H. Taghinejad, S. Abdollahramezani, A. A. Eftekhar, T. Fan, A. H. Hosseinnia, O. Hemmatyar, A. Eshaghian Dorche, A. Gallmon, and A. Adibi, “ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics,” Opt. Express 29(13), 20449 (2021).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
M. G. Herrmann, R. P. Stoffel, I. Sergueev, H. C. Wille, O. Leupold, M. Ait Haddouch, G. Sala, D. L. Abernathy, J. Voigt, R. P. Hermann, R. Dronskowski, and K. Friese, “Lattice dynamics of Sb2Se3 from inelastic neutron and x-ray scattering,” Phys. Status Solidi B 257(6), 2000063 (2020).
[Crossref]
L. Krusin-Elbaum, C. C. Jr, K. N. Chen, M. Copel, D. W. Abraham, K. B. Reuter, S. M. Rossnagel, J. Bruley, and V. R. Deline, “Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the “phase-change” stress,” Appl. Phys. Lett. 90(14), 141902 (2007).
[Crossref]
H. Taghinejad, S. Abdollahramezani, A. A. Eftekhar, T. Fan, A. H. Hosseinnia, O. Hemmatyar, A. Eshaghian Dorche, A. Gallmon, and A. Adibi, “ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics,” Opt. Express 29(13), 20449 (2021).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
M. Agati, C. Gay, D. Benoit, and A. Claverie, “Effects of surface oxidation on the crystallization characteristics of Ge-rich Ge-Sb-Te alloys thin films,” Appl. Surf. Sci. 518, 146227 (2020).
[Crossref]
J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, and M. S. Mills, “Artificial neural network discovery of a switchable metasurface reflector,” Opt. Express 28(17), 24629 (2020).
[Crossref]
S. X. Gan, C. K. Lai, W. Y. Chong, D. Y. Choi, S. Madden, and H. Ahmad, “Optical phase transition of Ge2Sb2Se4Te1 thin film using low absorption wavelength in the 1550 nm window,” Opt. Mater. (Amsterdam, Neth.) 120, 111450 (2021).
[Crossref]
J. H. Park, J. H. Kim, D. H. Ko, Z. Wu, D. H. Ahn, S. O. Park, and K. H. Hwang, “Use of NH3 etchant for voids suppression to enhance set cycles in CGeSbTe-based phase change memory devices,” Thin Solid Films 616, 502–506 (2016).
[Crossref]
M. G. Herrmann, R. P. Stoffel, I. Sergueev, H. C. Wille, O. Leupold, M. Ait Haddouch, G. Sala, D. L. Abernathy, J. Voigt, R. P. Hermann, R. Dronskowski, and K. Friese, “Lattice dynamics of Sb2Se3 from inelastic neutron and x-ray scattering,” Phys. Status Solidi B 257(6), 2000063 (2020).
[Crossref]
C. Ruiz de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. Garcia-Cuevas Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. David Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7(5), 476–484 (2020).
[Crossref]
M. Shen, T. Lill, N. Altieri, J. Hoang, S. Chiou, J. Sims, A. McKerrow, R. Dylewicz, E. Chen, H. Razavi, and J. P. Chang, “Review on recent progress in patterning phase change materials,” J. Vac. Sci. Technol., A 38(6), 060802 (2020).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
R. Padilla, A. Aracena, and M. C. Ruiza, “Kinetics of stibnite (Sb2S3) oxidation at roasting temperatures,” J. Min. Metall. Sect. B Metall. 50(2), 127–132 (2014).
[Crossref]
K. Aryana, Y. Zhang, J. A. Tomko, M. S. Bin Hoque, E. R. Hoglund, D. H. Olson, J. Nag, J. C. Read, C. Ríos, J. Hu, and P. E. Hopkins, “Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te,” Nat. Commun. 12(1), 7187 (2021).
[Crossref]
L. Goux, D. T. Castro, G. A. M. Hurkx, J. G. Lisoni, R. Delhougne, D. J. Gravesteijn, K. Attenborough, and D. J. Wouters, “Degradation of the reset switching during endurance testing of a phase-change line cell,” IEEE Trans. Electron Devices 56(2), 354–358 (2009).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
Y. Kim, S. A. Park, J. H. Baeck, M. K. Noh, K. Jeong, M.-H. Cho, H. M. Park, M. K. Lee, E. J. Jeong, D.-H. Ko, and H. J. Shin, “Phase separation of a Ge2Sb2Te5 alloy in the transition from an amorphous structure to crystalline structures,” J. Vac. Sci. Technol., A 24(4), 929–933 (2006).
[Crossref]
S. Ho Oh, K. Baek, S. Kyu Son, K. Song, J. Won Oh, S.-J. Jeon, W. Kim, J. Hee Yoo, and K. Jeung Lee, “In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5,” Nanoscale Adv. 2(9), 3841–3848 (2020).
[Crossref]
J.-B. Park, G.-S. Park, H.-S. Baik, J.-H. Lee, H. Jeong, and K. Kim, “Phase-change behavior of stoichiometric Ge2Sb2Te5 in phase-change random access memory,” J. Electrochem. Soc. 154(3), H139 (2007).
[Crossref]
P. Yeoh, Y. Ma, D. A. Cullen, J. A. Bain, and M. Skowronski, “Thermal-gradient-driven elemental segregation in Ge2Sb2Te5 phase change memory cells,” Appl. Phys. Lett. 114(16), 163507 (2019).
[Crossref]
S. Tripathi, P. Kotula, M. K. Singh, C. Ghosh, G. Bakan, H. Silva, and C. B. Carter, “Role of oxygen on chemical segregation in uncapped Ge2Sb2Te5 thin films on silicon nitride,” ECS J. Solid State Sci. Technol. 9(5), 054007 (2020).
[Crossref]
E. Gemo, J. Faneca, S. G.-C. Carrillo, A. Baldycheva, W. H. P. Pernice, H. Bhaskaran, and C. D. Wright, “A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices,” J. Appl. Phys. 129(11), 110902 (2021).
[Crossref]
J. Faneca, L. Trimby, I. Zeimpekis, M. Delaney, D. W. Hewak, F. Y. Gardes, C. D. Wright, and A. Baldycheva, “On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials,” Opt. Express 28(11), 16394 (2020).
[Crossref]
J. Faneca, S. Garcia-Cuevas Carrillo, E. Gemo, C. R. de Galarreta, T. Domínguez Bucio, F. Y. Gardes, H. Bhaskaran, W. H. P. Pernice, C. D. Wright, and A. Baldycheva, “Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands,” Opt. Mater. Express 10(8), 1778 (2020).
[Crossref]
C. Ruiz de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. Garcia-Cuevas Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. David Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7(5), 476–484 (2020).
[Crossref]
M. Delaney, I. Zeimpekis, H. Du, X. Yan, M. Banakar, D. J. Thomson, D. W. Hewak, and O. L. Muskens, “Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material,” Sci. Adv. 7(25), 3500–3516 (2021).
[Crossref]
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, K. Dabertrand, and E. Martinez, “Modification of Ge-rich GeSbTe surface during the patterning process of phase-change memories,” Microelectron. Eng. 221, 111183 (2020).
[Crossref]
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, and E. Martinez, “Study of Ge-rich GeSbTe etching process with different halogen plasmas,” J. Vac. Sci. Technol., A 37(3), 031302 (2019).
[Crossref]
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29(6), 1806181 (2019).
[Crossref]
M. Agati, C. Gay, D. Benoit, and A. Claverie, “Effects of surface oxidation on the crystallization characteristics of Ge-rich Ge-Sb-Te alloys thin films,” Appl. Surf. Sci. 518, 146227 (2020).
[Crossref]
P. Noé, C. Sabbione, N. Bernier, N. Castellani, F. Fillot, and F. Hippert, “Impact of interfaces on scenario of crystallization of phase change materials,” Acta Mater. 110, 142–148 (2016).
[Crossref]
C. Ruiz de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. Garcia-Cuevas Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. David Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7(5), 476–484 (2020).
[Crossref]
R. Bez, P. Cappelletti, G. Servalli, and A. Pirovano, “Phase change memories have taken the field,” 2013 5th IEEE Int. Mem. Work. IMW 201313–16 (2013).
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
E. Gemo, J. Faneca, S. G.-C. Carrillo, A. Baldycheva, W. H. P. Pernice, H. Bhaskaran, and C. D. Wright, “A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices,” J. Appl. Phys. 129(11), 110902 (2021).
[Crossref]
J. Faneca, S. Garcia-Cuevas Carrillo, E. Gemo, C. R. de Galarreta, T. Domínguez Bucio, F. Y. Gardes, H. Bhaskaran, W. H. P. Pernice, C. D. Wright, and A. Baldycheva, “Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands,” Opt. Mater. Express 10(8), 1778 (2020).
[Crossref]
N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]
J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
[Crossref]
C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455 (2018).
[Crossref]
M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]
M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]
J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]
Z. Cheng, C. Ríos, W. H. P. Pernice, C. David Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]
C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]
P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]
K. Aryana, Y. Zhang, J. A. Tomko, M. S. Bin Hoque, E. R. Hoglund, D. H. Olson, J. Nag, J. C. Read, C. Ríos, J. Hu, and P. E. Hopkins, “Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te,” Nat. Commun. 12(1), 7187 (2021).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, K. Dabertrand, and E. Martinez, “Modification of Ge-rich GeSbTe surface during the patterning process of phase-change memories,” Microelectron. Eng. 221, 111183 (2020).
[Crossref]
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, and E. Martinez, “Study of Ge-rich GeSbTe etching process with different halogen plasmas,” J. Vac. Sci. Technol., A 37(3), 031302 (2019).
[Crossref]
L. Crespi, A. L. Lacaita, M. Boniardi, E. Varesi, A. Ghetti, A. Redaelli, and G. D’Arrigo, “Modeling of atomic migration phenomena in phase change memory devices,” in 2015 IEEE 7th International Memory Workshop, IMW 2015 (Institute of Electrical and Electronics Engineers Inc., 2015).
C. Williams, N. Hong, M. Julian, S. Borg, and H. J. Kim, “Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe,” Opt. Express 28(7), 10583 (2020).
[Crossref]
M. N. Julian, C. Williams, S. Borg, S. Bartram, and H. J. Kim, “Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging,” Optica 7(7), 746–754 (2020).
[Crossref]
Ž. Živković, N. Štrbac, D. Živkovič, D. Grujičić, and B. Boyanov, “Kinetics and mechanism of Sb2Se3 oxidation process,” Thermochim. Acta 383(1-2), 137–143 (2002).
[Crossref]
S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U. S. A. 103(52), 19678–19682 (2006).
[Crossref]
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
Y. Wang, P. Landreman, D. Schoen, K. Okabe, A. Marshall, U. Celano, H.-S. P. Wong, J. Park, and M. L. Brongersma, “Electrical tuning of phase-change antennas and metasurfaces,” Nat. Nanotechnol. 16(6), 667–672 (2021).
[Crossref]
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
M. B. Sky, N. Sosa, T. Masuda, W. Kim, S. Kim, A. Ray, R. Bruce, J. Gonsalves, Y. Zhu, K. Suu, and C. Lam, “Crystalline-as-deposited ALD phase change material confined PCM cell for high density storage class memory,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2016-Febru, pp. 3.6.1–3.6.4.
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
L. Krusin-Elbaum, C. C. Jr, K. N. Chen, M. Copel, D. W. Abraham, K. B. Reuter, S. M. Rossnagel, J. Bruley, and V. R. Deline, “Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the “phase-change” stress,” Appl. Phys. Lett. 90(14), 141902 (2007).
[Crossref]
S. B. Kim, G. W. Burr, W. Kim, and S. W. Nam, “Phase-change memory cycling endurance,” MRS Bull. 44(09), 710–714 (2019).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
A. Debunne, K. Virwani, A. Padilla, G. W. Burr, A. J. Kellock, V. R. Deline, R. M. Shelby, and B. Jackson, “Evidence of crystallization–induced segregation in the phase change material Te-rich GST,” J. Electrochem. Soc. 158(10), H965 (2011).
[Crossref]
J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, and M. S. Mills, “Artificial neural network discovery of a switchable metasurface reflector,” Opt. Express 28(17), 24629 (2020).
[Crossref]
T. Li, J. Shen, L. Wu, Z. Song, S. Lv, D. Cai, S. Zhang, T. Guo, S. Song, and M. Zhu, “Atomic-Scale Observation of Carbon Distribution in High-Performance Carbon-Doped Ge2Sb2Te5 and Its Influence on Crystallization Behavior,” J. Phys. Chem. C 123(21), 13377–13384 (2019).
[Crossref]
Y. Qu, Q. Li, L. Cai, and M. Qiu, “Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge2Sb2Te5,” Opt. Mater. Express 8(8), 2312 (2018).
[Crossref]
K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
J. Moon, H. Seo, K. K. Son, E. Yalon, K. Lee, E. Flores, G. Candia, and E. Pop, “Reconfigurable infrared spectral imaging with phase change materials,” in SPIE Proceedings (SPIE, 2019), Vol. 10982, p. 32.
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, K. Dabertrand, and E. Martinez, “Modification of Ge-rich GeSbTe surface during the patterning process of phase-change memories,” Microelectron. Eng. 221, 111183 (2020).
[Crossref]
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, and E. Martinez, “Study of Ge-rich GeSbTe etching process with different halogen plasmas,” J. Vac. Sci. Technol., A 37(3), 031302 (2019).
[Crossref]
T. Cao and M. Cen, “Fundamentals and applications of chalcogenide phase-change material photonics,” Adv. Theory Simul. 2(8), 1900094 (2019).
[Crossref]
T. Cao, X. Zhang, W. Dong, L. Lu, X. Zhou, X. Zhuang, J. Deng, X. Cheng, G. Li, and R. E. Simpson, “Tuneable thermal emission using chalcogenide metasurface,” Adv. Opt. Mater. 6(16), 1800169 (2018).
[Crossref]
R. Bez, P. Cappelletti, G. Servalli, and A. Pirovano, “Phase change memories have taken the field,” 2013 5th IEEE Int. Mem. Work. IMW 201313–16 (2013).
E. Gemo, J. Faneca, S. G.-C. Carrillo, A. Baldycheva, W. H. P. Pernice, H. Bhaskaran, and C. D. Wright, “A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices,” J. Appl. Phys. 129(11), 110902 (2021).
[Crossref]
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
S. Tripathi, P. Kotula, M. K. Singh, C. Ghosh, G. Bakan, H. Silva, and C. B. Carter, “Role of oxygen on chemical segregation in uncapped Ge2Sb2Te5 thin films on silicon nitride,” ECS J. Solid State Sci. Technol. 9(5), 054007 (2020).
[Crossref]
P. Noé, C. Sabbione, N. Bernier, N. Castellani, F. Fillot, and F. Hippert, “Impact of interfaces on scenario of crystallization of phase change materials,” Acta Mater. 110, 142–148 (2016).
[Crossref]
L. Goux, D. T. Castro, G. A. M. Hurkx, J. G. Lisoni, R. Delhougne, D. J. Gravesteijn, K. Attenborough, and D. J. Wouters, “Degradation of the reset switching during endurance testing of a phase-change line cell,” IEEE Trans. Electron Devices 56(2), 354–358 (2009).
[Crossref]
Y. Wang, P. Landreman, D. Schoen, K. Okabe, A. Marshall, U. Celano, H.-S. P. Wong, J. Park, and M. L. Brongersma, “Electrical tuning of phase-change antennas and metasurfaces,” Nat. Nanotechnol. 16(6), 667–672 (2021).
[Crossref]
T. Cao and M. Cen, “Fundamentals and applications of chalcogenide phase-change material photonics,” Adv. Theory Simul. 2(8), 1900094 (2019).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
M. Shen, T. Lill, N. Altieri, J. Hoang, S. Chiou, J. Sims, A. McKerrow, R. Dylewicz, E. Chen, H. Razavi, and J. P. Chang, “Review on recent progress in patterning phase change materials,” J. Vac. Sci. Technol., A 38(6), 060802 (2020).
[Crossref]
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
J. González-Hernández, P. Herrera-Fierro, B. Chao, Y. Kovalenko, E. Morales-Sánchez, and E. Prokhorov, “Structure of oxygen-doped Ge:Sb:Te films,” Thin Solid Films 503(1-2), 13–17 (2006).
[Crossref]
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
G. Feng, B. Liu, Z. Song, S. Feng, and B. Chen, “Reactive ion etching of Ge2Sb2Te5 in CHF3/O2 plasma for nonvolatile phase-change memory device,” Electrochem. Solid-State Lett. 10(5), D47–50 (2007).
[Crossref]
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
M. Shen, T. Lill, N. Altieri, J. Hoang, S. Chiou, J. Sims, A. McKerrow, R. Dylewicz, E. Chen, H. Razavi, and J. P. Chang, “Review on recent progress in patterning phase change materials,” J. Vac. Sci. Technol., A 38(6), 060802 (2020).
