copolymerization of trifluoroethyl methacrylate with perfluoroalkyl ethyl acrylates for superhydrophobic coating application,” J. Coat. Technol. Res. 16(3), 711–719 (2019).
    [Crossref]
  46. Z. Wang and Z. Wang, “Synthesis of cross-linkable fluorinated core–shell latex nanoparticles and the hydrophobic stability of films,” Polymer 74, 216–223 (2015).
    [Crossref]
  47. L. Hao, Q. An, W. Xu, D. Zhang, and M. Zhang, “Effect of polymerizable emulsifier and fluorine monomer on properties of self-crosslinking fluorinated polyacrylate soap-free latexes,” J. Polym. Res. 20(7), 174 (2013).
    [Crossref]
  48. G. Alessandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, and L. Toniolo, “Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone,” J. Appl. Polym. Sci. 76(6), 962–977 (2000).
    [Crossref]
  49. T. Iwata, K. Suzuki, N. Amaya, H. Higuchi, H. Masunaga, S. Sasaki, and H. Kikuchi, “Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases,” Macromolecules 42(6), 2002–2008 (2009).
    [Crossref]
  50. C. N. Pereira and G. C. Vebber, “A novel semi-empirical method for adjusting solubility parameters to surface tension based on the use of Stefan's rule,” J. Mol. Liq. 272, 520–527 (2018).
    [Crossref]
  51. J. Li and F. Wang, “Water graphene contact surface investigated by pairwise potentials from force-matching PAW-PBE with dispersion correction,” J. Chem. Phys. 146(5), 054702 (2017).
    [Crossref]
  52. T. Zhao and X. Wang, “Dissipative particle dynamics study of translational diffusion of rigid-chain rodlike polymer in nematic phase,” J. Chem. Phys. 139(10), 104902 (2013).
    [Crossref]
  53. C. F. Fan and T. Caǧin, “Wetting of crystalline polymer surfaces: A molecular dynamics simulation,” J. Chem. Phys. 103(20), 9053–9061 (1995).
    [Crossref]
  54. Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
    [Crossref]
  55. K. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, and T. Aida, “Nematic-to-columnar mesophase transition by in situ supramolecular polymerization,” Science 363(6423), 161–165 (2019).
    [Crossref]

2021 (4)

Y. Yang, L. Wang, H. Yang, and Q. Li, “3D chiral photonic nanostructures based on blue-phase liquid crystals,” Small Science 1(6), 2100007 (2021).
[Crossref]

R. K. Cersonsky, J. Antonaglia, B. D. Dice, and S. C. Glotzer, “The diversity of three-dimensional photonic crystals,” Nat. Commun. 12(1), 2543 (2021).
[Crossref]

Y. Yang, X. Zhang, Y. Chen, X. Yang, J. Ma, J. Wang, L. Wang, and W. Feng, “Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks,” ACS. Appl. Mater. Interfaces. 13(34), 41102–41111 (2021).
[Crossref]

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

2020 (5)

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
[Crossref]

R. Liao, X. Zhan, X. Xu, Y. Liu, F. Wang, and D. Luo, “Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell,” Liq. Cryst. 47(5), 715–722 (2020).
[Crossref]

L. Gao, H. Ma, and Y. Sun, “Doping effects of fluorinated chiral dopant in blue phase liquid crystals and its electro-optical behavior,” Liq. Cryst. 47(2), 284–290 (2020).
[Crossref]

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

2019 (4)

K. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, and T. Aida, “Nematic-to-columnar mesophase transition by in situ supramolecular polymerization,” Science 363(6423), 161–165 (2019).
[Crossref]

M. Hu, Y. Zhang, U. Azhar, L. Zhang, Z. Chen, S. Zhang, and C. Zong, “Free radical copolymerization of trifluoroethyl methacrylate with perfluoroalkyl ethyl acrylates for superhydrophobic coating application,” J. Coat. Technol. Res. 16(3), 711–719 (2019).
[Crossref]

H. Li, W. Huang, Q. Mo, B. Liu, D. Shen, W. Zhang, and Z. G. Zheng, “Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system,” J. Mater. Chem. C 7(13), 3952–3957 (2019).
[Crossref]

L. Gao, K. M. Wang, R. Zhao, H. M. Ma, and Y. B. Sun, “Effect of a dual functional polymer on the electro-optical properties of blue phase liquid crystals,” Polymers 11(7), 1128 (2019).
[Crossref]

2018 (4)

P. C. Wu, H. L. Chen, N. V. Rudakova, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound,” J. Mol. Liq. 267, 138–143 (2018).
[Crossref]

N. Avci, “The influence of diluter system on polymer-stabilised blue-phase liquid crystals,” Liq. Cryst. 45(3), 459–467 (2018).
[Crossref]

X. Xu, Z. Liu, Y. Liu, X. Zhang, Z. Zheng, D. Luo, and X. Sun, “Electrically switchable, hyper-reflective blue phase liquid crystals films,” Adv. Opt. Mater. 6(3), 1700891 (2018).
[Crossref]

C. N. Pereira and G. C. Vebber, “A novel semi-empirical method for adjusting solubility parameters to surface tension based on the use of Stefan's rule,” J. Mol. Liq. 272, 520–527 (2018).
[Crossref]

2017 (10)

J. Li and F. Wang, “Water graphene contact surface investigated by pairwise potentials from force-matching PAW-PBE with dispersion correction,” J. Chem. Phys. 146(5), 054702 (2017).
[Crossref]

X. Li, W. Q. Yang, C. L. Yuan, Z. Liu, K. Zhou, X. Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref]

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017).
[Crossref]

J. A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8(1), 15854 (2017).
[Crossref]

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

M.-J. Lee, C.-H. Chang, and W. Lee, “Label-free protein sensing by employing blue phase liquid crystal,” Biomed. Opt. Express 8(3), 1712–1720 (2017).
[Crossref]

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

S. S. Gandhi and L. C. Chien, “Unraveling the mystery of the blue Fog: structure, properties, and applications of amorphous blue phase III,” Adv. Mater. 29(47), 1704296 (2017).
[Crossref]

G. Tan, Y. H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D: Appl. Phys. 50(49), 493001 (2017).
[Crossref]

W. Q. Yang, G. Q. Cai, Z. Liu, X. Q. Wang, W. Feng, Y. Feng, D. Shen, and Z. G. Zheng, “Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material,” J. Mater. Chem. C. 5(3), 690–696 (2017).
[Crossref]

2016 (3)

H. Liu, D. Shen, X. Wang, Z. Zheng, and S. Li, “Wide blue phase range induced by bent-shaped molecules with acrylate end groups,” Opt. Mater. Express 6(2), 436–443 (2016).
[Crossref]

Y. Li, S. Huang, P. Zhou, S. Liu, J. Lu, X. Li, and Y. Su, “Polymer-stabilized blue phase liquid crystals for photonic applications,” Adv Mater. Technol. 1(8), 1600102 (2016).
[Crossref]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref]

2015 (4)

J. Teyssier, S. V. Saenko, D. van der Marel, and M. C. Milinkovitch, “Photonic crystals cause active colour change in chameleons,” Nat. Commun. 6(1), 6368 (2015).
[Crossref]

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

P. J. Hsieh and H. M. P. Chen, “Hysteresis-free polymer-stabilised blue phase liquid crystals comprising low surface tension monomers,” Liq. Cryst. 42(2), 216–221 (2015).
[Crossref]

Z. Wang and Z. Wang, “Synthesis of cross-linkable fluorinated core–shell latex nanoparticles and the hydrophobic stability of films,” Polymer 74, 216–223 (2015).
[Crossref]

2014 (3)

W. Yao, Y. Li, and X. Huang, “Fluorinated poly(meth)acrylate: synthesis and properties,” Polymer 55(24), 6197–6211 (2014).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
[Crossref]

2013 (5)

H. Yoshida, K. Inoue, H. Kubo, and M. Ozaki, “Phase-dependence of gold nanoparticle dispersibility in blue phase and chiral nematic liquid crystals,” Opt. Mater. Express 3(6), 842–852 (2013).
[Crossref]

L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
[Crossref]

D. Luo, H. T. Dai, and X. W. Sun, “Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal,” Opt. Express 21(25), 31318–31323 (2013).
[Crossref]

L. Hao, Q. An, W. Xu, D. Zhang, and M. Zhang, “Effect of polymerizable emulsifier and fluorine monomer on properties of self-crosslinking fluorinated polyacrylate soap-free latexes,” J. Polym. Res. 20(7), 174 (2013).
[Crossref]

T. Zhao and X. Wang, “Dissipative particle dynamics study of translational diffusion of rigid-chain rodlike polymer in nematic phase,” J. Chem. Phys. 139(10), 104902 (2013).
[Crossref]

2012 (2)

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, and T. Michael, “Stabilising liquid crystalline Blue Phases,” Soft Matter 8(16), 4355–4362 (2012).
[Crossref]

2011 (2)

2010 (1)

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010).
[Crossref]

2009 (2)

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

T. Iwata, K. Suzuki, N. Amaya, H. Higuchi, H. Masunaga, S. Sasaki, and H. Kikuchi, “Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases,” Macromolecules 42(6), 2002–2008 (2009).
[Crossref]

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

2000 (1)

G. Alessandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, and L. Toniolo, “Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone,” J. Appl. Polym. Sci. 76(6), 962–977 (2000).
[Crossref]

1995 (1)

C. F. Fan and T. Caǧin, “Wetting of crystalline polymer surfaces: A molecular dynamics simulation,” J. Chem. Phys. 103(20), 9053–9061 (1995).
[Crossref]

1981 (1)

S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216–1219 (1981).
[Crossref]

Aglietto, M.

G. Alessandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, and L. Toniolo, “Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone,” J. Appl. Polym. Sci. 76(6), 962–977 (2000).
[Crossref]

Aida, T.

K. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, and T. Aida, “Nematic-to-columnar mesophase transition by in situ supramolecular polymerization,” Science 363(6423), 161–165 (2019).
[Crossref]

Alessandrini, G.

G. Alessandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, and L. Toniolo, “Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone,” J. Appl. Polym. Sci. 76(6), 962–977 (2000).
[Crossref]

Amaya, N.

T. Iwata, K. Suzuki, N. Amaya, H. Higuchi, H. Masunaga, S. Sasaki, and H. Kikuchi, “Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases,” Macromolecules 42(6), 2002–2008 (2009).
[Crossref]

An, Q.

L. Hao, Q. An, W. Xu, D. Zhang, and M. Zhang, “Effect of polymerizable emulsifier and fluorine monomer on properties of self-crosslinking fluorinated polyacrylate soap-free latexes,” J. Polym. Res. 20(7), 174 (2013).
[Crossref]

Anderson, P. W.

S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216–1219 (1981).
[Crossref]

Antonaglia, J.

R. K. Cersonsky, J. Antonaglia, B. D. Dice, and S. C. Glotzer, “The diversity of three-dimensional photonic crystals,” Nat. Commun. 12(1), 2543 (2021).
[Crossref]

Araoka, F.

K. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, and T. Aida, “Nematic-to-columnar mesophase transition by in situ supramolecular polymerization,” Science 363(6423), 161–165 (2019).
[Crossref]

Avci, N.

N. Avci, “The influence of diluter system on polymer-stabilised blue-phase liquid crystals,” Liq. Cryst. 45(3), 459–467 (2018).
[Crossref]

Azhar, U.

M. Hu, Y. Zhang, U. Azhar, L. Zhang, Z. Chen, S. Zhang, and C. Zong, “Free radical copolymerization of trifluoroethyl methacrylate with perfluoroalkyl ethyl acrylates for superhydrophobic coating application,” J. Coat. Technol. Res. 16(3), 711–719 (2019).
[Crossref]

Bisoyi, H. K.

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref]

Blenkhorn, W.

I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, and T. Michael, “Stabilising liquid crystalline Blue Phases,” Soft Matter 8(16), 4355–4362 (2012).
[Crossref]

Brinkman, W. F.

S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216–1219 (1981).
[Crossref]

Bunning, T. J.

D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
[Crossref]

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref]

Cagin, T.

C. F. Fan and T. Caǧin, “Wetting of crystalline polymer surfaces: A molecular dynamics simulation,” J. Chem. Phys. 103(20), 9053–9061 (1995).
[Crossref]

Cai, G. Q.

W. Q. Yang, G. Q. Cai, Z. Liu, X. Q. Wang, W. Feng, Y. Feng, D. Shen, and Z. G. Zheng, “Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material,” J. Mater. Chem. C. 5(3), 690–696 (2017).
[Crossref]

Castelvetro, V.

G. Alessandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, and L. Toniolo, “Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone,” J. Appl. Polym. Sci. 76(6), 962–977 (2000).
[Crossref]

Castles, F.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

Cersonsky, R. K.

R. K. Cersonsky, J. Antonaglia, B. D. Dice, and S. C. Glotzer, “The diversity of three-dimensional photonic crystals,” Nat. Commun. 12(1), 2543 (2021).
[Crossref]

Chang, C.-H.

Chen, C. W.

D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
[Crossref]

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Chen, F.

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

Chen, H.

G. Tan, Y. H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D: Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Chen, H. L.

P. C. Wu, H. L. Chen, N. V. Rudakova, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound,” J. Mol. Liq. 267, 138–143 (2018).
[Crossref]

Chen, H. M. P.

P. J. Hsieh and H. M. P. Chen, “Hysteresis-free polymer-stabilised blue phase liquid crystals comprising low surface tension monomers,” Liq. Cryst. 42(2), 216–221 (2015).
[Crossref]

Chen, Y.

Y. Yang, X. Zhang, Y. Chen, X. Yang, J. Ma, J. Wang, L. Wang, and W. Feng, “Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks,” ACS. Appl. Mater. Interfaces. 13(34), 41102–41111 (2021).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
[Crossref]

Chen, Z.

M. Hu, Y. Zhang, U. Azhar, L. Zhang, Z. Chen, S. Zhang, and C. Zong, “Free radical copolymerization of trifluoroethyl methacrylate with perfluoroalkyl ethyl acrylates for superhydrophobic coating application,” J. Coat. Technol. Res. 16(3), 711–719 (2019).
[Crossref]

Chiang, S. P.

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

Chien, L. C.

S. S. Gandhi and L. C. Chien, “Unraveling the mystery of the blue Fog: structure, properties, and applications of amorphous blue phase III,” Adv. Mater. 29(47), 1704296 (2017).
[Crossref]

Choi, S. S.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

Ciardelli, F.

G. Alessandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, and L. Toniolo, “Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone,” J. Appl. Polym. Sci. 76(6), 962–977 (2000).
[Crossref]

Coles, H. J.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

Cordoyiannis, G.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010).
[Crossref]

Credland, E.

I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, and T. Michael, “Stabilising liquid crystalline Blue Phases,” Soft Matter 8(16), 4355–4362 (2012).
[Crossref]

Dai, H. T.

Day, F. V.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

de Pablo, J. J.

J. A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8(1), 15854 (2017).
[Crossref]

Dice, B. D.

R. K. Cersonsky, J. Antonaglia, B. D. Dice, and S. C. Glotzer, “The diversity of three-dimensional photonic crystals,” Nat. Commun. 12(1), 2543 (2021).
[Crossref]

Dierking, I.

I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, and T. Michael, “Stabilising liquid crystalline Blue Phases,” Soft Matter 8(16), 4355–4362 (2012).
[Crossref]

Drake, W.

I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, and T. Michael, “Stabilising liquid crystalline Blue Phases,” Soft Matter 8(16), 4355–4362 (2012).
[Crossref]

Ellahi, M.

L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
[Crossref]

Fan, C. F.

C. F. Fan and T. Caǧin, “Wetting of crystalline polymer surfaces: A molecular dynamics simulation,” J. Chem. Phys. 103(20), 9053–9061 (1995).
[Crossref]

Feng, T. M.

D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
[Crossref]

Feng, W.

Y. Yang, X. Zhang, Y. Chen, X. Yang, J. Ma, J. Wang, L. Wang, and W. Feng, “Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks,” ACS. Appl. Mater. Interfaces. 13(34), 41102–41111 (2021).
[Crossref]

W. Q. Yang, G. Q. Cai, Z. Liu, X. Q. Wang, W. Feng, Y. Feng, D. Shen, and Z. G. Zheng, “Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material,” J. Mater. Chem. C. 5(3), 690–696 (2017).
[Crossref]

Feng, Y.

W. Q. Yang, G. Q. Cai, Z. Liu, X. Q. Wang, W. Feng, Y. Feng, D. Shen, and Z. G. Zheng, “Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material,” J. Mater. Chem. C. 5(3), 690–696 (2017).
[Crossref]

Friend, R. H.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

Gandhi, S. S.

S. S. Gandhi and L. C. Chien, “Unraveling the mystery of the blue Fog: structure, properties, and applications of amorphous blue phase III,” Adv. Mater. 29(47), 1704296 (2017).
[Crossref]

Gao, L.

L. Gao, H. Ma, and Y. Sun, “Doping effects of fluorinated chiral dopant in blue phase liquid crystals and its electro-optical behavior,” Liq. Cryst. 47(2), 284–290 (2020).
[Crossref]

L. Gao, K. M. Wang, R. Zhao, H. M. Ma, and Y. B. Sun, “Effect of a dual functional polymer on the electro-optical properties of blue phase liquid crystals,” Polymers 11(7), 1128 (2019).
[Crossref]

Gardiner, D. J.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

Gauza, S.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Ge, Z.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Glorieux, C.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010).
[Crossref]

Glotzer, S. C.

R. K. Cersonsky, J. Antonaglia, B. D. Dice, and S. C. Glotzer, “The diversity of three-dimensional photonic crystals,” Nat. Commun. 12(1), 2543 (2021).
[Crossref]

Gou, F.

G. Tan, Y. H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D: Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Guo, D. Y.

D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
[Crossref]

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Guo, L.

L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
[Crossref]

Hands, P. J.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

Hao, L.

L. Hao, Q. An, W. Xu, D. Zhang, and M. Zhang, “Effect of polymerizable emulsifier and fluorine monomer on properties of self-crosslinking fluorinated polyacrylate soap-free latexes,” J. Polym. Res. 20(7), 174 (2013).
[Crossref]

Haseba, Y.

He, W.

L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
[Crossref]

Higuchi, H.

T. N. Oo, T. Mizunuma, Y. Nagano, H. Ma, Y. Ogawa, Y. Haseba, H. Higuchi, Y. Okumura, and H. Kikuchi, “Effects of monomer/liquid crystal compositions on electro-optical properties of polymer-stabilized blue phase liquid crystal,” Opt. Mater. Express 1(8), 1502–1510 (2011).
[Crossref]

T. Iwata, K. Suzuki, N. Amaya, H. Higuchi, H. Masunaga, S. Sasaki, and H. Kikuchi, “Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases,” Macromolecules 42(6), 2002–2008 (2009).
[Crossref]

Hikima, T.

K. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, and T. Aida, “Nematic-to-columnar mesophase transition by in situ supramolecular polymerization,” Science 363(6423), 161–165 (2019).
[Crossref]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

Hong, C. L.

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Hou, C. T.

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

Hsieh, P. J.

P. J. Hsieh and H. M. P. Chen, “Hysteresis-free polymer-stabilised blue phase liquid crystals comprising low surface tension monomers,” Liq. Cryst. 42(2), 216–221 (2015).
[Crossref]

Hu, M.

M. Hu, Y. Zhang, U. Azhar, L. Zhang, Z. Chen, S. Zhang, and C. Zong, “Free radical copolymerization of trifluoroethyl methacrylate with perfluoroalkyl ethyl acrylates for superhydrophobic coating application,” J. Coat. Technol. Res. 16(3), 711–719 (2019).
[Crossref]

Hu, W.

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

Hu, X.

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

Huang, S.

Y. Li, S. Huang, P. Zhou, S. Liu, J. Lu, X. Li, and Y. Su, “Polymer-stabilized blue phase liquid crystals for photonic applications,” Adv Mater. Technol. 1(8), 1600102 (2016).
[Crossref]

Huang, W.

H. Li, W. Huang, Q. Mo, B. Liu, D. Shen, W. Zhang, and Z. G. Zheng, “Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system,” J. Mater. Chem. C 7(13), 3952–3957 (2019).
[Crossref]

Huang, X.

W. Yao, Y. Li, and X. Huang, “Fluorinated poly(meth)acrylate: synthesis and properties,” Polymer 55(24), 6197–6211 (2014).
[Crossref]

Huang, Y.

G. Tan, Y. H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D: Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Inoue, K.

Itoh, Y.

K. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, and T. Aida, “Nematic-to-columnar mesophase transition by in situ supramolecular polymerization,” Science 363(6423), 161–165 (2019).
[Crossref]

Iwata, T.

T. Iwata, K. Suzuki, N. Amaya, H. Higuchi, H. Masunaga, S. Sasaki, and H. Kikuchi, “Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases,” Macromolecules 42(6), 2002–2008 (2009).
[Crossref]

Jau, H. C.

D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
[Crossref]

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Jiao, M.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Kajiyama, T.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

Karatairi, E.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010).
[Crossref]

Kayser, B.

I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, and T. Michael, “Stabilising liquid crystalline Blue Phases,” Soft Matter 8(16), 4355–4362 (2012).
[Crossref]

Khoo, I. C.

D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
[Crossref]

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

Kikuchi, H.