[Crossref]
E. L. Chen, “Effects of plasma etching on GeSbTe compositional control,” University of California Los Angeles (2020).
H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]
H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]
L. Krusin-Elbaum, C. C. Jr, K. N. Chen, M. Copel, D. W. Abraham, K. B. Reuter, S. M. Rossnagel, J. Bruley, and V. R. Deline, “Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the “phase-change” stress,” Appl. Phys. Lett. 90(14), 141902 (2007).
[Crossref]
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
Z. Fang, J. Zheng, A. Saxena, J. Whitehead, Y. Chen, and A. Majumdar, “Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material,” Adv. Opt. Mater. 9(9), 2002049 (2021).
[Crossref]
H. Y. Cheng, C. A. Jong, R. J. Chung, T. S. Chin, and R. T. Huang, “Wet etching of Ge2Sb2Te5 films and switching properties of resultant phase change memory cells,” Semicond. Sci. Technol. 20(11), 1111–1115 (2005).
[Crossref]
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
T. Cao, X. Zhang, W. Dong, L. Lu, X. Zhou, X. Zhuang, J. Deng, X. Cheng, G. Li, and R. E. Simpson, “Tuneable thermal emission using chalcogenide metasurface,” Adv. Opt. Mater. 6(16), 1800169 (2018).
[Crossref]
W. Han, K. Zhao, C. Pan, Y. Yuan, Y. Zhao, Z. Cheng, and M. Wang, “Fabrication of Ge2Sb2Te5 crystal micro/nanostructures through single-shot Gaussian-shape femtosecond laser pulse irradiation,” Opt. Express 28(17), 25250 (2020).
[Crossref]
N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]
C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455 (2018).
[Crossref]
K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref]
Z. Ni, S. Mou, T. Zhou, and Z. Cheng, “Broader color gamut of color-modulating optical coating display based on indium tin oxide and phase change materials,” Appl. Opt. 57(13), 3385–3389 (2018).
[Crossref]
Z. Cheng, C. Ríos, W. H. P. Pernice, C. David Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]
R. Golovchak, Y. G. Choi, S. Kozyukhin, Y. Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek, and H. Jain, “Oxygen incorporation into GST phase-change memory matrix,” Appl. Surf. Sci. 332, 533–541 (2015).
[Crossref]
H. Y. Cheng, C. A. Jong, R. J. Chung, T. S. Chin, and R. T. Huang, “Wet etching of Ge2Sb2Te5 films and switching properties of resultant phase change memory cells,” Semicond. Sci. Technol. 20(11), 1111–1115 (2005).
[Crossref]
M. Shen, T. Lill, N. Altieri, J. Hoang, S. Chiou, J. Sims, A. McKerrow, R. Dylewicz, E. Chen, H. Razavi, and J. P. Chang, “Review on recent progress in patterning phase change materials,” J. Vac. Sci. Technol., A 38(6), 060802 (2020).
[Crossref]
T. Y. Yang, J. Y. Cho, Y. J. Park, and Y. C. Joo, “Driving forces for elemental demixing of GeSbTe in phase-change memory: computational study to design a durable device,” Curr. Appl. Phys. 13(7), 1426–1432 (2013).
[Crossref]
Y. J. Park, T. Y. Yang, J. Y. Cho, S. Y. Lee, and Y. C. Joo, “Electrical current-induced gradual failure of crystalline Ge2Sb2Te5 for phase-change memory,” Appl. Phys. Lett. 103(7), 073503 (2013).
[Crossref]
K. Do, D. Lee, D. H. Ko, H. Sohn, and M. H. Cho, “TEM study on volume changes and void formation in Ge2Sb2Te5 films, with repeated phase changes,” Electrochem. Solid-State Lett. 13(8), H284 (2010).
[Crossref]
M. H. Jang, S. J. Park, D. H. Lim, M. H. Cho, K. H. Do, D. H. Ko, and H. C. Sohn, “Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films,” Appl. Phys. Lett. 95(1), 012102 (2009).
[Crossref]
Y. Kim, S. A. Park, J. H. Baeck, M. K. Noh, K. Jeong, M.-H. Cho, H. M. Park, M. K. Lee, E. J. Jeong, D.-H. Ko, and H. J. Shin, “Phase separation of a Ge2Sb2Te5 alloy in the transition from an amorphous structure to crystalline structures,” J. Vac. Sci. Technol., A 24(4), 929–933 (2006).
[Crossref]
S. X. Gan, C. K. Lai, W. Y. Chong, D. Y. Choi, S. Madden, and H. Ahmad, “Optical phase transition of Ge2Sb2Se4Te1 thin film using low absorption wavelength in the 1550 nm window,” Opt. Mater. (Amsterdam, Neth.) 120, 111450 (2021).
[Crossref]
I. M. Park, J. K. Jung, S. O. Ryu, K. J. Choi, B. G. Yu, Y. B. Park, S. M. Han, and Y. C. Joo, “Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory,” Thin Solid Films 517(2), 848–852 (2008).
[Crossref]
R. Golovchak, Y. G. Choi, S. Kozyukhin, Y. Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek, and H. Jain, “Oxygen incorporation into GST phase-change memory matrix,” Appl. Surf. Sci. 332, 533–541 (2015).
[Crossref]
Z. Zhang, J. Pan, Y. L. Foo, L. W. W. Fang, Y. C. Yeo, R. Zhao, L. Shi, and T. C. Chong, “Effective method for preparation of oxide-free Ge2Sb2Te5 surface: An X-ray photoelectron spectroscopy study,” Appl. Surf. Sci. 256(24), 7696–7699 (2010).
[Crossref]
S. X. Gan, C. K. Lai, W. Y. Chong, D. Y. Choi, S. Madden, and H. Ahmad, “Optical phase transition of Ge2Sb2Se4Te1 thin film using low absorption wavelength in the 1550 nm window,” Opt. Mater. (Amsterdam, Neth.) 120, 111450 (2021).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
H. Y. Cheng, C. A. Jong, R. J. Chung, T. S. Chin, and R. T. Huang, “Wet etching of Ge2Sb2Te5 films and switching properties of resultant phase change memory cells,” Semicond. Sci. Technol. 20(11), 1111–1115 (2005).
[Crossref]
M. Agati, C. Gay, D. Benoit, and A. Claverie, “Effects of surface oxidation on the crystallization characteristics of Ge-rich Ge-Sb-Te alloys thin films,” Appl. Surf. Sci. 518, 146227 (2020).
[Crossref]
L. Krusin-Elbaum, C. C. Jr, K. N. Chen, M. Copel, D. W. Abraham, K. B. Reuter, S. M. Rossnagel, J. Bruley, and V. R. Deline, “Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the “phase-change” stress,” Appl. Phys. Lett. 90(14), 141902 (2007).
[Crossref]
L. Crespi, A. L. Lacaita, M. Boniardi, E. Varesi, A. Ghetti, A. Redaelli, and G. D’Arrigo, “Modeling of atomic migration phenomena in phase change memory devices,” in 2015 IEEE 7th International Memory Workshop, IMW 2015 (Institute of Electrical and Electronics Engineers Inc., 2015).
A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]
P. Yeoh, Y. Ma, D. A. Cullen, J. A. Bain, and M. Skowronski, “Thermal-gradient-driven elemental segregation in Ge2Sb2Te5 phase change memory cells,” Appl. Phys. Lett. 114(16), 163507 (2019).
[Crossref]
L. Crespi, A. L. Lacaita, M. Boniardi, E. Varesi, A. Ghetti, A. Redaelli, and G. D’Arrigo, “Modeling of atomic migration phenomena in phase change memory devices,” in 2015 IEEE 7th International Memory Workshop, IMW 2015 (Institute of Electrical and Electronics Engineers Inc., 2015).
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, K. Dabertrand, and E. Martinez, “Modification of Ge-rich GeSbTe surface during the patterning process of phase-change memories,” Microelectron. Eng. 221, 111183 (2020).
[Crossref]
E. Yalon, I. M. Datye, J. S. Moon, K. A. Son, K. Lee, and E. Pop, “Energy-efficient indirectly heated phase change RF switch,” IEEE Electron Device Lett. 40(3), 455–458 (2019).
[Crossref]
C. Ruiz de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. Garcia-Cuevas Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. David Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7(5), 476–484 (2020).
[Crossref]
Z. Cheng, C. Ríos, W. H. P. Pernice, C. David Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]
J. Faneca, S. Garcia-Cuevas Carrillo, E. Gemo, C. R. de Galarreta, T. Domínguez Bucio, F. Y. Gardes, H. Bhaskaran, W. H. P. Pernice, C. D. Wright, and A. Baldycheva, “Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands,” Opt. Mater. Express 10(8), 1778 (2020).
[Crossref]
R. Pandian, B. J. Kooi, J. T. M. De Hosson, and A. Pauza, “Influence of capping layers on the crystallization of doped SbxTe fast-growth phase-change films,” J. Appl. Phys. 100(12), 123511 (2006).
[Crossref]
B. Kooi, W. Groot, and Jt. De Hosson, “In-situ TEM study of the crystallization of Ge2Sb2Te5,” (n.d.).
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
A. Debunne, K. Virwani, A. Padilla, G. W. Burr, A. J. Kellock, V. R. Deline, R. M. Shelby, and B. Jackson, “Evidence of crystallization–induced segregation in the phase change material Te-rich GST,” J. Electrochem. Soc. 158(10), H965 (2011).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
M. Delaney, I. Zeimpekis, H. Du, X. Yan, M. Banakar, D. J. Thomson, D. W. Hewak, and O. L. Muskens, “Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material,” Sci. Adv. 7(25), 3500–3516 (2021).
[Crossref]
M. Delaney, I. Zeimpekis, D. Lawson, D. W. Hewak, and O. L. Muskens, “A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3,” Adv. Funct. Mater. 30(36), 2002447 (2020).
[Crossref]
J. Faneca, L. Trimby, I. Zeimpekis, M. Delaney, D. W. Hewak, F. Y. Gardes, C. D. Wright, and A. Baldycheva, “On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials,” Opt. Express 28(11), 16394 (2020).
[Crossref]
L. Goux, D. T. Castro, G. A. M. Hurkx, J. G. Lisoni, R. Delhougne, D. J. Gravesteijn, K. Attenborough, and D. J. Wouters, “Degradation of the reset switching during endurance testing of a phase-change line cell,” IEEE Trans. Electron Devices 56(2), 354–358 (2009).
[Crossref]
H. Koc, A. M. Mamedov, E. Deligoz, and H. Ozisik, “First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds,” Solid State Sci. 14(8), 1211–1220 (2012).
[Crossref]
A. Debunne, K. Virwani, A. Padilla, G. W. Burr, A. J. Kellock, V. R. Deline, R. M. Shelby, and B. Jackson, “Evidence of crystallization–induced segregation in the phase change material Te-rich GST,” J. Electrochem. Soc. 158(10), H965 (2011).
[Crossref]
L. Krusin-Elbaum, C. C. Jr, K. N. Chen, M. Copel, D. W. Abraham, K. B. Reuter, S. M. Rossnagel, J. Bruley, and V. R. Deline, “Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the “phase-change” stress,” Appl. Phys. Lett. 90(14), 141902 (2007).
[Crossref]
T. Cao, X. Zhang, W. Dong, L. Lu, X. Zhou, X. Zhuang, J. Deng, X. Cheng, G. Li, and R. E. Simpson, “Tuneable thermal emission using chalcogenide metasurface,” Adv. Opt. Mater. 6(16), 1800169 (2018).
[Crossref]
J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater,” Adv. Mater. 32(31), 2001218 (2020).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
N. Fleck, O. S. Hutter, L. J. Phillips, H. Shiel, T. D. C. Hobson, V. R. Dhanak, T. D. Veal, F. Jäckel, K. Durose, and J. D. Major, “How oxygen exposure improves the back contact and performance of antimony selenide solar cells,” ACS Appl. Mater. Interfaces 12(47), 52595–52602 (2020).
[Crossref]
W. K. Njoroge, H. Dieker, and M. Wuttig, “Influence of dielectric capping layers on the crystallization kinetics of Ag5In6Sb59Te30 films,” J. Appl. Phys. 96(5), 2624–2627 (2004).
[Crossref]
K. Do, D. Lee, D. H. Ko, H. Sohn, and M. H. Cho, “TEM study on volume changes and void formation in Ge2Sb2Te5 films, with repeated phase changes,” Electrochem. Solid-State Lett. 13(8), H284 (2010).
[Crossref]
M. H. Jang, S. J. Park, D. H. Lim, M. H. Cho, K. H. Do, D. H. Ko, and H. C. Sohn, “Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films,” Appl. Phys. Lett. 95(1), 012102 (2009).
[Crossref]
J. Faneca, S. Garcia-Cuevas Carrillo, E. Gemo, C. R. de Galarreta, T. Domínguez Bucio, F. Y. Gardes, H. Bhaskaran, W. H. P. Pernice, C. D. Wright, and A. Baldycheva, “Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands,” Opt. Mater. Express 10(8), 1778 (2020).
[Crossref]
H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 7171–7187 (2020).
[Crossref]
W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29(6), 1806181 (2019).
[Crossref]
T. Cao, X. Zhang, W. Dong, L. Lu, X. Zhou, X. Zhuang, J. Deng, X. Cheng, G. Li, and R. E. Simpson, “Tuneable thermal emission using chalcogenide metasurface,” Adv. Opt. Mater. 6(16), 1800169 (2018).
[Crossref]
L. Lu, Z. Dong, F. Tijiptoharsono, R. J. H. Ng, H. Wang, S. D. Rezaei, Y. Wang, H. S. Leong, P. C. Lim, J. K. W. Yang, and R. E. Simpson, “Reversible tuning of Mie resonances in the visible spectrum,” ACS Nano 15(12), 19722–19732 (2021).
[Crossref]
J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater,” Adv. Mater. 32(31), 2001218 (2020).
[Crossref]
P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase-change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]
M. G. Herrmann, R. P. Stoffel, I. Sergueev, H. C. Wille, O. Leupold, M. Ait Haddouch, G. Sala, D. L. Abernathy, J. Voigt, R. P. Hermann, R. Dronskowski, and K. Friese, “Lattice dynamics of Sb2Se3 from inelastic neutron and x-ray scattering,” Phys. Status Solidi B 257(6), 2000063 (2020).
[Crossref]
M. Delaney, I. Zeimpekis, H. Du, X. Yan, M. Banakar, D. J. Thomson, D. W. Hewak, and O. L. Muskens, “Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material,” Sci. Adv. 7(25), 3500–3516 (2021).
[Crossref]
K. Gao, K. Du, S. Tian, H. Wang, L. Zhang, Y. Guo, B. Luo, W. Zhang, and T. Mei, “Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation,” Adv. Funct. Mater. 31(35), 2103327 (2021).
[Crossref]
K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref]
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U. S. A. 103(52), 19678–19682 (2006).
[Crossref]
J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater,” Adv. Mater. 32(31), 2001218 (2020).
[Crossref]
J. Zheng, S. Zhu, P. Xu, S. Dunham, and A. Majumdar, “Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters,” ACS Appl. Mater. Interfaces 12(19), 21827–21836 (2020).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
N. Fleck, O. S. Hutter, L. J. Phillips, H. Shiel, T. D. C. Hobson, V. R. Dhanak, T. D. Veal, F. Jäckel, K. Durose, and J. D. Major, “How oxygen exposure improves the back contact and performance of antimony selenide solar cells,” ACS Appl. Mater. Interfaces 12(47), 52595–52602 (2020).
[Crossref]
M. Shen, T. Lill, N. Altieri, J. Hoang, S. Chiou, J. Sims, A. McKerrow, R. Dylewicz, E. Chen, H. Razavi, and J. P. Chang, “Review on recent progress in patterning phase change materials,” J. Vac. Sci. Technol., A 38(6), 060802 (2020).
[Crossref]
A. Ebina, M. Hirasaka, and K. Nakatani, “Oxygen doping effect on Ge–Sb–Te phase change optical disks,” J. Vac. Sci. Technol., A 17(6), 3463–3466 (1999).
[Crossref]
H. Taghinejad, S. Abdollahramezani, A. A. Eftekhar, T. Fan, A. H. Hosseinnia, O. Hemmatyar, A. Eshaghian Dorche, A. Gallmon, and A. Adibi, “ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics,” Opt. Express 29(13), 20449 (2021).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
H. Taghinejad, S. Abdollahramezani, A. A. Eftekhar, T. Fan, A. H. Hosseinnia, O. Hemmatyar, A. Eshaghian Dorche, A. Gallmon, and A. Adibi, “ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics,” Opt. Express 29(13), 20449 (2021).
[Crossref]
H. Taghinejad, S. Abdollahramezani, A. A. Eftekhar, T. Fan, A. H. Hosseinnia, O. Hemmatyar, A. Eshaghian Dorche, A. Gallmon, and A. Adibi, “ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics,” Opt. Express 29(13), 20449 (2021).