T. N. Oo, T. Mizunuma, Y. Nagano, H. Ma, Y. Ogawa, Y. Haseba, H. Higuchi, Y. Okumura, and H. Kikuchi, “Effects of monomer/liquid crystal compositions on electro-optical properties of polymer-stabilized blue phase liquid crystal,” Opt. Mater. Express 1(8), 1502–1510 (2011).
[Crossref]

T. Iwata, K. Suzuki, N. Amaya, H. Higuchi, H. Masunaga, S. Sasaki, and H. Kikuchi, “Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases,” Macromolecules 42(6), 2002–2008 (2009).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

H. Kikuchi, Structure. Bonding, T. Kato, ed., (Springer Berlin Heidelberg, 2008,), pp. 99–117.

Ko, D. H.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

Kociuruba, R.

I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, and T. Michael, “Stabilising liquid crystalline Blue Phases,” Soft Matter 8(16), 4355–4362 (2012).
[Crossref]

Kralj, S.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010).
[Crossref]

Kubo, H.

Kutnjak, Z.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010).
[Crossref]

Lan, Y. F.

G. Tan, Y. H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D: Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Lee, M.-J.

Lee, W.

P. C. Wu, H. L. Chen, N. V. Rudakova, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound,” J. Mol. Liq. 267, 138–143 (2018).
[Crossref]

M.-J. Lee, C.-H. Chang, and W. Lee, “Label-free protein sensing by employing blue phase liquid crystal,” Biomed. Opt. Express 8(3), 1712–1720 (2017).
[Crossref]

Lee, Y. H.

G. Tan, Y. H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D: Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Li, C. C.

D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
[Crossref]

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Li, F.

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017).
[Crossref]

Li, G.

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

Li, H.

H. Li, W. Huang, Q. Mo, B. Liu, D. Shen, W. Zhang, and Z. G. Zheng, “Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system,” J. Mater. Chem. C 7(13), 3952–3957 (2019).
[Crossref]

Li, J.

J. Li and F. Wang, “Water graphene contact surface investigated by pairwise potentials from force-matching PAW-PBE with dispersion correction,” J. Chem. Phys. 146(5), 054702 (2017).
[Crossref]

Li, K.

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

Li, Q.

Y. Yang, L. Wang, H. Yang, and Q. Li, “3D chiral photonic nanostructures based on blue-phase liquid crystals,” Small Science 1(6), 2100007 (2021).
[Crossref]

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref]

Li, S.

Li, X.

X. Li, W. Q. Yang, C. L. Yuan, Z. Liu, K. Zhou, X. Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref]

J. A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8(1), 15854 (2017).
[Crossref]

Y. Li, S. Huang, P. Zhou, S. Liu, J. Lu, X. Li, and Y. Su, “Polymer-stabilized blue phase liquid crystals for photonic applications,” Adv Mater. Technol. 1(8), 1600102 (2016).
[Crossref]

Li, Y.

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref]

Y. Li, S. Huang, P. Zhou, S. Liu, J. Lu, X. Li, and Y. Su, “Polymer-stabilized blue phase liquid crystals for photonic applications,” Adv Mater. Technol. 1(8), 1600102 (2016).
[Crossref]

W. Yao, Y. Li, and X. Huang, “Fluorinated poly(meth)acrylate: synthesis and properties,” Polymer 55(24), 6197–6211 (2014).
[Crossref]

Liao, R.

R. Liao, X. Zhan, X. Xu, Y. Liu, F. Wang, and D. Luo, “Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell,” Liq. Cryst. 47(5), 715–722 (2020).
[Crossref]

Liao, X.

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

Lin, K. H.

D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
[Crossref]

Lin, T. H.

D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
[Crossref]

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Liu, B.

H. Li, W. Huang, Q. Mo, B. Liu, D. Shen, W. Zhang, and Z. G. Zheng, “Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system,” J. Mater. Chem. C 7(13), 3952–3957 (2019).
[Crossref]

Liu, H.

Liu, S.

Y. Li, S. Huang, P. Zhou, S. Liu, J. Lu, X. Li, and Y. Su, “Polymer-stabilized blue phase liquid crystals for photonic applications,” Adv Mater. Technol. 1(8), 1600102 (2016).
[Crossref]

Liu, W.

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

Liu, Y.

R. Liao, X. Zhan, X. Xu, Y. Liu, F. Wang, and D. Luo, “Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell,” Liq. Cryst. 47(5), 715–722 (2020).
[Crossref]

X. Xu, Z. Liu, Y. Liu, X. Zhang, Z. Zheng, D. Luo, and X. Sun, “Electrically switchable, hyper-reflective blue phase liquid crystals films,” Adv. Opt. Mater. 6(3), 1700891 (2018).
[Crossref]

Liu, Z.

X. Xu, Z. Liu, Y. Liu, X. Zhang, Z. Zheng, D. Luo, and X. Sun, “Electrically switchable, hyper-reflective blue phase liquid crystals films,” Adv. Opt. Mater. 6(3), 1700891 (2018).
[Crossref]

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

W. Q. Yang, G. Q. Cai, Z. Liu, X. Q. Wang, W. Feng, Y. Feng, D. Shen, and Z. G. Zheng, “Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material,” J. Mater. Chem. C. 5(3), 690–696 (2017).
[Crossref]

X. Li, W. Q. Yang, C. L. Yuan, Z. Liu, K. Zhou, X. Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref]

Lu, J.

Y. Li, S. Huang, P. Zhou, S. Liu, J. Lu, X. Li, and Y. Su, “Polymer-stabilized blue phase liquid crystals for photonic applications,” Adv Mater. Technol. 1(8), 1600102 (2016).
[Crossref]

Lu, Y. Q.

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

Luo, D.

R. Liao, X. Zhan, X. Xu, Y. Liu, F. Wang, and D. Luo, “Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell,” Liq. Cryst. 47(5), 715–722 (2020).
[Crossref]

X. Xu, Z. Liu, Y. Liu, X. Zhang, Z. Zheng, D. Luo, and X. Sun, “Electrically switchable, hyper-reflective blue phase liquid crystals films,” Adv. Opt. Mater. 6(3), 1700891 (2018).
[Crossref]

D. Luo, H. T. Dai, and X. W. Sun, “Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal,” Opt. Express 21(25), 31318–31323 (2013).
[Crossref]

Ma, H.

Ma, H. M.

L. Gao, K. M. Wang, R. Zhao, H. M. Ma, and Y. B. Sun, “Effect of a dual functional polymer on the electro-optical properties of blue phase liquid crystals,” Polymers 11(7), 1128 (2019).
[Crossref]

Ma, J.

Y. Yang, X. Zhang, Y. Chen, X. Yang, J. Ma, J. Wang, L. Wang, and W. Feng, “Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks,” ACS. Appl. Mater. Interfaces. 13(34), 41102–41111 (2021).
[Crossref]

Martinez-Gonzalez, J. A.

J. A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8(1), 15854 (2017).
[Crossref]

Masunaga, H.

T. Iwata, K. Suzuki, N. Amaya, H. Higuchi, H. Masunaga, S. Sasaki, and H. Kikuchi, “Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases,” Macromolecules 42(6), 2002–2008 (2009).
[Crossref]

Meiboom, S.

S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216–1219 (1981).
[Crossref]

Miao, Z.

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

Michael, T.