[Crossref]
E. Gemo, J. Faneca, S. G.-C. Carrillo, A. Baldycheva, W. H. P. Pernice, H. Bhaskaran, and C. D. Wright, “A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices,” J. Appl. Phys. 129(11), 110902 (2021).
[Crossref]
J. Faneca, L. Trimby, I. Zeimpekis, M. Delaney, D. W. Hewak, F. Y. Gardes, C. D. Wright, and A. Baldycheva, “On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials,” Opt. Express 28(11), 16394 (2020).
[Crossref]
J. Faneca, S. Garcia-Cuevas Carrillo, E. Gemo, C. R. de Galarreta, T. Domínguez Bucio, F. Y. Gardes, H. Bhaskaran, W. H. P. Pernice, C. D. Wright, and A. Baldycheva, “Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands,” Opt. Mater. Express 10(8), 1778 (2020).
[Crossref]
Z. Zhang, J. Pan, Y. L. Foo, L. W. W. Fang, Y. C. Yeo, R. Zhao, L. Shi, and T. C. Chong, “Effective method for preparation of oxide-free Ge2Sb2Te5 surface: An X-ray photoelectron spectroscopy study,” Appl. Surf. Sci. 256(24), 7696–7699 (2010).
[Crossref]
Z. Fang, J. Zheng, A. Saxena, J. Whitehead, Y. Chen, and A. Majumdar, “Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material,” Adv. Opt. Mater. 9(9), 2002049 (2021).
[Crossref]
J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater,” Adv. Mater. 32(31), 2001218 (2020).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
[Crossref]
J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]
G. Feng, B. Liu, Z. Song, S. Feng, and B. Chen, “Reactive ion etching of Ge2Sb2Te5 in CHF3/O2 plasma for nonvolatile phase-change memory device,” Electrochem. Solid-State Lett. 10(5), D47–50 (2007).
[Crossref]
T. Guo, S. Song, Y. Zheng, Y. Xue, S. Yan, Y. Liu, T. Li, G. Liu, Y. Wang, Z. Song, M. Qi, and S. Feng, “Excellent thermal stability owing to Ge and C doping in Sb2Te-based high-speed phase-change memory,” Nanotechnology 29(50), 505710 (2018).
[Crossref]
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, and S. Feng, “High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application,” Appl. Phys. Lett. 105(24), 243113 (2014).
[Crossref]
L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Basic wet-etching solutions for Ge2Sb2Te5 phase change material,” J. Electrochem. Soc. 157(4), H470 (2010).
[Crossref]
G. Feng, B. Liu, Z. Song, S. Feng, and B. Chen, “Reactive ion etching of Ge2Sb2Te5 in CHF3/O2 plasma for nonvolatile phase-change memory device,” Electrochem. Solid-State Lett. 10(5), D47–50 (2007).
[Crossref]
P. Noé, C. Sabbione, N. Bernier, N. Castellani, F. Fillot, and F. Hippert, “Impact of interfaces on scenario of crystallization of phase change materials,” Acta Mater. 110, 142–148 (2016).
[Crossref]
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
N. Fleck, O. S. Hutter, L. J. Phillips, H. Shiel, T. D. C. Hobson, V. R. Dhanak, T. D. Veal, F. Jäckel, K. Durose, and J. D. Major, “How oxygen exposure improves the back contact and performance of antimony selenide solar cells,” ACS Appl. Mater. Interfaces 12(47), 52595–52602 (2020).
[Crossref]
J. Moon, H. Seo, K. K. Son, E. Yalon, K. Lee, E. Flores, G. Candia, and E. Pop, “Reconfigurable infrared spectral imaging with phase change materials,” in SPIE Proceedings (SPIE, 2019), Vol. 10982, p. 32.
R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano Lett. 10(2), 414–419 (2010).
[Crossref]
Z. Zhang, J. Pan, Y. L. Foo, L. W. W. Fang, Y. C. Yeo, R. Zhao, L. Shi, and T. C. Chong, “Effective method for preparation of oxide-free Ge2Sb2Te5 surface: An X-ray photoelectron spectroscopy study,” Appl. Surf. Sci. 256(24), 7696–7699 (2010).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
M. G. Herrmann, R. P. Stoffel, I. Sergueev, H. C. Wille, O. Leupold, M. Ait Haddouch, G. Sala, D. L. Abernathy, J. Voigt, R. P. Hermann, R. Dronskowski, and K. Friese, “Lattice dynamics of Sb2Se3 from inelastic neutron and x-ray scattering,” Phys. Status Solidi B 257(6), 2000063 (2020).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
H. Taghinejad, S. Abdollahramezani, A. A. Eftekhar, T. Fan, A. H. Hosseinnia, O. Hemmatyar, A. Eshaghian Dorche, A. Gallmon, and A. Adibi, “ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics,” Opt. Express 29(13), 20449 (2021).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
C. K. Gan, J. R. Soh, and Y. Liu, “Large anharmonic effect and thermal expansion anisotropy of metal chalcogenides: The case of antimony sulfide,” Phys. Rev. B 92(23), 235202 (2015).
[Crossref]
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
S. X. Gan, C. K. Lai, W. Y. Chong, D. Y. Choi, S. Madden, and H. Ahmad, “Optical phase transition of Ge2Sb2Se4Te1 thin film using low absorption wavelength in the 1550 nm window,” Opt. Mater. (Amsterdam, Neth.) 120, 111450 (2021).
[Crossref]
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
K. Gao, K. Du, S. Tian, H. Wang, L. Zhang, Y. Guo, B. Luo, W. Zhang, and T. Mei, “Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation,” Adv. Funct. Mater. 31(35), 2103327 (2021).
[Crossref]
C. Ruiz de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. Garcia-Cuevas Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. David Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7(5), 476–484 (2020).
[Crossref]
J. Faneca, S. Garcia-Cuevas Carrillo, E. Gemo, C. R. de Galarreta, T. Domínguez Bucio, F. Y. Gardes, H. Bhaskaran, W. H. P. Pernice, C. D. Wright, and A. Baldycheva, “Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands,” Opt. Mater. Express 10(8), 1778 (2020).
[Crossref]
J. Faneca, S. Garcia-Cuevas Carrillo, E. Gemo, C. R. de Galarreta, T. Domínguez Bucio, F. Y. Gardes, H. Bhaskaran, W. H. P. Pernice, C. D. Wright, and A. Baldycheva, “Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands,” Opt. Mater. Express 10(8), 1778 (2020).
[Crossref]
J. Faneca, L. Trimby, I. Zeimpekis, M. Delaney, D. W. Hewak, F. Y. Gardes, C. D. Wright, and A. Baldycheva, “On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials,” Opt. Express 28(11), 16394 (2020).
[Crossref]
M. Agati, C. Gay, D. Benoit, and A. Claverie, “Effects of surface oxidation on the crystallization characteristics of Ge-rich Ge-Sb-Te alloys thin films,” Appl. Surf. Sci. 518, 146227 (2020).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
E. Gemo, J. Faneca, S. G.-C. Carrillo, A. Baldycheva, W. H. P. Pernice, H. Bhaskaran, and C. D. Wright, “A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices,” J. Appl. Phys. 129(11), 110902 (2021).
[Crossref]
J. Faneca, S. Garcia-Cuevas Carrillo, E. Gemo, C. R. de Galarreta, T. Domínguez Bucio, F. Y. Gardes, H. Bhaskaran, W. H. P. Pernice, C. D. Wright, and A. Baldycheva, “Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands,” Opt. Mater. Express 10(8), 1778 (2020).
[Crossref]
C. Ruiz de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. Garcia-Cuevas Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. David Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7(5), 476–484 (2020).
[Crossref]
G. Novielli, A. Ghetti, E. Varesi, A. Mauri, and R. Sacco, “Atomic migration in phase change materials,” Tech. Dig. - Int. Electron Devices Meet. IEDM (2013).
L. Crespi, A. L. Lacaita, M. Boniardi, E. Varesi, A. Ghetti, A. Redaelli, and G. D’Arrigo, “Modeling of atomic migration phenomena in phase change memory devices,” in 2015 IEEE 7th International Memory Workshop, IMW 2015 (Institute of Electrical and Electronics Engineers Inc., 2015).
Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]
A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]
B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]
S. Tripathi, P. Kotula, M. K. Singh, C. Ghosh, G. Bakan, H. Silva, and C. B. Carter, “Role of oxygen on chemical segregation in uncapped Ge2Sb2Te5 thin films on silicon nitride,” ECS J. Solid State Sci. Technol. 9(5), 054007 (2020).
[Crossref]
K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref]
X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]
A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]
X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref]
R. Golovchak, Y. G. Choi, S. Kozyukhin, Y. Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek, and H. Jain, “Oxygen incorporation into GST phase-change memory matrix,” Appl. Surf. Sci. 332, 533–541 (2015).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
M. B. Sky, N. Sosa, T. Masuda, W. Kim, S. Kim, A. Ray, R. Bruce, J. Gonsalves, Y. Zhu, K. Suu, and C. Lam, “Crystalline-as-deposited ALD phase change material confined PCM cell for high density storage class memory,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2016-Febru, pp. 3.6.1–3.6.4.
J. González-Hernández, P. Herrera-Fierro, B. Chao, Y. Kovalenko, E. Morales-Sánchez, and E. Prokhorov, “Structure of oxygen-doped Ge:Sb:Te films,” Thin Solid Films 503(1-2), 13–17 (2006).
[Crossref]
C. Rivera-Rodríguez, E. Prokhorov, G. Trapaga, E. Morales-Sánchez, M. Hernandez-Landaverde, Y. Kovalenko, and J. González-Hernández, “Mechanism of crystallization of oxygen-doped amorphous Ge 1Sb2Te4 thin films,” J. Appl. Phys. 96(2), 1040–1046 (2004).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
E. Gourvest, B. Pelissier, C. Vallée, A. Roule, S. Lhostis, and S. Maitrejean, “Impact of oxidation on Ge2Sb2Te5 and GeTe phase-change properties,” J. Electrochem. Soc. 159(4), H373–H377 (2012).
[Crossref]
L. Goux, D. T. Castro, G. A. M. Hurkx, J. G. Lisoni, R. Delhougne, D. J. Gravesteijn, K. Attenborough, and D. J. Wouters, “Degradation of the reset switching during endurance testing of a phase-change line cell,” IEEE Trans. Electron Devices 56(2), 354–358 (2009).
[Crossref]
L. Goux, D. T. Castro, G. A. M. Hurkx, J. G. Lisoni, R. Delhougne, D. J. Gravesteijn, K. Attenborough, and D. J. Wouters, “Degradation of the reset switching during endurance testing of a phase-change line cell,” IEEE Trans. Electron Devices 56(2), 354–358 (2009).
[Crossref]
B. Kooi, W. Groot, and Jt. De Hosson, “In-situ TEM study of the crystallization of Ge2Sb2Te5,” (n.d.).
J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]
Ž. Živković, N. Štrbac, D. Živkovič, D. Grujičić, and B. Boyanov, “Kinetics and mechanism of Sb2Se3 oxidation process,” Thermochim. Acta 383(1-2), 137–143 (2002).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
F. Yue, R. Piccoli, M. Y. Shalaginov, T. Gu, K. A. Richardson, R. Morandotti, J. Hu, and L. Razzari, “Nonlinear mid-infrared metasurface based on a phase-change material,” Laser Photonics Rev. 15(3), 2000373 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
Y. Zhang, C. Ríos, M. Y. Shalaginov, M. Li, A. Majumdar, T. Gu, and J. Hu, “Myths and truths about optical phase change materials: a perspective,” Appl. Phys. Lett. 118(21), 210501 (2021).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
[Crossref]
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).
T. Li, J. Shen, L. Wu, Z. Song, S. Lv, D. Cai, S. Zhang, T. Guo, S. Song, and M. Zhu, “Atomic-Scale Observation of Carbon Distribution in High-Performance Carbon-Doped Ge2Sb2Te5 and Its Influence on Crystallization Behavior,” J. Phys. Chem. C 123(21), 13377–13384 (2019).
[Crossref]
T. Guo, S. Song, Y. Zheng, Y. Xue, S. Yan, Y. Liu, T. Li, G. Liu, Y. Wang, Z. Song, M. Qi, and S. Feng, “Excellent thermal stability owing to Ge and C doping in Sb2Te-based high-speed phase-change memory,” Nanotechnology 29(50), 505710 (2018).
[Crossref]
K. Gao, K. Du, S. Tian, H. Wang, L. Zhang, Y. Guo, B. Luo, W. Zhang, and T. Mei, “Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation,” Adv. Funct. Mater. 31(35), 2103327 (2021).
[Crossref]
M. C. Jung, Y. M. Lee, H. D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, “Ge nitride formation in N-doped amorphous Ge2Sb 2Te5,” Appl. Phys. Lett. 91(8), 083514 (2007).
[Crossref]
I. M. Park, J. K. Jung, S. O. Ryu, K. J. Choi, B. G. Yu, Y. B. Park, S. M. Han, and Y. C. Joo, “Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory,” Thin Solid Films 517(2), 848–852 (2008).
[Crossref]
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
Y. H. Huang, C. H. Hang, Y. J. Huang, and T. E. Hsieh, “Electromigration behaviors of Ge2Sb2Te5 chalcogenide thin films under DC bias,” J. Alloys Compd. 580, 449–456 (2013).
[Crossref]
J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, and M. S. Mills, “Artificial neural network discovery of a switchable metasurface reflector,” Opt. Express 28(17), 24629 (2020).
[Crossref]
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, and X. Miao, “Recent advances on neuromorphic devices based on chalcogenide phase-change materials,” Adv. Funct. Mater. 30(50), 2003419 (2020).
[Crossref]
S. Ho Oh, K. Baek, S. Kyu Son, K. Song, J. Won Oh, S.-J. Jeon, W. Kim, J. Hee Yoo, and K. Jeung Lee, “In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5,” Nanoscale Adv. 2(9), 3841–3848 (2020).
[Crossref]
H. Taghinejad, S. Abdollahramezani, A. A. Eftekhar, T. Fan, A. H. Hosseinnia, O. Hemmatyar, A. Eshaghian Dorche, A. Gallmon, and A. Adibi, “ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics,” Opt. Express 29(13), 20449 (2021).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
M. G. Herrmann, R. P. Stoffel, I. Sergueev, H. C. Wille, O. Leupold, M. Ait Haddouch, G. Sala, D. L. Abernathy, J. Voigt, R. P. Hermann, R. Dronskowski, and K. Friese, “Lattice dynamics of Sb2Se3 from inelastic neutron and x-ray scattering,” Phys. Status Solidi B 257(6), 2000063 (2020).
[Crossref]
C. Rivera-Rodríguez, E. Prokhorov, G. Trapaga, E. Morales-Sánchez, M. Hernandez-Landaverde, Y. Kovalenko, and J. González-Hernández, “Mechanism of crystallization of oxygen-doped amorphous Ge 1Sb2Te4 thin films,” J. Appl. Phys. 96(2), 1040–1046 (2004).
[Crossref]
J. González-Hernández, P. Herrera-Fierro, B. Chao, Y. Kovalenko, E. Morales-Sánchez, and E. Prokhorov, “Structure of oxygen-doped Ge:Sb:Te films,” Thin Solid Films 503(1-2), 13–17 (2006).
[Crossref]
M. G. Herrmann, R. P. Stoffel, I. Sergueev, H. C. Wille, O. Leupold, M. Ait Haddouch, G. Sala, D. L. Abernathy, J. Voigt, R. P. Hermann, R. Dronskowski, and K. Friese, “Lattice dynamics of Sb2Se3 from inelastic neutron and x-ray scattering,” Phys. Status Solidi B 257(6), 2000063 (2020).
[Crossref]
M. Delaney, I. Zeimpekis, H. Du, X. Yan, M. Banakar, D. J. Thomson, D. W. Hewak, and O. L. Muskens, “Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material,” Sci. Adv. 7(25), 3500–3516 (2021).
[Crossref]
M. Delaney, I. Zeimpekis, D. Lawson, D. W. Hewak, and O. L. Muskens, “A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3,” Adv. Funct. Mater. 30(36), 2002447 (2020).
[Crossref]
J. Faneca, L. Trimby, I. Zeimpekis, M. Delaney, D. W. Hewak, F. Y. Gardes, C. D. Wright, and A. Baldycheva, “On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials,” Opt. Express 28(11), 16394 (2020).
[Crossref]
B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
P. Noé, C. Sabbione, N. Bernier, N. Castellani, F. Fillot, and F. Hippert, “Impact of interfaces on scenario of crystallization of phase change materials,” Acta Mater. 110, 142–148 (2016).
[Crossref]
A. Ebina, M. Hirasaka, and K. Nakatani, “Oxygen doping effect on Ge–Sb–Te phase change optical disks,” J. Vac. Sci. Technol., A 17(6), 3463–3466 (1999).
[Crossref]
S. Ho Oh, K. Baek, S. Kyu Son, K. Song, J. Won Oh, S.-J. Jeon, W. Kim, J. Hee Yoo, and K. Jeung Lee, “In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5,” Nanoscale Adv. 2(9), 3841–3848 (2020).
[Crossref]
M. Shen, T. Lill, N. Altieri, J. Hoang, S. Chiou, J. Sims, A. McKerrow, R. Dylewicz, E. Chen, H. Razavi, and J. P. Chang, “Review on recent progress in patterning phase change materials,” J. Vac. Sci. Technol., A 38(6), 060802 (2020).
[Crossref]
N. Fleck, O. S. Hutter, L. J. Phillips, H. Shiel, T. D. C. Hobson, V. R. Dhanak, T. D. Veal, F. Jäckel, K. Durose, and J. D. Major, “How oxygen exposure improves the back contact and performance of antimony selenide solar cells,” ACS Appl. Mater. Interfaces 12(47), 52595–52602 (2020).
[Crossref]
K. Aryana, Y. Zhang, J. A. Tomko, M. S. Bin Hoque, E. R. Hoglund, D. H. Olson, J. Nag, J. C. Read, C. Ríos, J. Hu, and P. E. Hopkins, “Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te,” Nat. Commun. 12(1), 7187 (2021).
[Crossref]
K. Aryana, Y. Zhang, J. A. Tomko, M. S. Bin Hoque, E. R. Hoglund, D. H. Olson, J. Nag, J. C. Read, C. Ríos, J. Hu, and P. E. Hopkins, “Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te,” Nat. Commun. 12(1), 7187 (2021).
[Crossref]
C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]
P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]
H. Taghinejad, S. Abdollahramezani, A. A. Eftekhar, T. Fan, A. H. Hosseinnia, O. Hemmatyar, A. Eshaghian Dorche, A. Gallmon, and A. Adibi, “ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics,” Opt. Express 29(13), 20449 (2021).
[Crossref]
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, and X. Miao, “Recent advances on neuromorphic devices based on chalcogenide phase-change materials,” Adv. Funct. Mater. 30(50), 2003419 (2020).
[Crossref]
Y. H. Huang, C. H. Hang, Y. J. Huang, and T. E. Hsieh, “Electromigration behaviors of Ge2Sb2Te5 chalcogenide thin films under DC bias,” J. Alloys Compd. 580, 449–456 (2013).
[Crossref]
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]
H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
Y. Zhang, C. Ríos, M. Y. Shalaginov, M. Li, A. Majumdar, T. Gu, and J. Hu, “Myths and truths about optical phase change materials: a perspective,” Appl. Phys. Lett. 118(21), 210501 (2021).
[Crossref]
F. Yue, R. Piccoli, M. Y. Shalaginov, T. Gu, K. A. Richardson, R. Morandotti, J. Hu, and L. Razzari, “Nonlinear mid-infrared metasurface based on a phase-change material,” Laser Photonics Rev. 15(3), 2000373 (2021).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
K. Aryana, Y. Zhang, J. A. Tomko, M. S. Bin Hoque, E. R. Hoglund, D. H. Olson, J. Nag, J. C. Read, C. Ríos, J. Hu, and P. E. Hopkins, “Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te,” Nat. Commun. 12(1), 7187 (2021).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
Y. Zhang and J. Hu, “Reconfigurable optics-a phase change for the better,” Am. Ceram. Soc. Bull. 99, 36–37 (2020).
[Crossref]
F. De Leonardis, R. Soref, V. M. N. Passaro, Y. Zhang, and J. Hu, “Broadband electro-optical crossbar switches using low-loss Ge2Sb2Se4Te1 phase change material,” J. Lightwave Technol. 37(13), 3183–3191 (2019).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
[Crossref]
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).
M. Miscuglio, J. Meng, O. Yesiliurt, Y. Zhang, L. J. Prokopeva, A. Mehrabian, J. Hu, A. V. Kildishev, and V. J. Sorger, “Intelligent edge processing with photonic multilevel memory,” in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) (2020), Paper IM2A.4 (The Optical Society, 2020), p. IM2A.4.
X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]
H. Y. Cheng, C. A. Jong, R. J. Chung, T. S. Chin, and R. T. Huang, “Wet etching of Ge2Sb2Te5 films and switching properties of resultant phase change memory cells,” Semicond. Sci. Technol. 20(11), 1111–1115 (2005).
[Crossref]
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
Y. H. Huang, C. H. Hang, Y. J. Huang, and T. E. Hsieh, “Electromigration behaviors of Ge2Sb2Te5 chalcogenide thin films under DC bias,” J. Alloys Compd. 580, 449–456 (2013).
[Crossref]
Y. H. Huang, C. H. Hang, Y. J. Huang, and T. E. Hsieh, “Electromigration behaviors of Ge2Sb2Te5 chalcogenide thin films under DC bias,” J. Alloys Compd. 580, 449–456 (2013).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
L. Goux, D. T. Castro, G. A. M. Hurkx, J. G. Lisoni, R. Delhougne, D. J. Gravesteijn, K. Attenborough, and D. J. Wouters, “Degradation of the reset switching during endurance testing of a phase-change line cell,” IEEE Trans. Electron Devices 56(2), 354–358 (2009).
[Crossref]
N. Fleck, O. S. Hutter, L. J. Phillips, H. Shiel, T. D. C. Hobson, V. R. Dhanak, T. D. Veal, F. Jäckel, K. Durose, and J. D. Major, “How oxygen exposure improves the back contact and performance of antimony selenide solar cells,” ACS Appl. Mater. Interfaces 12(47), 52595–52602 (2020).
[Crossref]
J. H. Park, J. H. Kim, D. H. Ko, Z. Wu, D. H. Ahn, S. O. Park, and K. H. Hwang, “Use of NH3 etchant for voids suppression to enhance set cycles in CGeSbTe-based phase change memory devices,” Thin Solid Films 616, 502–506 (2016).
[Crossref]
N. Fleck, O. S. Hutter, L. J. Phillips, H. Shiel, T. D. C. Hobson, V. R. Dhanak, T. D. Veal, F. Jäckel, K. Durose, and J. D. Major, “How oxygen exposure improves the back contact and performance of antimony selenide solar cells,” ACS Appl. Mater. Interfaces 12(47), 52595–52602 (2020).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
A. Debunne, K. Virwani, A. Padilla, G. W. Burr, A. J. Kellock, V. R. Deline, R. M. Shelby, and B. Jackson, “Evidence of crystallization–induced segregation in the phase change material Te-rich GST,” J. Electrochem. Soc. 158(10), H965 (2011).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
R. Golovchak, Y. G. Choi, S. Kozyukhin, Y. Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek, and H. Jain, “Oxygen incorporation into GST phase-change memory matrix,” Appl. Surf. Sci. 332, 533–541 (2015).
[Crossref]
M. H. Jang, S. J. Park, D. H. Lim, M. H. Cho, K. H. Do, D. H. Ko, and H. C. Sohn, “Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films,” Appl. Phys. Lett. 95(1), 012102 (2009).
[Crossref]
S.-K. Kang, M. H. Jeon, J. Y. Park, G. Y. Yeom, M. S. Jhon, B. W. Koo, and Y. W. Kim, “Effect of Halogen-Based Neutral Beam on the Etching of Ge2Sb2Te5,” J. Electrochem. Soc. 158(8), H768 (2011).
[Crossref]
S. K. Kang, M. H. Jeon, J. Y. Park, M. S. Jhon, and G. Y. Yeom, “Etch damage of Ge2Sb2Te5 for different halogen gases,” Jpn. J. Appl. Phys. 50(8), 086501 (2011).
[Crossref]
S. Ho Oh, K. Baek, S. Kyu Son, K. Song, J. Won Oh, S.-J. Jeon, W. Kim, J. Hee Yoo, and K. Jeung Lee, “In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5,” Nanoscale Adv. 2(9), 3841–3848 (2020).
[Crossref]
Y. Kim, S. A. Park, J. H. Baeck, M. K. Noh, K. Jeong, M.-H. Cho, H. M. Park, M. K. Lee, E. J. Jeong, D.-H. Ko, and H. J. Shin, “Phase separation of a Ge2Sb2Te5 alloy in the transition from an amorphous structure to crystalline structures,” J. Vac. Sci. Technol., A 24(4), 929–933 (2006).
[Crossref]
J.-B. Park, G.-S. Park, H.-S. Baik, J.-H. Lee, H. Jeong, and K. Kim, “Phase-change behavior of stoichiometric Ge2Sb2Te5 in phase-change random access memory,” J. Electrochem. Soc. 154(3), H139 (2007).
[Crossref]
M. C. Jung, Y. M. Lee, H. D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, “Ge nitride formation in N-doped amorphous Ge2Sb 2Te5,” Appl. Phys. Lett. 91(8), 083514 (2007).
[Crossref]
Y. Kim, S. A. Park, J. H. Baeck, M. K. Noh, K. Jeong, M.-H. Cho, H. M. Park, M. K. Lee, E. J. Jeong, D.-H. Ko, and H. J. Shin, “Phase separation of a Ge2Sb2Te5 alloy in the transition from an amorphous structure to crystalline structures,” J. Vac. Sci. Technol., A 24(4), 929–933 (2006).
[Crossref]
S. Ho Oh, K. Baek, S. Kyu Son, K. Song, J. Won Oh, S.-J. Jeon, W. Kim, J. Hee Yoo, and K. Jeung Lee, “In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5,” Nanoscale Adv. 2(9), 3841–3848 (2020).
[Crossref]
S. K. Kang, M. H. Jeon, J. Y. Park, M. S. Jhon, and G. Y. Yeom, “Etch damage of Ge2Sb2Te5 for different halogen gases,” Jpn. J. Appl. Phys. 50(8), 086501 (2011).
[Crossref]
S.-K. Kang, M. H. Jeon, J. Y. Park, G. Y. Yeom, M. S. Jhon, B. W. Koo, and Y. W. Kim, “Effect of Halogen-Based Neutral Beam on the Etching of Ge2Sb2Te5,” J. Electrochem. Soc. 158(8), H768 (2011).
[Crossref]
H. Y. Cheng, C. A. Jong, R. J. Chung, T. S. Chin, and R. T. Huang, “Wet etching of Ge2Sb2Te5 films and switching properties of resultant phase change memory cells,” Semicond. Sci. Technol. 20(11), 1111–1115 (2005).
[Crossref]
T. Y. Yang, J. Y. Cho, Y. J. Park, and Y. C. Joo, “Driving forces for elemental demixing of GeSbTe in phase-change memory: computational study to design a durable device,” Curr. Appl. Phys. 13(7), 1426–1432 (2013).
[Crossref]
Y. J. Park, T. Y. Yang, J. Y. Cho, S. Y. Lee, and Y. C. Joo, “Electrical current-induced gradual failure of crystalline Ge2Sb2Te5 for phase-change memory,” Appl. Phys. Lett. 103(7), 073503 (2013).
[Crossref]
T. Y. Yang, I. M. Park, B. J. Kim, and Y. C. Joo, “Atomic migration in molten and crystalline Ge2Sb2Te5 under high electric field,” Appl. Phys. Lett. 95(3), 032104 (2009).
[Crossref]
I. M. Park, J. K. Jung, S. O. Ryu, K. J. Choi, B. G. Yu, Y. B. Park, S. M. Han, and Y. C. Joo, “Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory,” Thin Solid Films 517(2), 848–852 (2008).
[Crossref]
T.-Y. Yang, I.-M. Park, H.-Y. You, S.-H. Oh, K.-W. Yi, and Y.-C. Joo, “Change of damage mechanism by the frequency of applied pulsed DC in the Ge2Sb2Te5 Line,” J. Electrochem. Soc. 156(8), H617 (2009).
[Crossref]
S. Raoux, J. L. Jordan-Sweet, and A. J. Kellock, “Crystallization properties of ultrathin phase change films,” J. Appl. Phys. 103(11), 114310 (2008).
[Crossref]
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
L. Krusin-Elbaum, C. C. Jr, K. N. Chen, M. Copel, D. W. Abraham, K. B. Reuter, S. M. Rossnagel, J. Bruley, and V. R. Deline, “Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the “phase-change” stress,” Appl. Phys. Lett. 90(14), 141902 (2007).
[Crossref]
I. M. Park, J. K. Jung, S. O. Ryu, K. J. Choi, B. G. Yu, Y. B. Park, S. M. Han, and Y. C. Joo, “Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory,” Thin Solid Films 517(2), 848–852 (2008).
[Crossref]
M. C. Jung, Y. M. Lee, H. D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, “Ge nitride formation in N-doped amorphous Ge2Sb 2Te5,” Appl. Phys. Lett. 91(8), 083514 (2007).
[Crossref]
S. K. Kang, J. S. Oh, B. J. Park, S. W. Kim, J. T. Lim, G. Y. Yeom, C. J. Kang, and G. J. Min, “X-ray photoelectron spectroscopic study of Ge2Sb2Te5 etched by fluorocarbon inductively coupled plasmas,” Appl. Phys. Lett. 93(4), 043126 (2008).
[Crossref]
C. Kim, D. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett. 94(19), 193504 (2009).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).
S. K. Kang, M. H. Jeon, J. Y. Park, M. S. Jhon, and G. Y. Yeom, “Etch damage of Ge2Sb2Te5 for different halogen gases,” Jpn. J. Appl. Phys. 50(8), 086501 (2011).
[Crossref]
S. K. Kang, J. S. Oh, B. J. Park, S. W. Kim, J. T. Lim, G. Y. Yeom, C. J. Kang, and G. J. Min, “X-ray photoelectron spectroscopic study of Ge2Sb2Te5 etched by fluorocarbon inductively coupled plasmas,” Appl. Phys. Lett. 93(4), 043126 (2008).
[Crossref]
S.-K. Kang, M. H. Jeon, J. Y. Park, G. Y. Yeom, M. S. Jhon, B. W. Koo, and Y. W. Kim, “Effect of Halogen-Based Neutral Beam on the Etching of Ge2Sb2Te5,” J. Electrochem. Soc. 158(8), H768 (2011).
[Crossref]
C. Kim, D. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett. 94(19), 193504 (2009).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
A. Debunne, K. Virwani, A. Padilla, G. W. Burr, A. J. Kellock, V. R. Deline, R. M. Shelby, and B. Jackson, “Evidence of crystallization–induced segregation in the phase change material Te-rich GST,” J. Electrochem. Soc. 158(10), H965 (2011).
[Crossref]
S. Raoux, J. L. Jordan-Sweet, and A. J. Kellock, “Crystallization properties of ultrathin phase change films,” J. Appl. Phys. 103(11), 114310 (2008).
[Crossref]
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
C. Kim, D. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett. 94(19), 193504 (2009).
[Crossref]
S. W. Nam, C. Kim, M. H. Kwon, H. S. Lee, J. S. Wi, D. Lee, T. Y. Lee, Y. Khang, and K. B. Kim, “Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing,” Appl. Phys. Lett. 92(11), 111913 (2008).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]
M. Miscuglio, J. Meng, O. Yesiliurt, Y. Zhang, L. J. Prokopeva, A. Mehrabian, J. Hu, A. V. Kildishev, and V. J. Sorger, “Intelligent edge processing with photonic multilevel memory,” in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) (2020), Paper IM2A.4 (The Optical Society, 2020), p. IM2A.4.
T. Y. Yang, I. M. Park, B. J. Kim, and Y. C. Joo, “Atomic migration in molten and crystalline Ge2Sb2Te5 under high electric field,” Appl. Phys. Lett. 95(3), 032104 (2009).
[Crossref]
C. Kim, D. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett. 94(19), 193504 (2009).
[Crossref]
S. W. Nam, C. Kim, M. H. Kwon, H. S. Lee, J. S. Wi, D. Lee, T. Y. Lee, Y. Khang, and K. B. Kim, “Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing,” Appl. Phys. Lett. 92(11), 111913 (2008).
[Crossref]
M. C. Jung, Y. M. Lee, H. D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, “Ge nitride formation in N-doped amorphous Ge2Sb 2Te5,” Appl. Phys. Lett. 91(8), 083514 (2007).
[Crossref]
C. Williams, N. Hong, M. Julian, S. Borg, and H. J. Kim, “Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe,” Opt. Express 28(7), 10583 (2020).
[Crossref]
M. N. Julian, C. Williams, S. Borg, S. Bartram, and H. J. Kim, “Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging,” Optica 7(7), 746–754 (2020).
[Crossref]
S. A. Song, W. Zhang, H. Sik Jeong, J. G. Kim, and Y. J. Kim, “In situ dynamic HR-TEM and EELS study on phase transitions of Ge2Sb2Te5 chalcogenides,” Ultramicroscopy 108(11), 1408–1419 (2008).