I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, and T. Michael, “Stabilising liquid crystalline Blue Phases,” Soft Matter 8(16), 4355–4362 (2012).
[Crossref]

Milinkovitch, M. C.

J. Teyssier, S. V. Saenko, D. van der Marel, and M. C. Milinkovitch, “Photonic crystals cause active colour change in chameleons,” Nat. Commun. 6(1), 6368 (2015).
[Crossref]

Mizunuma, T.

Mo, Q.

H. Li, W. Huang, Q. Mo, B. Liu, D. Shen, W. Zhang, and Z. G. Zheng, “Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system,” J. Mater. Chem. C 7(13), 3952–3957 (2019).
[Crossref]

Morris, S. M.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

Nagano, Y.

Nealey, P. F.

J. A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8(1), 15854 (2017).
[Crossref]

Nosheen, S.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

Nounesis, G.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010).
[Crossref]

Ogawa, Y.

Okumura, Y.

Oo, T. N.

Ozaki, M.

Peng, F.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Pereira, C. N.

C. N. Pereira and G. C. Vebber, “A novel semi-empirical method for adjusting solubility parameters to surface tension based on the use of Stefan's rule,” J. Mol. Liq. 272, 520–527 (2018).
[Crossref]

Peruzzi, R.

G. Alessandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, and L. Toniolo, “Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone,” J. Appl. Polym. Sci. 76(6), 962–977 (2000).
[Crossref]

Qasim, M. M.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

Rozic, B.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010).
[Crossref]

Rudakova, N. V.

P. C. Wu, H. L. Chen, N. V. Rudakova, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound,” J. Mol. Liq. 267, 138–143 (2018).
[Crossref]

Sadati, M.

J. A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8(1), 15854 (2017).
[Crossref]

Saenko, S. V.

J. Teyssier, S. V. Saenko, D. van der Marel, and M. C. Milinkovitch, “Photonic crystals cause active colour change in chameleons,” Nat. Commun. 6(1), 6368 (2015).
[Crossref]

Sasaki, S.

T. Iwata, K. Suzuki, N. Amaya, H. Higuchi, H. Masunaga, S. Sasaki, and H. Kikuchi, “Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases,” Macromolecules 42(6), 2002–2008 (2009).
[Crossref]

Sethna, J. P.

S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216–1219 (1981).
[Crossref]

Shen, D.

H. Li, W. Huang, Q. Mo, B. Liu, D. Shen, W. Zhang, and Z. G. Zheng, “Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system,” J. Mater. Chem. C 7(13), 3952–3957 (2019).
[Crossref]

X. Li, W. Q. Yang, C. L. Yuan, Z. Liu, K. Zhou, X. Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref]

W. Q. Yang, G. Q. Cai, Z. Liu, X. Q. Wang, W. Feng, Y. Feng, D. Shen, and Z. G. Zheng, “Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material,” J. Mater. Chem. C. 5(3), 690–696 (2017).
[Crossref]

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

H. Liu, D. Shen, X. Wang, Z. Zheng, and S. Li, “Wide blue phase range induced by bent-shaped molecules with acrylate end groups,” Opt. Mater. Express 6(2), 436–443 (2016).
[Crossref]

Song, P.

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017).
[Crossref]

Su, Y.

Y. Li, S. Huang, P. Zhou, S. Liu, J. Lu, X. Li, and Y. Su, “Polymer-stabilized blue phase liquid crystals for photonic applications,” Adv Mater. Technol. 1(8), 1600102 (2016).
[Crossref]

Sun, J.

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017).
[Crossref]

Sun, P. Z.

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

Sun, X.

X. Xu, Z. Liu, Y. Liu, X. Zhang, Z. Zheng, D. Luo, and X. Sun, “Electrically switchable, hyper-reflective blue phase liquid crystals films,” Adv. Opt. Mater. 6(3), 1700891 (2018).
[Crossref]

Sun, X. W.

Sun, Y.

L. Gao, H. Ma, and Y. Sun, “Doping effects of fluorinated chiral dopant in blue phase liquid crystals and its electro-optical behavior,” Liq. Cryst. 47(2), 284–290 (2020).
[Crossref]

Sun, Y. B.

L. Gao, K. M. Wang, R. Zhao, H. M. Ma, and Y. B. Sun, “Effect of a dual functional polymer on the electro-optical properties of blue phase liquid crystals,” Polymers 11(7), 1128 (2019).
[Crossref]

Suzuki, K.

T. Iwata, K. Suzuki, N. Amaya, H. Higuchi, H. Masunaga, S. Sasaki, and H. Kikuchi, “Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases,” Macromolecules 42(6), 2002–2008 (2009).
[Crossref]

Tan, G.

G. Tan, Y. H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D: Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Tang, M. J.

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

Teyssier, J.

J. Teyssier, S. V. Saenko, D. van der Marel, and M. C. Milinkovitch, “Photonic crystals cause active colour change in chameleons,” Nat. Commun. 6(1), 6368 (2015).
[Crossref]

Thoen, J.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010).
[Crossref]

Timofeev, I. V.

P. C. Wu, H. L. Chen, N. V. Rudakova, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound,” J. Mol. Liq. 267, 138–143 (2018).
[Crossref]

Toniolo, L.

G. Alessandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, and L. Toniolo, “Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone,” J. Appl. Polym. Sci. 76(6), 962–977 (2000).
[Crossref]

Tsai, C. Y.

G. Tan, Y. H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D: Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Tzitzios, V.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010).
[Crossref]

van der Marel, D.

J. Teyssier, S. V. Saenko, D. van der Marel, and M. C. Milinkovitch, “Photonic crystals cause active colour change in chameleons,” Nat. Commun. 6(1), 6368 (2015).
[Crossref]

Vebber, G. C.

C. N. Pereira and G. C. Vebber, “A novel semi-empirical method for adjusting solubility parameters to surface tension based on the use of Stefan's rule,” J. Mol. Liq. 272, 520–527 (2018).
[Crossref]

Wang, C. T.

D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
[Crossref]

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Wang, C. Y.

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

Wang, F.

R. Liao, X. Zhan, X. Xu, Y. Liu, F. Wang, and D. Luo, “Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell,” Liq. Cryst. 47(5), 715–722 (2020).
[Crossref]

J. Li and F. Wang, “Water graphene contact surface investigated by pairwise potentials from force-matching PAW-PBE with dispersion correction,” J. Chem. Phys. 146(5), 054702 (2017).
[Crossref]

Wang, J.

Y. Yang, X. Zhang, Y. Chen, X. Yang, J. Ma, J. Wang, L. Wang, and W. Feng, “Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks,” ACS. Appl. Mater. Interfaces. 13(34), 41102–41111 (2021).
[Crossref]

Wang, K. M.

L. Gao, K. M. Wang, R. Zhao, H. M. Ma, and Y. B. Sun, “Effect of a dual functional polymer on the electro-optical properties of blue phase liquid crystals,” Polymers 11(7), 1128 (2019).
[Crossref]

Wang, L.

Y. Yang, X. Zhang, Y. Chen, X. Yang, J. Ma, J. Wang, L. Wang, and W. Feng, “Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks,” ACS. Appl. Mater. Interfaces. 13(34), 41102–41111 (2021).
[Crossref]

Y. Yang, L. Wang, H. Yang, and Q. Li, “3D chiral photonic nanostructures based on blue-phase liquid crystals,” Small Science 1(6), 2100007 (2021).
[Crossref]

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017).
[Crossref]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref]

L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
[Crossref]

Wang, M.

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017).
[Crossref]

Wang, Q.

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
[Crossref]

Wang, X.

H. Liu, D. Shen, X. Wang, Z. Zheng, and S. Li, “Wide blue phase range induced by bent-shaped molecules with acrylate end groups,” Opt. Mater. Express 6(2), 436–443 (2016).
[Crossref]

T. Zhao and X. Wang, “Dissipative particle dynamics study of translational diffusion of rigid-chain rodlike polymer in nematic phase,” J. Chem. Phys. 139(10), 104902 (2013).
[Crossref]

Wang, X. Q.

W. Q. Yang, G. Q. Cai, Z. Liu, X. Q. Wang, W. Feng, Y. Feng, D. Shen, and Z. G. Zheng, “Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material,” J. Mater. Chem. C. 5(3), 690–696 (2017).
[Crossref]

X. Li, W. Q. Yang, C. L. Yuan, Z. Liu, K. Zhou, X. Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref]

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

Wang, Z.

Z. Wang and Z. Wang, “Synthesis of cross-linkable fluorinated core–shell latex nanoparticles and the hydrophobic stability of films,” Polymer 74, 216–223 (2015).
[Crossref]

Z. Wang and Z. Wang, “Synthesis of cross-linkable fluorinated core–shell latex nanoparticles and the hydrophobic stability of films,” Polymer 74, 216–223 (2015).
[Crossref]

Watanabe, G.

K. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, and T. Aida, “Nematic-to-columnar mesophase transition by in situ supramolecular polymerization,” Science 363(6423), 161–165 (2019).
[Crossref]

Wu, P. C.

P. C. Wu, H. L. Chen, N. V. Rudakova, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound,” J. Mol. Liq. 267, 138–143 (2018).
[Crossref]

Wu, S.

Wu, S. T.

G. Tan, Y. H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D: Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (John Wiley & Sons, 2006,), pp. 445–476.

Xianyu, H.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Xiao, J.

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017).
[Crossref]

Xiao, X.

L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
[Crossref]

Xu, D.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Xu, W.

L. Hao, Q. An, W. Xu, D. Zhang, and M. Zhang, “Effect of polymerizable emulsifier and fluorine monomer on properties of self-crosslinking fluorinated polyacrylate soap-free latexes,” J. Polym. Res. 20(7), 174 (2013).
[Crossref]

Xu, X.

R. Liao, X. Zhan, X. Xu, Y. Liu, F. Wang, and D. Luo, “Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell,” Liq. Cryst. 47(5), 715–722 (2020).
[Crossref]

X. Xu, Z. Liu, Y. Liu, X. Zhang, Z. Zheng, D. Luo, and X. Sun, “Electrically switchable, hyper-reflective blue phase liquid crystals films,” Adv. Opt. Mater. 6(3), 1700891 (2018).
[Crossref]

Yan, J.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

J. Yan and S. Wu, “Effect of polymer concentration and composition on blue phase liquid crystals,” J. Display Technol. 7(9), 490–493 (2011).
[Crossref]

Yang, D.

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

Yang, H.

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

Y. Yang, L. Wang, H. Yang, and Q. Li, “3D chiral photonic nanostructures based on blue-phase liquid crystals,” Small Science 1(6), 2100007 (2021).
[Crossref]

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017).
[Crossref]

L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

Yang, W. Q.

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

X. Li, W. Q. Yang, C. L. Yuan, Z. Liu, K. Zhou, X. Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref]

W. Q. Yang, G. Q. Cai, Z. Liu, X. Q. Wang, W. Feng, Y. Feng, D. Shen, and Z. G. Zheng, “Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material,” J. Mater. Chem. C. 5(3), 690–696 (2017).
[Crossref]

Yang, X.

Y. Yang, X. Zhang, Y. Chen, X. Yang, J. Ma, J. Wang, L. Wang, and W. Feng, “Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks,” ACS. Appl. Mater. Interfaces. 13(34), 41102–41111 (2021).
[Crossref]

Yang, Y.

Y. Yang, X. Zhang, Y. Chen, X. Yang, J. Ma, J. Wang, L. Wang, and W. Feng, “Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks,” ACS. Appl. Mater. Interfaces. 13(34), 41102–41111 (2021).
[Crossref]

Y. Yang, L. Wang, H. Yang, and Q. Li, “3D chiral photonic nanostructures based on blue-phase liquid crystals,” Small Science 1(6), 2100007 (2021).
[Crossref]

Yano, K.

K. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, and T. Aida, “Nematic-to-columnar mesophase transition by in situ supramolecular polymerization,” Science 363(6423), 161–165 (2019).
[Crossref]

Yao, W.

W. Yao, Y. Li, and X. Huang, “Fluorinated poly(meth)acrylate: synthesis and properties,” Polymer 55(24), 6197–6211 (2014).
[Crossref]

Ye, F.

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

Yoshida, H.

You, Y.

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

Yu, H.

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

Yu, L. C.

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Yu, M.

L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
[Crossref]

Yuan, C. L.

X. Li, W. Q. Yang, C. L. Yuan, Z. Liu, K. Zhou, X. Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref]

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

Yuan, D.

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

Yuan, J.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Yuan, X.

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

Zhan, X.

R. Liao, X. Zhan, X. Xu, Y. Liu, F. Wang, and D. Luo, “Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell,” Liq. Cryst. 47(5), 715–722 (2020).
[Crossref]

Zhang, B.

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

Zhang, D.

L. Hao, Q. An, W. Xu, D. Zhang, and M. Zhang, “Effect of polymerizable emulsifier and fluorine monomer on properties of self-crosslinking fluorinated polyacrylate soap-free latexes,” J. Polym. Res. 20(7), 174 (2013).
[Crossref]

Zhang, L.

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

M. Hu, Y. Zhang, U. Azhar, L. Zhang, Z. Chen, S. Zhang, and C. Zong, “Free radical copolymerization of trifluoroethyl methacrylate with perfluoroalkyl ethyl acrylates for superhydrophobic coating application,” J. Coat. Technol. Res. 16(3), 711–719 (2019).
[Crossref]

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017).
[Crossref]

Zhang, M.

L. Hao, Q. An, W. Xu, D. Zhang, and M. Zhang, “Effect of polymerizable emulsifier and fluorine monomer on properties of self-crosslinking fluorinated polyacrylate soap-free latexes,” J. Polym. Res. 20(7), 174 (2013).
[Crossref]

Zhang, R.

J. A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8(1), 15854 (2017).
[Crossref]

Zhang, S.

M. Hu, Y. Zhang, U. Azhar, L. Zhang, Z. Chen, S. Zhang, and C. Zong, “Free radical copolymerization of trifluoroethyl methacrylate with perfluoroalkyl ethyl acrylates for superhydrophobic coating application,” J. Coat. Technol. Res. 16(3), 711–719 (2019).
[Crossref]

Zhang, W.

H. Li, W. Huang, Q. Mo, B. Liu, D. Shen, W. Zhang, and Z. G. Zheng, “Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system,” J. Mater. Chem. C 7(13), 3952–3957 (2019).
[Crossref]

Zhang, X.