[Crossref]
J. H. Park, J. H. Kim, D. H. Ko, Z. Wu, D. H. Ahn, S. O. Park, and K. H. Hwang, “Use of NH3 etchant for voids suppression to enhance set cycles in CGeSbTe-based phase change memory devices,” Thin Solid Films 616, 502–506 (2016).
[Crossref]
J.-B. Park, G.-S. Park, H.-S. Baik, J.-H. Lee, H. Jeong, and K. Kim, “Phase-change behavior of stoichiometric Ge2Sb2Te5 in phase-change random access memory,” J. Electrochem. Soc. 154(3), H139 (2007).
[Crossref]
C. Kim, D. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett. 94(19), 193504 (2009).
[Crossref]
S. W. Nam, C. Kim, M. H. Kwon, H. S. Lee, J. S. Wi, D. Lee, T. Y. Lee, Y. Khang, and K. B. Kim, “Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing,” Appl. Phys. Lett. 92(11), 111913 (2008).
[Crossref]
M. C. Jung, Y. M. Lee, H. D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, “Ge nitride formation in N-doped amorphous Ge2Sb 2Te5,” Appl. Phys. Lett. 91(8), 083514 (2007).
[Crossref]
C. Kim, D. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett. 94(19), 193504 (2009).
[Crossref]
M. C. Jung, Y. M. Lee, H. D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, “Ge nitride formation in N-doped amorphous Ge2Sb 2Te5,” Appl. Phys. Lett. 91(8), 083514 (2007).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
M. B. Sky, N. Sosa, T. Masuda, W. Kim, S. Kim, A. Ray, R. Bruce, J. Gonsalves, Y. Zhu, K. Suu, and C. Lam, “Crystalline-as-deposited ALD phase change material confined PCM cell for high density storage class memory,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2016-Febru, pp. 3.6.1–3.6.4.
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
S. B. Kim, G. W. Burr, W. Kim, and S. W. Nam, “Phase-change memory cycling endurance,” MRS Bull. 44(09), 710–714 (2019).
[Crossref]
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
S. K. Kang, J. S. Oh, B. J. Park, S. W. Kim, J. T. Lim, G. Y. Yeom, C. J. Kang, and G. J. Min, “X-ray photoelectron spectroscopic study of Ge2Sb2Te5 etched by fluorocarbon inductively coupled plasmas,” Appl. Phys. Lett. 93(4), 043126 (2008).
[Crossref]
S. Ho Oh, K. Baek, S. Kyu Son, K. Song, J. Won Oh, S.-J. Jeon, W. Kim, J. Hee Yoo, and K. Jeung Lee, “In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5,” Nanoscale Adv. 2(9), 3841–3848 (2020).
[Crossref]
S. B. Kim, G. W. Burr, W. Kim, and S. W. Nam, “Phase-change memory cycling endurance,” MRS Bull. 44(09), 710–714 (2019).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
M. B. Sky, N. Sosa, T. Masuda, W. Kim, S. Kim, A. Ray, R. Bruce, J. Gonsalves, Y. Zhu, K. Suu, and C. Lam, “Crystalline-as-deposited ALD phase change material confined PCM cell for high density storage class memory,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2016-Febru, pp. 3.6.1–3.6.4.
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
Y. Kim, S. A. Park, J. H. Baeck, M. K. Noh, K. Jeong, M.-H. Cho, H. M. Park, M. K. Lee, E. J. Jeong, D.-H. Ko, and H. J. Shin, “Phase separation of a Ge2Sb2Te5 alloy in the transition from an amorphous structure to crystalline structures,” J. Vac. Sci. Technol., A 24(4), 929–933 (2006).
[Crossref]
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
S. A. Song, W. Zhang, H. Sik Jeong, J. G. Kim, and Y. J. Kim, “In situ dynamic HR-TEM and EELS study on phase transitions of Ge2Sb2Te5 chalcogenides,” Ultramicroscopy 108(11), 1408–1419 (2008).
[Crossref]
S.-K. Kang, M. H. Jeon, J. Y. Park, G. Y. Yeom, M. S. Jhon, B. W. Koo, and Y. W. Kim, “Effect of Halogen-Based Neutral Beam on the Etching of Ge2Sb2Te5,” J. Electrochem. Soc. 158(8), H768 (2011).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
M. C. Jung, Y. M. Lee, H. D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, “Ge nitride formation in N-doped amorphous Ge2Sb 2Te5,” Appl. Phys. Lett. 91(8), 083514 (2007).
[Crossref]
J. H. Park, J. H. Kim, D. H. Ko, Z. Wu, D. H. Ahn, S. O. Park, and K. H. Hwang, “Use of NH3 etchant for voids suppression to enhance set cycles in CGeSbTe-based phase change memory devices,” Thin Solid Films 616, 502–506 (2016).
[Crossref]
K. Do, D. Lee, D. H. Ko, H. Sohn, and M. H. Cho, “TEM study on volume changes and void formation in Ge2Sb2Te5 films, with repeated phase changes,” Electrochem. Solid-State Lett. 13(8), H284 (2010).
[Crossref]
M. H. Jang, S. J. Park, D. H. Lim, M. H. Cho, K. H. Do, D. H. Ko, and H. C. Sohn, “Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films,” Appl. Phys. Lett. 95(1), 012102 (2009).
[Crossref]
Y. Kim, S. A. Park, J. H. Baeck, M. K. Noh, K. Jeong, M.-H. Cho, H. M. Park, M. K. Lee, E. J. Jeong, D.-H. Ko, and H. J. Shin, “Phase separation of a Ge2Sb2Te5 alloy in the transition from an amorphous structure to crystalline structures,” J. Vac. Sci. Technol., A 24(4), 929–933 (2006).
[Crossref]
H. Koc, A. M. Mamedov, E. Deligoz, and H. Ozisik, “First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds,” Solid State Sci. 14(8), 1211–1220 (2012).
[Crossref]
R. Kojima, T. Kouzaki, T. Matsunaga, and N. Yamada, “Quantitative study of nitrogen doping effect on cyclability of Ge-Sb-Te phase-change optical disks,” in Optical Data Storage (SPIE, 1998), Vol. 3401, pp. 14–23.
R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano Lett. 10(2), 414–419 (2010).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
S.-K. Kang, M. H. Jeon, J. Y. Park, G. Y. Yeom, M. S. Jhon, B. W. Koo, and Y. W. Kim, “Effect of Halogen-Based Neutral Beam on the Etching of Ge2Sb2Te5,” J. Electrochem. Soc. 158(8), H768 (2011).
[Crossref]
B. Kooi, W. Groot, and Jt. De Hosson, “In-situ TEM study of the crystallization of Ge2Sb2Te5,” (n.d.).
R. Pandian, B. J. Kooi, J. T. M. De Hosson, and A. Pauza, “Influence of capping layers on the crystallization of doped SbxTe fast-growth phase-change films,” J. Appl. Phys. 100(12), 123511 (2006).
[Crossref]
S. Tripathi, P. Kotula, M. K. Singh, C. Ghosh, G. Bakan, H. Silva, and C. B. Carter, “Role of oxygen on chemical segregation in uncapped Ge2Sb2Te5 thin films on silicon nitride,” ECS J. Solid State Sci. Technol. 9(5), 054007 (2020).
[Crossref]
R. Kojima, T. Kouzaki, T. Matsunaga, and N. Yamada, “Quantitative study of nitrogen doping effect on cyclability of Ge-Sb-Te phase-change optical disks,” in Optical Data Storage (SPIE, 1998), Vol. 3401, pp. 14–23.
J. González-Hernández, P. Herrera-Fierro, B. Chao, Y. Kovalenko, E. Morales-Sánchez, and E. Prokhorov, “Structure of oxygen-doped Ge:Sb:Te films,” Thin Solid Films 503(1-2), 13–17 (2006).
[Crossref]
C. Rivera-Rodríguez, E. Prokhorov, G. Trapaga, E. Morales-Sánchez, M. Hernandez-Landaverde, Y. Kovalenko, and J. González-Hernández, “Mechanism of crystallization of oxygen-doped amorphous Ge 1Sb2Te4 thin films,” J. Appl. Phys. 96(2), 1040–1046 (2004).
[Crossref]
R. Golovchak, Y. G. Choi, S. Kozyukhin, Y. Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek, and H. Jain, “Oxygen incorporation into GST phase-change memory matrix,” Appl. Surf. Sci. 332, 533–541 (2015).
[Crossref]
R. Golovchak, Y. G. Choi, S. Kozyukhin, Y. Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek, and H. Jain, “Oxygen incorporation into GST phase-change memory matrix,” Appl. Surf. Sci. 332, 533–541 (2015).
[Crossref]
S. Lepeshov and A. Krasnok, “Tunable phase-change metasurfaces,” Nat. Nanotechnol. 16(6), 615–616 (2021).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano Lett. 10(2), 414–419 (2010).
[Crossref]
L. Krusin-Elbaum, C. C. Jr, K. N. Chen, M. Copel, D. W. Abraham, K. B. Reuter, S. M. Rossnagel, J. Bruley, and V. R. Deline, “Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the “phase-change” stress,” Appl. Phys. Lett. 90(14), 141902 (2007).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]
S. W. Nam, C. Kim, M. H. Kwon, H. S. Lee, J. S. Wi, D. Lee, T. Y. Lee, Y. Khang, and K. B. Kim, “Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing,” Appl. Phys. Lett. 92(11), 111913 (2008).
[Crossref]
S. Ho Oh, K. Baek, S. Kyu Son, K. Song, J. Won Oh, S.-J. Jeon, W. Kim, J. Hee Yoo, and K. Jeung Lee, “In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5,” Nanoscale Adv. 2(9), 3841–3848 (2020).
[Crossref]
L. Crespi, A. L. Lacaita, M. Boniardi, E. Varesi, A. Ghetti, A. Redaelli, and G. D’Arrigo, “Modeling of atomic migration phenomena in phase change memory devices,” in 2015 IEEE 7th International Memory Workshop, IMW 2015 (Institute of Electrical and Electronics Engineers Inc., 2015).
C. Ruiz de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. Garcia-Cuevas Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. David Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7(5), 476–484 (2020).
[Crossref]
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, K. Dabertrand, and E. Martinez, “Modification of Ge-rich GeSbTe surface during the patterning process of phase-change memories,” Microelectron. Eng. 221, 111183 (2020).
[Crossref]
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, and E. Martinez, “Study of Ge-rich GeSbTe etching process with different halogen plasmas,” J. Vac. Sci. Technol., A 37(3), 031302 (2019).
[Crossref]
S. X. Gan, C. K. Lai, W. Y. Chong, D. Y. Choi, S. Madden, and H. Ahmad, “Optical phase transition of Ge2Sb2Se4Te1 thin film using low absorption wavelength in the 1550 nm window,” Opt. Mater. (Amsterdam, Neth.) 120, 111450 (2021).
[Crossref]
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
M. B. Sky, N. Sosa, T. Masuda, W. Kim, S. Kim, A. Ray, R. Bruce, J. Gonsalves, Y. Zhu, K. Suu, and C. Lam, “Crystalline-as-deposited ALD phase change material confined PCM cell for high density storage class memory,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2016-Febru, pp. 3.6.1–3.6.4.
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
Y. Wang, P. Landreman, D. Schoen, K. Okabe, A. Marshall, U. Celano, H.-S. P. Wong, J. Park, and M. L. Brongersma, “Electrical tuning of phase-change antennas and metasurfaces,” Nat. Nanotechnol. 16(6), 667–672 (2021).
[Crossref]
M. Delaney, I. Zeimpekis, D. Lawson, D. W. Hewak, and O. L. Muskens, “A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3,” Adv. Funct. Mater. 30(36), 2002447 (2020).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
K. Do, D. Lee, D. H. Ko, H. Sohn, and M. H. Cho, “TEM study on volume changes and void formation in Ge2Sb2Te5 films, with repeated phase changes,” Electrochem. Solid-State Lett. 13(8), H284 (2010).
[Crossref]
S. W. Nam, C. Kim, M. H. Kwon, H. S. Lee, J. S. Wi, D. Lee, T. Y. Lee, Y. Khang, and K. B. Kim, “Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing,” Appl. Phys. Lett. 92(11), 111913 (2008).
[Crossref]
S. W. Nam, C. Kim, M. H. Kwon, H. S. Lee, J. S. Wi, D. Lee, T. Y. Lee, Y. Khang, and K. B. Kim, “Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing,” Appl. Phys. Lett. 92(11), 111913 (2008).
[Crossref]
C. Kim, D. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett. 94(19), 193504 (2009).
[Crossref]
J.-B. Park, G.-S. Park, H.-S. Baik, J.-H. Lee, H. Jeong, and K. Kim, “Phase-change behavior of stoichiometric Ge2Sb2Te5 in phase-change random access memory,” J. Electrochem. Soc. 154(3), H139 (2007).
[Crossref]
E. Yalon, I. M. Datye, J. S. Moon, K. A. Son, K. Lee, and E. Pop, “Energy-efficient indirectly heated phase change RF switch,” IEEE Electron Device Lett. 40(3), 455–458 (2019).
[Crossref]
J. Moon, H. Seo, K. K. Son, E. Yalon, K. Lee, E. Flores, G. Candia, and E. Pop, “Reconfigurable infrared spectral imaging with phase change materials,” in SPIE Proceedings (SPIE, 2019), Vol. 10982, p. 32.
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
Y. Kim, S. A. Park, J. H. Baeck, M. K. Noh, K. Jeong, M.-H. Cho, H. M. Park, M. K. Lee, E. J. Jeong, D.-H. Ko, and H. J. Shin, “Phase separation of a Ge2Sb2Te5 alloy in the transition from an amorphous structure to crystalline structures,” J. Vac. Sci. Technol., A 24(4), 929–933 (2006).
[Crossref]
Y. J. Park, T. Y. Yang, J. Y. Cho, S. Y. Lee, and Y. C. Joo, “Electrical current-induced gradual failure of crystalline Ge2Sb2Te5 for phase-change memory,” Appl. Phys. Lett. 103(7), 073503 (2013).
[Crossref]
C. Kim, D. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett. 94(19), 193504 (2009).
[Crossref]
S. W. Nam, C. Kim, M. H. Kwon, H. S. Lee, J. S. Wi, D. Lee, T. Y. Lee, Y. Khang, and K. B. Kim, “Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing,” Appl. Phys. Lett. 92(11), 111913 (2008).
[Crossref]
M. C. Jung, Y. M. Lee, H. D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, “Ge nitride formation in N-doped amorphous Ge2Sb 2Te5,” Appl. Phys. Lett. 91(8), 083514 (2007).
[Crossref]
L. Lu, Z. Dong, F. Tijiptoharsono, R. J. H. Ng, H. Wang, S. D. Rezaei, Y. Wang, H. S. Leong, P. C. Lim, J. K. W. Yang, and R. E. Simpson, “Reversible tuning of Mie resonances in the visible spectrum,” ACS Nano 15(12), 19722–19732 (2021).
[Crossref]
S. Lepeshov and A. Krasnok, “Tunable phase-change metasurfaces,” Nat. Nanotechnol. 16(6), 615–616 (2021).
[Crossref]
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
M. G. Herrmann, R. P. Stoffel, I. Sergueev, H. C. Wille, O. Leupold, M. Ait Haddouch, G. Sala, D. L. Abernathy, J. Voigt, R. P. Hermann, R. Dronskowski, and K. Friese, “Lattice dynamics of Sb2Se3 from inelastic neutron and x-ray scattering,” Phys. Status Solidi B 257(6), 2000063 (2020).
[Crossref]
E. Gourvest, B. Pelissier, C. Vallée, A. Roule, S. Lhostis, and S. Maitrejean, “Impact of oxidation on Ge2Sb2Te5 and GeTe phase-change properties,” J. Electrochem. Soc. 159(4), H373–H377 (2012).
[Crossref]
T. Cao, X. Zhang, W. Dong, L. Lu, X. Zhou, X. Zhuang, J. Deng, X. Cheng, G. Li, and R. E. Simpson, “Tuneable thermal emission using chalcogenide metasurface,” Adv. Opt. Mater. 6(16), 1800169 (2018).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
[Crossref]
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
Y. Zhang, C. Ríos, M. Y. Shalaginov, M. Li, A. Majumdar, T. Gu, and J. Hu, “Myths and truths about optical phase change materials: a perspective,” Appl. Phys. Lett. 118(21), 210501 (2021).
[Crossref]
J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater,” Adv. Mater. 32(31), 2001218 (2020).
[Crossref]
C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]
K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref]
Y. Qu, Q. Li, L. Cai, and M. Qiu, “Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge2Sb2Te5,” Opt. Mater. Express 8(8), 2312 (2018).