Y. Yang, X. Zhang, Y. Chen, X. Yang, J. Ma, J. Wang, L. Wang, and W. Feng, “Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks,” ACS. Appl. Mater. Interfaces. 13(34), 41102–41111 (2021).
[Crossref]

X. Xu, Z. Liu, Y. Liu, X. Zhang, Z. Zheng, D. Luo, and X. Sun, “Electrically switchable, hyper-reflective blue phase liquid crystals films,” Adv. Opt. Mater. 6(3), 1700891 (2018).
[Crossref]

Zhang, Y.

M. Hu, Y. Zhang, U. Azhar, L. Zhang, Z. Chen, S. Zhang, and C. Zong, “Free radical copolymerization of trifluoroethyl methacrylate with perfluoroalkyl ethyl acrylates for superhydrophobic coating application,” J. Coat. Technol. Res. 16(3), 711–719 (2019).
[Crossref]

L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
[Crossref]

Zhao, D.

L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
[Crossref]

Zhao, R.

L. Gao, K. M. Wang, R. Zhao, H. M. Ma, and Y. B. Sun, “Effect of a dual functional polymer on the electro-optical properties of blue phase liquid crystals,” Polymers 11(7), 1128 (2019).
[Crossref]

Zhao, T.

T. Zhao and X. Wang, “Dissipative particle dynamics study of translational diffusion of rigid-chain rodlike polymer in nematic phase,” J. Chem. Phys. 139(10), 104902 (2013).
[Crossref]

Zhao, W.

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

Zheng, Z.

X. Xu, Z. Liu, Y. Liu, X. Zhang, Z. Zheng, D. Luo, and X. Sun, “Electrically switchable, hyper-reflective blue phase liquid crystals films,” Adv. Opt. Mater. 6(3), 1700891 (2018).
[Crossref]

H. Liu, D. Shen, X. Wang, Z. Zheng, and S. Li, “Wide blue phase range induced by bent-shaped molecules with acrylate end groups,” Opt. Mater. Express 6(2), 436–443 (2016).
[Crossref]

Zheng, Z. G.

H. Li, W. Huang, Q. Mo, B. Liu, D. Shen, W. Zhang, and Z. G. Zheng, “Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system,” J. Mater. Chem. C 7(13), 3952–3957 (2019).
[Crossref]

X. Li, W. Q. Yang, C. L. Yuan, Z. Liu, K. Zhou, X. Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref]

W. Q. Yang, G. Q. Cai, Z. Liu, X. Q. Wang, W. Feng, Y. Feng, D. Shen, and Z. G. Zheng, “Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material,” J. Mater. Chem. C. 5(3), 690–696 (2017).
[Crossref]

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref]

Zhong, T.

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

Zhou, G.

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

Zhou, K.

X. Li, W. Q. Yang, C. L. Yuan, Z. Liu, K. Zhou, X. Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref]

Zhou, L.

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

Zhou, P.

Y. Li, S. Huang, P. Zhou, S. Liu, J. Lu, X. Li, and Y. Su, “Polymer-stabilized blue phase liquid crystals for photonic applications,” Adv Mater. Technol. 1(8), 1600102 (2016).
[Crossref]

Zhou, Y.

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

J. A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8(1), 15854 (2017).
[Crossref]

Zong, C.

M. Hu, Y. Zhang, U. Azhar, L. Zhang, Z. Chen, S. Zhang, and C. Zong, “Free radical copolymerization of trifluoroethyl methacrylate with perfluoroalkyl ethyl acrylates for superhydrophobic coating application,” J. Coat. Technol. Res. 16(3), 711–719 (2019).
[Crossref]

Zou, C.

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017).
[Crossref]

Zyryanov, V. Y.

P. C. Wu, H. L. Chen, N. V. Rudakova, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound,” J. Mol. Liq. 267, 138–143 (2018).
[Crossref]

ACS Photonics (1)

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

ACS. Appl. Mater. Interfaces. (1)

Y. Yang, X. Zhang, Y. Chen, X. Yang, J. Ma, J. Wang, L. Wang, and W. Feng, “Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks,” ACS. Appl. Mater. Interfaces. 13(34), 41102–41111 (2021).
[Crossref]

Adv Mater. Technol. (1)

Y. Li, S. Huang, P. Zhou, S. Liu, J. Lu, X. Li, and Y. Su, “Polymer-stabilized blue phase liquid crystals for photonic applications,” Adv Mater. Technol. 1(8), 1600102 (2016).
[Crossref]

Adv. Funct. Mater. (2)

M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self-Organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity,” Adv. Funct. Mater. 27(46), 1702261 (2017).
[Crossref]

W. Hu, J. Sun, Q. Wang, L. Zhang, X. Yuan, F. Chen, K. Li, Z. Miao, D. Yang, H. Yu, and H. Yang, “Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals,” Adv. Funct. Mater. 30(43), 2004610 (2020).
[Crossref]

Adv. Mater. (2)

Z. G. Zheng, C. L. Yuan, W. Hu, H. K. Bisoyi, M. J. Tang, Z. Liu, P. Z. Sun, W. Q. Yang, X. Q. Wang, D. Shen, Y. Li, F. Ye, Y. Q. Lu, G. Li, and Q. Li, “Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal,” Adv. Mater. 29(42), 1703165 (2017).
[Crossref]

S. S. Gandhi and L. C. Chien, “Unraveling the mystery of the blue Fog: structure, properties, and applications of amorphous blue phase III,” Adv. Mater. 29(47), 1704296 (2017).
[Crossref]

Adv. Opt. Mater. (1)

X. Xu, Z. Liu, Y. Liu, X. Zhang, Z. Zheng, D. Luo, and X. Sun, “Electrically switchable, hyper-reflective blue phase liquid crystals films,” Adv. Opt. Mater. 6(3), 1700891 (2018).
[Crossref]

Appl. Phys. Lett. (2)

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Biomed. Opt. Express (1)

J. Appl. Polym. Sci. (2)

Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
[Crossref]

G. Alessandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, and L. Toniolo, “Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone,” J. Appl. Polym. Sci. 76(6), 962–977 (2000).
[Crossref]

J. Chem. Phys. (3)

J. Li and F. Wang, “Water graphene contact surface investigated by pairwise potentials from force-matching PAW-PBE with dispersion correction,” J. Chem. Phys. 146(5), 054702 (2017).
[Crossref]

T. Zhao and X. Wang, “Dissipative particle dynamics study of translational diffusion of rigid-chain rodlike polymer in nematic phase,” J. Chem. Phys. 139(10), 104902 (2013).
[Crossref]

C. F. Fan and T. Caǧin, “Wetting of crystalline polymer surfaces: A molecular dynamics simulation,” J. Chem. Phys. 103(20), 9053–9061 (1995).
[Crossref]

J. Coat. Technol. Res. (1)

M. Hu, Y. Zhang, U. Azhar, L. Zhang, Z. Chen, S. Zhang, and C. Zong, “Free radical copolymerization of trifluoroethyl methacrylate with perfluoroalkyl ethyl acrylates for superhydrophobic coating application,” J. Coat. Technol. Res. 16(3), 711–719 (2019).
[Crossref]

J. Display Technol. (1)

J. Mater. Chem. C (2)

H. Li, W. Huang, Q. Mo, B. Liu, D. Shen, W. Zhang, and Z. G. Zheng, “Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system,” J. Mater. Chem. C 7(13), 3952–3957 (2019).
[Crossref]