[Crossref]
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
T. Li, J. Shen, L. Wu, Z. Song, S. Lv, D. Cai, S. Zhang, T. Guo, S. Song, and M. Zhu, “Atomic-Scale Observation of Carbon Distribution in High-Performance Carbon-Doped Ge2Sb2Te5 and Its Influence on Crystallization Behavior,” J. Phys. Chem. C 123(21), 13377–13384 (2019).
[Crossref]
T. Guo, S. Song, Y. Zheng, Y. Xue, S. Yan, Y. Liu, T. Li, G. Liu, Y. Wang, Z. Song, M. Qi, and S. Feng, “Excellent thermal stability owing to Ge and C doping in Sb2Te-based high-speed phase-change memory,” Nanotechnology 29(50), 505710 (2018).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, and X. Miao, “Recent advances on neuromorphic devices based on chalcogenide phase-change materials,” Adv. Funct. Mater. 30(50), 2003419 (2020).
[Crossref]
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
M. Shen, T. Lill, N. Altieri, J. Hoang, S. Chiou, J. Sims, A. McKerrow, R. Dylewicz, E. Chen, H. Razavi, and J. P. Chang, “Review on recent progress in patterning phase change materials,” J. Vac. Sci. Technol., A 38(6), 060802 (2020).
[Crossref]
M. H. Jang, S. J. Park, D. H. Lim, M. H. Cho, K. H. Do, D. H. Ko, and H. C. Sohn, “Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films,” Appl. Phys. Lett. 95(1), 012102 (2009).
[Crossref]
S. K. Kang, J. S. Oh, B. J. Park, S. W. Kim, J. T. Lim, G. Y. Yeom, C. J. Kang, and G. J. Min, “X-ray photoelectron spectroscopic study of Ge2Sb2Te5 etched by fluorocarbon inductively coupled plasmas,” Appl. Phys. Lett. 93(4), 043126 (2008).
[Crossref]
L. Lu, Z. Dong, F. Tijiptoharsono, R. J. H. Ng, H. Wang, S. D. Rezaei, Y. Wang, H. S. Leong, P. C. Lim, J. K. W. Yang, and R. E. Simpson, “Reversible tuning of Mie resonances in the visible spectrum,” ACS Nano 15(12), 19722–19732 (2021).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, and X. Miao, “Recent advances on neuromorphic devices based on chalcogenide phase-change materials,” Adv. Funct. Mater. 30(50), 2003419 (2020).
[Crossref]
L. Goux, D. T. Castro, G. A. M. Hurkx, J. G. Lisoni, R. Delhougne, D. J. Gravesteijn, K. Attenborough, and D. J. Wouters, “Degradation of the reset switching during endurance testing of a phase-change line cell,” IEEE Trans. Electron Devices 56(2), 354–358 (2009).
[Crossref]
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, and S. Feng, “High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application,” Appl. Phys. Lett. 105(24), 243113 (2014).
[Crossref]
L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Basic wet-etching solutions for Ge2Sb2Te5 phase change material,” J. Electrochem. Soc. 157(4), H470 (2010).
[Crossref]
G. Feng, B. Liu, Z. Song, S. Feng, and B. Chen, “Reactive ion etching of Ge2Sb2Te5 in CHF3/O2 plasma for nonvolatile phase-change memory device,” Electrochem. Solid-State Lett. 10(5), D47–50 (2007).
[Crossref]
T. Guo, S. Song, Y. Zheng, Y. Xue, S. Yan, Y. Liu, T. Li, G. Liu, Y. Wang, Z. Song, M. Qi, and S. Feng, “Excellent thermal stability owing to Ge and C doping in Sb2Te-based high-speed phase-change memory,” Nanotechnology 29(50), 505710 (2018).
[Crossref]
H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 7171–7187 (2020).
[Crossref]
W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29(6), 1806181 (2019).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
R. Wang, Z. Song, W. Song, T. Xin, S. Lv, S. Song, and J. Liu, “Phase-change memory based on matched Ge-Te, Sb-Te, and In-Te octahedrons: Improved electrical performances and robust thermal stability,” InfoMat 3(9), 1008–1015 (2021).
[Crossref]
T. Guo, S. Song, Y. Zheng, Y. Xue, S. Yan, Y. Liu, T. Li, G. Liu, Y. Wang, Z. Song, M. Qi, and S. Feng, “Excellent thermal stability owing to Ge and C doping in Sb2Te-based high-speed phase-change memory,” Nanotechnology 29(50), 505710 (2018).
[Crossref]
C. K. Gan, J. R. Soh, and Y. Liu, “Large anharmonic effect and thermal expansion anisotropy of metal chalcogenides: The case of antimony sulfide,” Phys. Rev. B 92(23), 235202 (2015).
[Crossref]
L. Lu, Z. Dong, F. Tijiptoharsono, R. J. H. Ng, H. Wang, S. D. Rezaei, Y. Wang, H. S. Leong, P. C. Lim, J. K. W. Yang, and R. E. Simpson, “Reversible tuning of Mie resonances in the visible spectrum,” ACS Nano 15(12), 19722–19732 (2021).
[Crossref]
H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 7171–7187 (2020).
[Crossref]
W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29(6), 1806181 (2019).
[Crossref]
H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]
H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]
T. Cao, X. Zhang, W. Dong, L. Lu, X. Zhou, X. Zhuang, J. Deng, X. Cheng, G. Li, and R. E. Simpson, “Tuneable thermal emission using chalcogenide metasurface,” Adv. Opt. Mater. 6(16), 1800169 (2018).
[Crossref]
K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref]
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
K. Gao, K. Du, S. Tian, H. Wang, L. Zhang, Y. Guo, B. Luo, W. Zhang, and T. Mei, “Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation,” Adv. Funct. Mater. 31(35), 2103327 (2021).
[Crossref]
K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref]
R. Wang, Z. Song, W. Song, T. Xin, S. Lv, S. Song, and J. Liu, “Phase-change memory based on matched Ge-Te, Sb-Te, and In-Te octahedrons: Improved electrical performances and robust thermal stability,” InfoMat 3(9), 1008–1015 (2021).
[Crossref]
T. Li, J. Shen, L. Wu, Z. Song, S. Lv, D. Cai, S. Zhang, T. Guo, S. Song, and M. Zhu, “Atomic-Scale Observation of Carbon Distribution in High-Performance Carbon-Doped Ge2Sb2Te5 and Its Influence on Crystallization Behavior,” J. Phys. Chem. C 123(21), 13377–13384 (2019).
[Crossref]
K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref]
P. Yeoh, Y. Ma, D. A. Cullen, J. A. Bain, and M. Skowronski, “Thermal-gradient-driven elemental segregation in Ge2Sb2Te5 phase change memory cells,” Appl. Phys. Lett. 114(16), 163507 (2019).
[Crossref]
B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]
S. X. Gan, C. K. Lai, W. Y. Chong, D. Y. Choi, S. Madden, and H. Ahmad, “Optical phase transition of Ge2Sb2Se4Te1 thin film using low absorption wavelength in the 1550 nm window,” Opt. Mater. (Amsterdam, Neth.) 120, 111450 (2021).
[Crossref]
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, and X. Miao, “Recent advances on neuromorphic devices based on chalcogenide phase-change materials,” Adv. Funct. Mater. 30(50), 2003419 (2020).
[Crossref]
E. Gourvest, B. Pelissier, C. Vallée, A. Roule, S. Lhostis, and S. Maitrejean, “Impact of oxidation on Ge2Sb2Te5 and GeTe phase-change properties,” J. Electrochem. Soc. 159(4), H373–H377 (2012).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
N. Fleck, O. S. Hutter, L. J. Phillips, H. Shiel, T. D. C. Hobson, V. R. Dhanak, T. D. Veal, F. Jäckel, K. Durose, and J. D. Major, “How oxygen exposure improves the back contact and performance of antimony selenide solar cells,” ACS Appl. Mater. Interfaces 12(47), 52595–52602 (2020).
[Crossref]
Z. Fang, J. Zheng, A. Saxena, J. Whitehead, Y. Chen, and A. Majumdar, “Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material,” Adv. Opt. Mater. 9(9), 2002049 (2021).
[Crossref]
Y. Zhang, C. Ríos, M. Y. Shalaginov, M. Li, A. Majumdar, T. Gu, and J. Hu, “Myths and truths about optical phase change materials: a perspective,” Appl. Phys. Lett. 118(21), 210501 (2021).
[Crossref]
J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater,” Adv. Mater. 32(31), 2001218 (2020).
[Crossref]
J. Zheng, S. Zhu, P. Xu, S. Dunham, and A. Majumdar, “Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters,” ACS Appl. Mater. Interfaces 12(19), 21827–21836 (2020).
[Crossref]
P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase-change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]
H. Koc, A. M. Mamedov, E. Deligoz, and H. Ozisik, “First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds,” Solid State Sci. 14(8), 1211–1220 (2012).
[Crossref]
Y. Wang, P. Landreman, D. Schoen, K. Okabe, A. Marshall, U. Celano, H.-S. P. Wong, J. Park, and M. L. Brongersma, “Electrical tuning of phase-change antennas and metasurfaces,” Nat. Nanotechnol. 16(6), 667–672 (2021).
[Crossref]
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, K. Dabertrand, and E. Martinez, “Modification of Ge-rich GeSbTe surface during the patterning process of phase-change memories,” Microelectron. Eng. 221, 111183 (2020).
[Crossref]
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, and E. Martinez, “Study of Ge-rich GeSbTe etching process with different halogen plasmas,” J. Vac. Sci. Technol., A 37(3), 031302 (2019).
[Crossref]
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
M. B. Sky, N. Sosa, T. Masuda, W. Kim, S. Kim, A. Ray, R. Bruce, J. Gonsalves, Y. Zhu, K. Suu, and C. Lam, “Crystalline-as-deposited ALD phase change material confined PCM cell for high density storage class memory,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2016-Febru, pp. 3.6.1–3.6.4.
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
R. Kojima, T. Kouzaki, T. Matsunaga, and N. Yamada, “Quantitative study of nitrogen doping effect on cyclability of Ge-Sb-Te phase-change optical disks,” in Optical Data Storage (SPIE, 1998), Vol. 3401, pp. 14–23.
E. R. Meinders, A. V. Mijiritskii, L. Van Pieterson, and W. Matthias, “Optical data storage: phase-change media and recording,” Opt. Data Storage Phase-Change Media Rec., 1–173 (2006).
G. Novielli, A. Ghetti, E. Varesi, A. Mauri, and R. Sacco, “Atomic migration in phase change materials,” Tech. Dig. - Int. Electron Devices Meet. IEDM (2013).
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, K. Dabertrand, and E. Martinez, “Modification of Ge-rich GeSbTe surface during the patterning process of phase-change memories,” Microelectron. Eng. 221, 111183 (2020).
[Crossref]
Y. Canvel, S. Lagrasta, C. Boixaderas, S. Barnola, Y. Mazel, and E. Martinez, “Study of Ge-rich GeSbTe etching process with different halogen plasmas,” J. Vac. Sci. Technol., A 37(3), 031302 (2019).
[Crossref]
M. Shen, T. Lill, N. Altieri, J. Hoang, S. Chiou, J. Sims, A. McKerrow, R. Dylewicz, E. Chen, H. Razavi, and J. P. Chang, “Review on recent progress in patterning phase change materials,” J. Vac. Sci. Technol., A 38(6), 060802 (2020).
[Crossref]
M. Miscuglio, J. Meng, O. Yesiliurt, Y. Zhang, L. J. Prokopeva, A. Mehrabian, J. Hu, A. V. Kildishev, and V. J. Sorger, “Intelligent edge processing with photonic multilevel memory,” in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) (2020), Paper IM2A.4 (The Optical Society, 2020), p. IM2A.4.
K. Gao, K. Du, S. Tian, H. Wang, L. Zhang, Y. Guo, B. Luo, W. Zhang, and T. Mei, “Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation,” Adv. Funct. Mater. 31(35), 2103327 (2021).
[Crossref]
E. R. Meinders, A. V. Mijiritskii, L. Van Pieterson, and W. Matthias, “Optical data storage: phase-change media and recording,” Opt. Data Storage Phase-Change Media Rec., 1–173 (2006).
F. C. Meldrum and C. O’Shaughnessy, “Crystallization in confinement,” Adv. Mater. 32(31), 2001068 (2020).
[Crossref]
M. Miscuglio, J. Meng, O. Yesiliurt, Y. Zhang, L. J. Prokopeva, A. Mehrabian, J. Hu, A. V. Kildishev, and V. J. Sorger, “Intelligent edge processing with photonic multilevel memory,” in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) (2020), Paper IM2A.4 (The Optical Society, 2020), p. IM2A.4.
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, and X. Miao, “Recent advances on neuromorphic devices based on chalcogenide phase-change materials,” Adv. Funct. Mater. 30(50), 2003419 (2020).
[Crossref]
A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]
X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref]
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
E. R. Meinders, A. V. Mijiritskii, L. Van Pieterson, and W. Matthias, “Optical data storage: phase-change media and recording,” Opt. Data Storage Phase-Change Media Rec., 1–173 (2006).
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).
J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, and M. S. Mills, “Artificial neural network discovery of a switchable metasurface reflector,” Opt. Express 28(17), 24629 (2020).
[Crossref]
S. K. Kang, J. S. Oh, B. J. Park, S. W. Kim, J. T. Lim, G. Y. Yeom, C. J. Kang, and G. J. Min, “X-ray photoelectron spectroscopic study of Ge2Sb2Te5 etched by fluorocarbon inductively coupled plasmas,” Appl. Phys. Lett. 93(4), 043126 (2008).
[Crossref]
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
M. Miscuglio, J. Meng, O. Yesiliurt, Y. Zhang, L. J. Prokopeva, A. Mehrabian, J. Hu, A. V. Kildishev, and V. J. Sorger, “Intelligent edge processing with photonic multilevel memory,” in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) (2020), Paper IM2A.4 (The Optical Society, 2020), p. IM2A.4.
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
J. Moon, H. Seo, K. K. Son, E. Yalon, K. Lee, E. Flores, G. Candia, and E. Pop, “Reconfigurable infrared spectral imaging with phase change materials,” in SPIE Proceedings (SPIE, 2019), Vol. 10982, p. 32.
E. Yalon, I. M. Datye, J. S. Moon, K. A. Son, K. Lee, and E. Pop, “Energy-efficient indirectly heated phase change RF switch,” IEEE Electron Device Lett. 40(3), 455–458 (2019).
[Crossref]
J. González-Hernández, P. Herrera-Fierro, B. Chao, Y. Kovalenko, E. Morales-Sánchez, and E. Prokhorov, “Structure of oxygen-doped Ge:Sb:Te films,” Thin Solid Films 503(1-2), 13–17 (2006).
[Crossref]
C. Rivera-Rodríguez, E. Prokhorov, G. Trapaga, E. Morales-Sánchez, M. Hernandez-Landaverde, Y. Kovalenko, and J. González-Hernández, “Mechanism of crystallization of oxygen-doped amorphous Ge 1Sb2Te4 thin films,” J. Appl. Phys. 96(2), 1040–1046 (2004).
[Crossref]
F. Yue, R. Piccoli, M. Y. Shalaginov, T. Gu, K. A. Richardson, R. Morandotti, J. Hu, and L. Razzari, “Nonlinear mid-infrared metasurface based on a phase-change material,” Laser Photonics Rev. 15(3), 2000373 (2021).
[Crossref]
M. Delaney, I. Zeimpekis, H. Du, X. Yan, M. Banakar, D. J. Thomson, D. W. Hewak, and O. L. Muskens, “Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material,” Sci. Adv. 7(25), 3500–3516 (2021).
[Crossref]
M. Delaney, I. Zeimpekis, D. Lawson, D. W. Hewak, and O. L. Muskens, “A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3,” Adv. Funct. Mater. 30(36), 2002447 (2020).
[Crossref]
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
K. Aryana, Y. Zhang, J. A. Tomko, M. S. Bin Hoque, E. R. Hoglund, D. H. Olson, J. Nag, J. C. Read, C. Ríos, J. Hu, and P. E. Hopkins, “Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te,” Nat. Commun. 12(1), 7187 (2021).
[Crossref]
D. Sahoo and R. Naik, “GSST phase change materials and its utilization in optoelectronic devices: A review,” Mater. Res. Bull. 148, 111679 (2022).
[Crossref]
A. Ebina, M. Hirasaka, and K. Nakatani, “Oxygen doping effect on Ge–Sb–Te phase change optical disks,” J. Vac. Sci. Technol., A 17(6), 3463–3466 (1999).
[Crossref]
S. B. Kim, G. W. Burr, W. Kim, and S. W. Nam, “Phase-change memory cycling endurance,” MRS Bull. 44(09), 710–714 (2019).
[Crossref]
C. Kim, D. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett. 94(19), 193504 (2009).
[Crossref]
S. W. Nam, C. Kim, M. H. Kwon, H. S. Lee, J. S. Wi, D. Lee, T. Y. Lee, Y. Khang, and K. B. Kim, “Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing,” Appl. Phys. Lett. 92(11), 111913 (2008).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]
L. V. Yashina, R. Püttner, V. S. Neudachina, T. S. Zyubina, V. I. Shtanov, and M. V. Poygin, “X-ray photoelectron studies of clean and oxidized α-GeTe (111) surfaces,” J. Appl. Phys. 103(9), 094909 (2008).
[Crossref]
L. Lu, Z. Dong, F. Tijiptoharsono, R. J. H. Ng, H. Wang, S. D. Rezaei, Y. Wang, H. S. Leong, P. C. Lim, J. K. W. Yang, and R. E. Simpson, “Reversible tuning of Mie resonances in the visible spectrum,” ACS Nano 15(12), 19722–19732 (2021).
[Crossref]
W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29(6), 1806181 (2019).
[Crossref]
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
W. K. Njoroge, H. Dieker, and M. Wuttig, “Influence of dielectric capping layers on the crystallization kinetics of Ag5In6Sb59Te30 films,” J. Appl. Phys. 96(5), 2624–2627 (2004).
[Crossref]
W. K. Njoroge, H.-W. Wöltgens, and M. Wuttig, “Density changes upon crystallization of Ge2Sb2.04Te4.74 films,” J. Vac. Sci. Technol., A 20(1), 230–233 (2002).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
P. Noé, C. Sabbione, N. Bernier, N. Castellani, F. Fillot, and F. Hippert, “Impact of interfaces on scenario of crystallization of phase change materials,” Acta Mater. 110, 142–148 (2016).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
Y. Kim, S. A. Park, J. H. Baeck, M. K. Noh, K. Jeong, M.-H. Cho, H. M. Park, M. K. Lee, E. J. Jeong, D.-H. Ko, and H. J. Shin, “Phase separation of a Ge2Sb2Te5 alloy in the transition from an amorphous structure to crystalline structures,” J. Vac. Sci. Technol., A 24(4), 929–933 (2006).
[Crossref]
G. Novielli, A. Ghetti, E. Varesi, A. Mauri, and R. Sacco, “Atomic migration in phase change materials,” Tech. Dig. - Int. Electron Devices Meet. IEDM (2013).
F. C. Meldrum and C. O’Shaughnessy, “Crystallization in confinement,” Adv. Mater. 32(31), 2001068 (2020).
[Crossref]
S. K. Kang, J. S. Oh, B. J. Park, S. W. Kim, J. T. Lim, G. Y. Yeom, C. J. Kang, and G. J. Min, “X-ray photoelectron spectroscopic study of Ge2Sb2Te5 etched by fluorocarbon inductively coupled plasmas,” Appl. Phys. Lett. 93(4), 043126 (2008).
[Crossref]
T.-Y. Yang, I.-M. Park, H.-Y. You, S.-H. Oh, K.-W. Yi, and Y.-C. Joo, “Change of damage mechanism by the frequency of applied pulsed DC in the Ge2Sb2Te5 Line,” J. Electrochem. Soc. 156(8), H617 (2009).
[Crossref]
N. Ohshima, “Crystallization of germanium-antimony-tellurium amorphous thin film sandwiched between various dielectric protective films,” J. Appl. Phys. 79(11), 8357–8363 (1996).
[Crossref]
Y. Wang, P. Landreman, D. Schoen, K. Okabe, A. Marshall, U. Celano, H.-S. P. Wong, J. Park, and M. L. Brongersma, “Electrical tuning of phase-change antennas and metasurfaces,” Nat. Nanotechnol. 16(6), 667–672 (2021).
[Crossref]
K. Aryana, Y. Zhang, J. A. Tomko, M. S. Bin Hoque, E. R. Hoglund, D. H. Olson, J. Nag, J. C. Read, C. Ríos, J. Hu, and P. E. Hopkins, “Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te,” Nat. Commun. 12(1), 7187 (2021).
[Crossref]
M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. Van Der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]
H. Koc, A. M. Mamedov, E. Deligoz, and H. Ozisik, “First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds,” Solid State Sci. 14(8), 1211–1220 (2012).
[Crossref]
A. Debunne, K. Virwani, A. Padilla, G. W. Burr, A. J. Kellock, V. R. Deline, R. M. Shelby, and B. Jackson, “Evidence of crystallization–induced segregation in the phase change material Te-rich GST,” J. Electrochem. Soc. 158(10), H965 (2011).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
R. Padilla, A. Aracena, and M. C. Ruiza, “Kinetics of stibnite (Sb2S3) oxidation at roasting temperatures,” J. Min. Metall. Sect. B Metall. 50(2), 127–132 (2014).
[Crossref]
R. Padilla, G. Ramírez, and M. C. Ruiz, “High-temperature volatilization mechanism of stibnite in nitrogen-oxygen atmospheres,” Metall. Mater. Trans. B 41(6), 1284–1292 (2010).
[Crossref]
R. Golovchak, Y. G. Choi, S. Kozyukhin, Y. Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek, and H. Jain, “Oxygen incorporation into GST phase-change memory matrix,” Appl. Surf. Sci. 332, 533–541 (2015).
[Crossref]
Z. Zhang, J. Pan, Y. L. Foo, L. W. W. Fang, Y. C. Yeo, R. Zhao, L. Shi, and T. C. Chong, “Effective method for preparation of oxide-free Ge2Sb2Te5 surface: An X-ray photoelectron spectroscopy study,” Appl. Surf. Sci. 256(24), 7696–7699 (2010).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
R. Pandian, B. J. Kooi, J. T. M. De Hosson, and A. Pauza, “Influence of capping layers on the crystallization of doped SbxTe fast-growth phase-change films,” J. Appl. Phys. 100(12), 123511 (2006).
[Crossref]
S. K. Kang, J. S. Oh, B. J. Park, S. W. Kim, J. T. Lim, G. Y. Yeom, C. J. Kang, and G. J. Min, “X-ray photoelectron spectroscopic study of Ge2Sb2Te5 etched by fluorocarbon inductively coupled plasmas,” Appl. Phys. Lett. 93(4), 043126 (2008).
[Crossref]
J.-B. Park, G.-S. Park, H.-S. Baik, J.-H. Lee, H. Jeong, and K. Kim, “Phase-change behavior of stoichiometric Ge2Sb2Te5 in phase-change random access memory,” J. Electrochem. Soc. 154(3), H139 (2007).
[Crossref]
Y. Kim, S. A. Park, J. H. Baeck, M. K. Noh, K. Jeong, M.-H. Cho, H. M. Park, M. K. Lee, E. J. Jeong, D.-H. Ko, and H. J. Shin, “Phase separation of a Ge2Sb2Te5 alloy in the transition from an amorphous structure to crystalline structures,” J. Vac. Sci. Technol., A 24(4), 929–933 (2006).
[Crossref]
T. Y. Yang, I. M. Park, B. J. Kim, and Y. C. Joo, “Atomic migration in molten and crystalline Ge2Sb2Te5 under high electric field,” Appl. Phys. Lett. 95(3), 032104 (2009).
[Crossref]
I. M. Park, J. K. Jung, S. O. Ryu, K. J. Choi, B. G. Yu, Y. B. Park, S. M. Han, and Y. C. Joo, “Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory,” Thin Solid Films 517(2), 848–852 (2008).
[Crossref]
T.-Y. Yang, I.-M. Park, H.-Y. You, S.-H. Oh, K.-W. Yi, and Y.-C. Joo, “Change of damage mechanism by the frequency of applied pulsed DC in the Ge2Sb2Te5 Line,” J. Electrochem. Soc. 156(8), H617 (2009).
[Crossref]
Y. Wang, P. Landreman, D. Schoen, K. Okabe, A. Marshall, U. Celano, H.-S. P. Wong, J. Park, and M. L. Brongersma, “Electrical tuning of phase-change antennas and metasurfaces,” Nat. Nanotechnol. 16(6), 667–672 (2021).
[Crossref]
J. H. Park, J. H. Kim, D. H. Ko, Z. Wu, D. H. Ahn, S. O. Park, and K. H. Hwang, “Use of NH3 etchant for voids suppression to enhance set cycles in CGeSbTe-based phase change memory devices,” Thin Solid Films 616, 502–506 (2016).
[Crossref]
S.-K. Kang, M. H. Jeon, J. Y. Park, G. Y. Yeom, M. S. Jhon, B. W. Koo, and Y. W. Kim, “Effect of Halogen-Based Neutral Beam on the Etching of Ge2Sb2Te5,” J. Electrochem. Soc. 158(8), H768 (2011).
[Crossref]
S. K. Kang, M. H. Jeon, J. Y. Park, M. S. Jhon, and G. Y. Yeom, “Etch damage of Ge2Sb2Te5 for different halogen gases,” Jpn. J. Appl. Phys. 50(8), 086501 (2011).
[Crossref]
J.-B. Park, G.-S. Park, H.-S. Baik, J.-H. Lee, H. Jeong, and K. Kim, “Phase-change behavior of stoichiometric Ge2Sb2Te5 in phase-change random access memory,” J. Electrochem. Soc. 154(3), H139 (2007).
[Crossref]
Y. Kim, S. A. Park, J. H. Baeck, M. K. Noh, K. Jeong, M.-H. Cho, H. M. Park, M. K. Lee, E. J. Jeong, D.-H. Ko, and H. J. Shin, “Phase separation of a Ge2Sb2Te5 alloy in the transition from an amorphous structure to crystalline structures,” J. Vac. Sci. Technol., A 24(4), 929–933 (2006).
[Crossref]
M. H. Jang, S. J. Park, D. H. Lim, M. H. Cho, K. H. Do, D. H. Ko, and H. C. Sohn, “Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films,” Appl. Phys. Lett. 95(1), 012102 (2009).
[Crossref]
J. H. Park, J. H. Kim, D. H. Ko, Z. Wu, D. H. Ahn, S. O. Park, and K. H. Hwang, “Use of NH3 etchant for voids suppression to enhance set cycles in CGeSbTe-based phase change memory devices,” Thin Solid Films 616, 502–506 (2016).
[Crossref]
I. M. Park, J. K. Jung, S. O. Ryu, K. J. Choi, B. G. Yu, Y. B. Park, S. M. Han, and Y. C. Joo, “Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory,” Thin Solid Films 517(2), 848–852 (2008).
[Crossref]
T. Y. Yang, J. Y. Cho, Y. J. Park, and Y. C. Joo, “Driving forces for elemental demixing of GeSbTe in phase-change memory: computational study to design a durable device,” Curr. Appl. Phys. 13(7), 1426–1432 (2013).
[Crossref]
Y. J. Park, T. Y. Yang, J. Y. Cho, S. Y. Lee, and Y. C. Joo, “Electrical current-induced gradual failure of crystalline Ge2Sb2Te5 for phase-change memory,” Appl. Phys. Lett. 103(7), 073503 (2013).
[Crossref]
R. Pandian, B. J. Kooi, J. T. M. De Hosson, and A. Pauza, “Influence of capping layers on the crystallization of doped SbxTe fast-growth phase-change films,” J. Appl. Phys. 100(12), 123511 (2006).
[Crossref]
E. Gourvest, B. Pelissier, C. Vallée, A. Roule, S. Lhostis, and S. Maitrejean, “Impact of oxidation on Ge2Sb2Te5 and GeTe phase-change properties,” J. Electrochem. Soc. 159(4), H373–H377 (2012).
[Crossref]
M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. Van Der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]
E. Gemo, J. Faneca, S. G.-C. Carrillo, A. Baldycheva, W. H. P. Pernice, H. Bhaskaran, and C. D. Wright, “A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices,” J. Appl. Phys. 129(11), 110902 (2021).
[Crossref]
J. Faneca, S. Garcia-Cuevas Carrillo, E. Gemo, C. R. de Galarreta, T. Domínguez Bucio, F. Y. Gardes, H. Bhaskaran, W. H. P. Pernice, C. D. Wright, and A. Baldycheva, “Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands,” Opt. Mater. Express 10(8), 1778 (2020).
[Crossref]
N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]
J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
[Crossref]
C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455 (2018).
[Crossref]
M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]
J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]
Z. Cheng, C. Ríos, W. H. P. Pernice, C. David Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]
C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
N. Fleck, O. S. Hutter, L. J. Phillips, H. Shiel, T. D. C. Hobson, V. R. Dhanak, T. D. Veal, F. Jäckel, K. Durose, and J. D. Major, “How oxygen exposure improves the back contact and performance of antimony selenide solar cells,” ACS Appl. Mater. Interfaces 12(47), 52595–52602 (2020).
[Crossref]
F. Yue, R. Piccoli, M. Y. Shalaginov, T. Gu, K. A. Richardson, R. Morandotti, J. Hu, and L. Razzari, “Nonlinear mid-infrared metasurface based on a phase-change material,” Laser Photonics Rev. 15(3), 2000373 (2021).
[Crossref]
R. Bez, P. Cappelletti, G. Servalli, and A. Pirovano, “Phase change memories have taken the field,” 2013 5th IEEE Int. Mem. Work. IMW 201313–16 (2013).
J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater,” Adv. Mater. 32(31), 2001218 (2020).
[Crossref]
E. Yalon, I. M. Datye, J. S. Moon, K. A. Son, K. Lee, and E. Pop, “Energy-efficient indirectly heated phase change RF switch,” IEEE Electron Device Lett. 40(3), 455–458 (2019).
[Crossref]
J. Moon, H. Seo, K. K. Son, E. Yalon, K. Lee, E. Flores, G. Candia, and E. Pop, “Reconfigurable infrared spectral imaging with phase change materials,” in SPIE Proceedings (SPIE, 2019), Vol. 10982, p. 32.
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).
L. V. Yashina, R. Püttner, V. S. Neudachina, T. S. Zyubina, V. I. Shtanov, and M. V. Poygin, “X-ray photoelectron studies of clean and oxidized α-GeTe (111) surfaces,” J. Appl. Phys. 103(9), 094909 (2008).
[Crossref]
J. González-Hernández, P. Herrera-Fierro, B. Chao, Y. Kovalenko, E. Morales-Sánchez, and E. Prokhorov, “Structure of oxygen-doped Ge:Sb:Te films,” Thin Solid Films 503(1-2), 13–17 (2006).
[Crossref]
C. Rivera-Rodríguez, E. Prokhorov, G. Trapaga, E. Morales-Sánchez, M. Hernandez-Landaverde, Y. Kovalenko, and J. González-Hernández, “Mechanism of crystallization of oxygen-doped amorphous Ge 1Sb2Te4 thin films,” J. Appl. Phys. 96(2), 1040–1046 (2004).
[Crossref]
M. Miscuglio, J. Meng, O. Yesiliurt, Y. Zhang, L. J. Prokopeva, A. Mehrabian, J. Hu, A. V. Kildishev, and V. J. Sorger, “Intelligent edge processing with photonic multilevel memory,” in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) (2020), Paper IM2A.4 (The Optical Society, 2020), p. IM2A.4.
M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. Van Der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]
L. V. Yashina, R. Püttner, V. S. Neudachina, T. S. Zyubina, V. I. Shtanov, and M. V. Poygin, “X-ray photoelectron studies of clean and oxidized α-GeTe (111) surfaces,” J. Appl. Phys. 103(9), 094909 (2008).
[Crossref]
T. Guo, S. Song, Y. Zheng, Y. Xue, S. Yan, Y. Liu, T. Li, G. Liu, Y. Wang, Z. Song, M. Qi, and S. Feng, “Excellent thermal stability owing to Ge and C doping in Sb2Te-based high-speed phase-change memory,” Nanotechnology 29(50), 505710 (2018).
[Crossref]
W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, and S. Feng, “High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application,” Appl. Phys. Lett. 105(24), 243113 (2014).
[Crossref]
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref]
Y. Qu, Q. Li, L. Cai, and M. Qiu, “Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge2Sb2Te5,” Opt. Mater. Express 8(8), 2312 (2018).
[Crossref]
K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref]
Y. Qu, Q. Li, L. Cai, and M. Qiu, “Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge2Sb2Te5,” Opt. Mater. Express 8(8), 2312 (2018).
[Crossref]
H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]
H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
R. Padilla, G. Ramírez, and M. C. Ruiz, “High-temperature volatilization mechanism of stibnite in nitrogen-oxygen atmospheres,” Metall. Mater. Trans. B 41(6), 1284–1292 (2010).
[Crossref]
W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, and S. Feng, “High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application,” Appl. Phys. Lett. 105(24), 243113 (2014).
[Crossref]
S. Raoux, J. L. Jordan-Sweet, and A. J. Kellock, “Crystallization properties of ultrathin phase change films,” J. Appl. Phys. 103(11), 114310 (2008).
[Crossref]
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
M. B. Sky, N. Sosa, T. Masuda, W. Kim, S. Kim, A. Ray, R. Bruce, J. Gonsalves, Y. Zhu, K. Suu, and C. Lam, “Crystalline-as-deposited ALD phase change material confined PCM cell for high density storage class memory,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2016-Febru, pp. 3.6.1–3.6.4.
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
M. Shen, T. Lill, N. Altieri, J. Hoang, S. Chiou, J. Sims, A. McKerrow, R. Dylewicz, E. Chen, H. Razavi, and J. P. Chang, “Review on recent progress in patterning phase change materials,” J. Vac. Sci. Technol., A 38(6), 060802 (2020).
[Crossref]
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
F. Yue, R. Piccoli, M. Y. Shalaginov, T. Gu, K. A. Richardson, R. Morandotti, J. Hu, and L. Razzari, “Nonlinear mid-infrared metasurface based on a phase-change material,” Laser Photonics Rev. 15(3), 2000373 (2021).
[Crossref]
K. Aryana, Y. Zhang, J. A. Tomko, M. S. Bin Hoque, E. R. Hoglund, D. H. Olson, J. Nag, J. C. Read, C. Ríos, J. Hu, and P. E. Hopkins, “Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te,” Nat. Commun. 12(1), 7187 (2021).
[Crossref]
A. Redaelli, Phase Change Memory: Device Physics, Reliability and Applications (Springer International Publishing, 2017).
L. Crespi, A. L. Lacaita, M. Boniardi, E. Varesi, A. Ghetti, A. Redaelli, and G. D’Arrigo, “Modeling of atomic migration phenomena in phase change memory devices,” in 2015 IEEE 7th International Memory Workshop, IMW 2015 (Institute of Electrical and Electronics Engineers Inc., 2015).
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
L. Krusin-Elbaum, C. C. Jr, K. N. Chen, M. Copel, D. W. Abraham, K. B. Reuter, S. M. Rossnagel, J. Bruley, and V. R. Deline, “Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the “phase-change” stress,” Appl. Phys. Lett. 90(14), 141902 (2007).
[Crossref]
L. Lu, Z. Dong, F. Tijiptoharsono, R. J. H. Ng, H. Wang, S. D. Rezaei, Y. Wang, H. S. Leong, P. C. Lim, J. K. W. Yang, and R. E. Simpson, “Reversible tuning of Mie resonances in the visible spectrum,” ACS Nano 15(12), 19722–19732 (2021).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
F. Yue, R. Piccoli, M. Y. Shalaginov, T. Gu, K. A. Richardson, R. Morandotti, J. Hu, and L. Razzari, “Nonlinear mid-infrared metasurface based on a phase-change material,” Laser Photonics Rev. 15(3), 2000373 (2021).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455 (2018).
[Crossref]
C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]
J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
K. Aryana, Y. Zhang, J. A. Tomko, M. S. Bin Hoque, E. R. Hoglund, D. H. Olson, J. Nag, J. C. Read, C. Ríos, J. Hu, and P. E. Hopkins, “Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te,” Nat. Commun. 12(1), 7187 (2021).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
Y. Zhang, C. Ríos, M. Y. Shalaginov, M. Li, A. Majumdar, T. Gu, and J. Hu, “Myths and truths about optical phase change materials: a perspective,” Appl. Phys. Lett. 118(21), 210501 (2021).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
Z. Cheng, C. Ríos, W. H. P. Pernice, C. David Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]
M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]
C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).
C. Rivera-Rodríguez, E. Prokhorov, G. Trapaga, E. Morales-Sánchez, M. Hernandez-Landaverde, Y. Kovalenko, and J. González-Hernández, “Mechanism of crystallization of oxygen-doped amorphous Ge 1Sb2Te4 thin films,” J. Appl. Phys. 96(2), 1040–1046 (2004).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. Van Der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]
Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]
L. Krusin-Elbaum, C. C. Jr, K. N. Chen, M. Copel, D. W. Abraham, K. B. Reuter, S. M. Rossnagel, J. Bruley, and V. R. Deline, “Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the “phase-change” stress,” Appl. Phys. Lett. 90(14), 141902 (2007).
[Crossref]
E. Gourvest, B. Pelissier, C. Vallée, A. Roule, S. Lhostis, and S. Maitrejean, “Impact of oxidation on Ge2Sb2Te5 and GeTe phase-change properties,” J. Electrochem. Soc. 159(4), H373–H377 (2012).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 7171–7187 (2020).
[Crossref]
M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. Van Der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]
R. Padilla, G. Ramírez, and M. C. Ruiz, “High-temperature volatilization mechanism of stibnite in nitrogen-oxygen atmospheres,” Metall. Mater. Trans. B 41(6), 1284–1292 (2010).
[Crossref]
C. Ruiz de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. Garcia-Cuevas Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. David Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7(5), 476–484 (2020).
[Crossref]
R. Padilla, A. Aracena, and M. C. Ruiza, “Kinetics of stibnite (Sb2S3) oxidation at roasting temperatures,” J. Min. Metall. Sect. B Metall. 50(2), 127–132 (2014).
[Crossref]
I. M. Park, J. K. Jung, S. O. Ryu, K. J. Choi, B. G. Yu, Y. B. Park, S. M. Han, and Y. C. Joo, “Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory,” Thin Solid Films 517(2), 848–852 (2008).
[Crossref]
P. Noé, C. Sabbione, N. Bernier, N. Castellani, F. Fillot, and F. Hippert, “Impact of interfaces on scenario of crystallization of phase change materials,” Acta Mater. 110, 142–148 (2016).
[Crossref]
G. Novielli, A. Ghetti, E. Varesi, A. Mauri, and R. Sacco, “Atomic migration in phase change materials,” Tech. Dig. - Int. Electron Devices Meet. IEDM (2013).
D. Sahoo and R. Naik, “GSST phase change materials and its utilization in optoelectronic devices: A review,” Mater. Res. Bull. 148, 111679 (2022).
[Crossref]
M. G. Herrmann, R. P. Stoffel, I. Sergueev, H. C. Wille, O. Leupold, M. Ait Haddouch, G. Sala, D. L. Abernathy, J. Voigt, R. P. Hermann, R. Dronskowski, and K. Friese, “Lattice dynamics of Sb2Se3 from inelastic neutron and x-ray scattering,” Phys. Status Solidi B 257(6), 2000063 (2020).
[Crossref]
Z. Fang, J. Zheng, A. Saxena, J. Whitehead, Y. Chen, and A. Majumdar, “Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material,” Adv. Opt. Mater. 9(9), 2002049 (2021).
[Crossref]
X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref]
A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]
C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]
Y. Wang, P. Landreman, D. Schoen, K. Okabe, A. Marshall, U. Celano, H.-S. P. Wong, J. Park, and M. L. Brongersma, “Electrical tuning of phase-change antennas and metasurfaces,” Nat. Nanotechnol. 16(6), 667–672 (2021).
[Crossref]
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
J. Moon, H. Seo, K. K. Son, E. Yalon, K. Lee, E. Flores, G. Candia, and E. Pop, “Reconfigurable infrared spectral imaging with phase change materials,” in SPIE Proceedings (SPIE, 2019), Vol. 10982, p. 32.
M. G. Herrmann, R. P. Stoffel, I. Sergueev, H. C. Wille, O. Leupold, M. Ait Haddouch, G. Sala, D. L. Abernathy, J. Voigt, R. P. Hermann, R. Dronskowski, and K. Friese, “Lattice dynamics of Sb2Se3 from inelastic neutron and x-ray scattering,” Phys. Status Solidi B 257(6), 2000063 (2020).
[Crossref]
R. Bez, P. Cappelletti, G. Servalli, and A. Pirovano, “Phase change memories have taken the field,” 2013 5th IEEE Int. Mem. Work. IMW 201313–16 (2013).
J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, and M. S. Mills, “Artificial neural network discovery of a switchable metasurface reflector,” Opt. Express 28(17), 24629 (2020).
[Crossref]
F. Yue, R. Piccoli, M. Y. Shalaginov, T. Gu, K. A. Richardson, R. Morandotti, J. Hu, and L. Razzari, “Nonlinear mid-infrared metasurface based on a phase-change material,” Laser Photonics Rev. 15(3), 2000373 (2021).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
Y. Zhang, C. Ríos, M. Y. Shalaginov, M. Li, A. Majumdar, T. Gu, and J. Hu, “Myths and truths about optical phase change materials: a perspective,” Appl. Phys. Lett. 118(21), 210501 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
A. Debunne, K. Virwani, A. Padilla, G. W. Burr, A. J. Kellock, V. R. Deline, R. M. Shelby, and B. Jackson, “Evidence of crystallization–induced segregation in the phase change material Te-rich GST,” J. Electrochem. Soc. 158(10), H965 (2011).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
T. Li, J. Shen, L. Wu, Z. Song, S. Lv, D. Cai, S. Zhang, T. Guo, S. Song, and M. Zhu, “Atomic-Scale Observation of Carbon Distribution in High-Performance Carbon-Doped Ge2Sb2Te5 and Its Influence on Crystallization Behavior,” J. Phys. Chem. C 123(21), 13377–13384 (2019).
[Crossref]
M. Shen, T. Lill, N. Altieri, J. Hoang, S. Chiou, J. Sims, A. McKerrow, R. Dylewicz, E. Chen, H. Razavi, and J. P. Chang, “Review on recent progress in patterning phase change materials,” J. Vac. Sci. Technol., A 38(6), 060802 (2020).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
Z. Zhang, J. Pan, Y. L. Foo, L. W. W. Fang, Y. C. Yeo, R. Zhao, L. Shi, and T. C. Chong, “Effective method for preparation of oxide-free Ge2Sb2Te5 surface: An X-ray photoelectron spectroscopy study,” Appl. Surf. Sci. 256(24), 7696–7699 (2010).
[Crossref]
N. Fleck, O. S. Hutter, L. J. Phillips, H. Shiel, T. D. C. Hobson, V. R. Dhanak, T. D. Veal, F. Jäckel, K. Durose, and J. D. Major, “How oxygen exposure improves the back contact and performance of antimony selenide solar cells,” ACS Appl. Mater. Interfaces 12(47), 52595–52602 (2020).
[Crossref]
C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).
M. C. Jung, Y. M. Lee, H. D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, “Ge nitride formation in N-doped amorphous Ge2Sb 2Te5,” Appl. Phys. Lett. 91(8), 083514 (2007).
[Crossref]
Y. Kim, S. A. Park, J. H. Baeck, M. K. Noh, K. Jeong, M.-H. Cho, H. M. Park, M. K. Lee, E. J. Jeong, D.-H. Ko, and H. J. Shin, “Phase separation of a Ge2Sb2Te5 alloy in the transition from an amorphous structure to crystalline structures,” J. Vac. Sci. Technol., A 24(4), 929–933 (2006).
[Crossref]
L. V. Yashina, R. Püttner, V. S. Neudachina, T. S. Zyubina, V. I. Shtanov, and M. V. Poygin, “X-ray photoelectron studies of clean and oxidized α-GeTe (111) surfaces,” J. Appl. Phys. 103(9), 094909 (2008).
[Crossref]
S. A. Song, W. Zhang, H. Sik Jeong, J. G. Kim, and Y. J. Kim, “In situ dynamic HR-TEM and EELS study on phase transitions of Ge2Sb2Te5 chalcogenides,” Ultramicroscopy 108(11), 1408–1419 (2008).
[Crossref]
S. Tripathi, P. Kotula, M. K. Singh, C. Ghosh, G. Bakan, H. Silva, and C. B. Carter, “Role of oxygen on chemical segregation in uncapped Ge2Sb2Te5 thin films on silicon nitride,” ECS J. Solid State Sci. Technol. 9(5), 054007 (2020).
[Crossref]
L. Lu, Z. Dong, F. Tijiptoharsono, R. J. H. Ng, H. Wang, S. D. Rezaei, Y. Wang, H. S. Leong, P. C. Lim, J. K. W. Yang, and R. E. Simpson, “Reversible tuning of Mie resonances in the visible spectrum,” ACS Nano 15(12), 19722–19732 (2021).
[Crossref]
H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 7171–7187 (2020).
[Crossref]
W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29(6), 1806181 (2019).
[Crossref]
T. Cao, X. Zhang, W. Dong, L. Lu, X. Zhou, X. Zhuang, J. Deng, X. Cheng, G. Li, and R. E. Simpson, “Tuneable thermal emission using chalcogenide metasurface,” Adv. Opt. Mater. 6(16), 1800169 (2018).
[Crossref]
M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. Van Der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]
R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano Lett. 10(2), 414–419 (2010).
[Crossref]
M. Shen, T. Lill, N. Altieri, J. Hoang, S. Chiou, J. Sims, A. McKerrow, R. Dylewicz, E. Chen, H. Razavi, and J. P. Chang, “Review on recent progress in patterning phase change materials,” J. Vac. Sci. Technol., A 38(6), 060802 (2020).
[Crossref]
C. Ruiz de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. Garcia-Cuevas Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. David Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7(5), 476–484 (2020).
[Crossref]
S. Tripathi, P. Kotula, M. K. Singh, C. Ghosh, G. Bakan, H. Silva, and C. B. Carter, “Role of oxygen on chemical segregation in uncapped Ge2Sb2Te5 thin films on silicon nitride,” ECS J. Solid State Sci. Technol. 9(5), 054007 (2020).
[Crossref]
P. Yeoh, Y. Ma, D. A. Cullen, J. A. Bain, and M. Skowronski, “Thermal-gradient-driven elemental segregation in Ge2Sb2Te5 phase change memory cells,” Appl. Phys. Lett. 114(16), 163507 (2019).
[Crossref]
M. B. Sky, N. Sosa, T. Masuda, W. Kim, S. Kim, A. Ray, R. Bruce, J. Gonsalves, Y. Zhu, K. Suu, and C. Lam, “Crystalline-as-deposited ALD phase change material confined PCM cell for high density storage class memory,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2016-Febru, pp. 3.6.1–3.6.4.
J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, and M. S. Mills, “Artificial neural network discovery of a switchable metasurface reflector,” Opt. Express 28(17), 24629 (2020).
[Crossref]
C. K. Gan, J. R. Soh, and Y. Liu, “Large anharmonic effect and thermal expansion anisotropy of metal chalcogenides: The case of antimony sulfide,” Phys. Rev. B 92(23), 235202 (2015).
[Crossref]
K. Do, D. Lee, D. H. Ko, H. Sohn, and M. H. Cho, “TEM study on volume changes and void formation in Ge2Sb2Te5 films, with repeated phase changes,” Electrochem. Solid-State Lett. 13(8), H284 (2010).
[Crossref]
M. H. Jang, S. J. Park, D. H. Lim, M. H. Cho, K. H. Do, D. H. Ko, and H. C. Sohn, “Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films,” Appl. Phys. Lett. 95(1), 012102 (2009).
[Crossref]
E. Yalon, I. M. Datye, J. S. Moon, K. A. Son, K. Lee, and E. Pop, “Energy-efficient indirectly heated phase change RF switch,” IEEE Electron Device Lett. 40(3), 455–458 (2019).
[Crossref]
J. Moon, H. Seo, K. K. Son, E. Yalon, K. Lee, E. Flores, G. Candia, and E. Pop, “Reconfigurable infrared spectral imaging with phase change materials,” in SPIE Proceedings (SPIE, 2019), Vol. 10982, p. 32.
S. Ho Oh, K. Baek, S. Kyu Son, K. Song, J. Won Oh, S.-J. Jeon, W. Kim, J. Hee Yoo, and K. Jeung Lee, “In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5,” Nanoscale Adv. 2(9), 3841–3848 (2020).
[Crossref]
R. Wang, Z. Song, W. Song, T. Xin, S. Lv, S. Song, and J. Liu, “Phase-change memory based on matched Ge-Te, Sb-Te, and In-Te octahedrons: Improved electrical performances and robust thermal stability,” InfoMat 3(9), 1008–1015 (2021).
[Crossref]
T. Li, J. Shen, L. Wu, Z. Song, S. Lv, D. Cai, S. Zhang, T. Guo, S. Song, and M. Zhu, “Atomic-Scale Observation of Carbon Distribution in High-Performance Carbon-Doped Ge2Sb2Te5 and Its Influence on Crystallization Behavior,” J. Phys. Chem. C 123(21), 13377–13384 (2019).
[Crossref]
T. Guo, S. Song, Y. Zheng, Y. Xue, S. Yan, Y. Liu, T. Li, G. Liu, Y. Wang, Z. Song, M. Qi, and S. Feng, “Excellent thermal stability owing to Ge and C doping in Sb2Te-based high-speed phase-change memory,” Nanotechnology 29(50), 505710 (2018).
[Crossref]
W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, and S. Feng, “High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application,” Appl. Phys. Lett. 105(24), 243113 (2014).
[Crossref]
S. A. Song, W. Zhang, H. Sik Jeong, J. G. Kim, and Y. J. Kim, “In situ dynamic