L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, D. Zhao, H. Yang, and L. Guo, “Polymer-stabilized nanoparticle-enriched blue phase liquid crystals,” J. Mater. Chem. C 1(40), 6526–6531 (2013).
[Crossref]

J. Mater. Chem. C. (1)

W. Q. Yang, G. Q. Cai, Z. Liu, X. Q. Wang, W. Feng, Y. Feng, D. Shen, and Z. G. Zheng, “Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material,” J. Mater. Chem. C. 5(3), 690–696 (2017).
[Crossref]

J. Mol. Liq. (2)

P. C. Wu, H. L. Chen, N. V. Rudakova, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound,” J. Mol. Liq. 267, 138–143 (2018).
[Crossref]

C. N. Pereira and G. C. Vebber, “A novel semi-empirical method for adjusting solubility parameters to surface tension based on the use of Stefan's rule,” J. Mol. Liq. 272, 520–527 (2018).
[Crossref]

J. Phys. D: Appl. Phys. (1)

G. Tan, Y. H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D: Appl. Phys. 50(49), 493001 (2017).
[Crossref]

J. Polym. Res. (1)

L. Hao, Q. An, W. Xu, D. Zhang, and M. Zhang, “Effect of polymerizable emulsifier and fluorine monomer on properties of self-crosslinking fluorinated polyacrylate soap-free latexes,” J. Polym. Res. 20(7), 174 (2013).
[Crossref]

Liq. Cryst. (4)

L. Gao, H. Ma, and Y. Sun, “Doping effects of fluorinated chiral dopant in blue phase liquid crystals and its electro-optical behavior,” Liq. Cryst. 47(2), 284–290 (2020).
[Crossref]

P. J. Hsieh and H. M. P. Chen, “Hysteresis-free polymer-stabilised blue phase liquid crystals comprising low surface tension monomers,” Liq. Cryst. 42(2), 216–221 (2015).
[Crossref]

R. Liao, X. Zhan, X. Xu, Y. Liu, F. Wang, and D. Luo, “Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell,” Liq. Cryst. 47(5), 715–722 (2020).
[Crossref]

N. Avci, “The influence of diluter system on polymer-stabilised blue-phase liquid crystals,” Liq. Cryst. 45(3), 459–467 (2018).
[Crossref]

Macromol. Chem. Phys. (1)

Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromol. Chem. Phys. 221(18), 2000185 (2020).
[Crossref]

Macromolecules (1)

T. Iwata, K. Suzuki, N. Amaya, H. Higuchi, H. Masunaga, S. Sasaki, and H. Kikuchi, “Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases,” Macromolecules 42(6), 2002–2008 (2009).
[Crossref]

Nat. Commun. (5)

W. Hu, L. Wang, M. Wang, T. Zhong, Q. Wang, L. Zhang, F. Chen, K. Li, Z. Miao, D. Yang, and H. Yang, “Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly,” Nat. Commun. 12(1), 1440 (2021).
[Crossref]

R. K. Cersonsky, J. Antonaglia, B. D. Dice, and S. C. Glotzer, “The diversity of three-dimensional photonic crystals,” Nat. Commun. 12(1), 2543 (2021).
[Crossref]

J. Teyssier, S. V. Saenko, D. van der Marel, and M. C. Milinkovitch, “Photonic crystals cause active colour change in chameleons,” Nat. Commun. 6(1), 6368 (2015).
[Crossref]

J. A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8(1), 15854 (2017).
[Crossref]

C. W. Chen, C. T. Hou, C. C. Li, H. C. Jau, C. T. Wang, C. L. Hong, D. Y. Guo, C. Y. Wang, S. P. Chiang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases,” Nat. Commun. 8(1), 727 (2017).
[Crossref]

Nat. Mater. (3)

D. Y. Guo, C. W. Chen, C. C. Li, H. C. Jau, K. H. Lin, T. M. Feng, C. T. Wang, T. J. Bunning, I. C. Khoo, and T. H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94–101 (2020).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref]

Nature (1)

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (3)

Phys. Rev. (1)

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. 81(4), 041703 (2010).
[Crossref]

Phys. Rev. Lett. (1)

S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216–1219 (1981).
[Crossref]

Polymer (2)

Z. Wang and Z. Wang, “Synthesis of cross-linkable fluorinated core–shell latex nanoparticles and the hydrophobic stability of films,” Polymer 74, 216–223 (2015).
[Crossref]

W. Yao, Y. Li, and X. Huang, “Fluorinated poly(meth)acrylate: synthesis and properties,” Polymer 55(24), 6197–6211 (2014).
[Crossref]

Polymers (1)

L. Gao, K. M. Wang, R. Zhao, H. M. Ma, and Y. B. Sun, “Effect of a dual functional polymer on the electro-optical properties of blue phase liquid crystals,” Polymers 11(7), 1128 (2019).
[Crossref]

Sci. Rep. (1)

X. Li, W. Q. Yang, C. L. Yuan, Z. Liu, K. Zhou, X. Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref]

Science (1)

K. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, and T. Aida, “Nematic-to-columnar mesophase transition by in situ supramolecular polymerization,” Science 363(6423), 161–165 (2019).
[Crossref]

Small Science (1)

Y. Yang, L. Wang, H. Yang, and Q. Li, “3D chiral photonic nanostructures based on blue-phase liquid crystals,” Small Science 1(6), 2100007 (2021).
[Crossref]

Soft Matter (1)

I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, and T. Michael, “Stabilising liquid crystalline Blue Phases,” Soft Matter 8(16), 4355–4362 (2012).
[Crossref]

Other (2)

H. Kikuchi, Structure. Bonding, T. Kato, ed., (Springer Berlin Heidelberg, 2008,), pp. 99–117.

S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (John Wiley & Sons, 2006,), pp. 445–476.

Supplementary Material (1)

NameDescription
Supplement 1       459038

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Chemical structure of the perfluoroalkyl acrylates n-Fs, where n stands for the number of C-F bonds. (b) Schematic of the polymer stabilized BPLCs with fluorinated polymer dopants.
Fig. 2.
Fig. 2. The E-O performance of the different BPLC samples. (a) Measured normalized voltage transmittance curves at 25 °C. The relative driving voltage as indicated by the dotted line (blue and orange), and the direction of the arrow represents the decreasing trend of the driving voltage. δ is the voltage difference at the normalized transmittance of 0.5 during the processes as increasing and decreasing the driving voltage; the hysteresis is evaluated by the ratio between δ and the corresponding driving voltage. Lines with same color stands for the BPLCs with the same total concentration of polymer among i-iv. (b) Measured response time under driving voltage, and data group with same background color stands for the BPLCs with the same total concentration of fluorinated dopants. (c) Light intensity curve of sample C2 during the time period as switching on and off the driving voltage. Inset: the POM images corresponding to the ‘on’ and ‘off’ states.
Fig. 3.
Fig. 3. Measured contact angle at the interface between the LC droplet and polymer film. The image of contact angle is also shown above the corresponding column.
Fig. 4.
Fig. 4. SEM topography and schematic of polymer density with different fluorinated components.

Tables (1)

Tables Icon

Table 1. Chemical components of the different BPLC samples.

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved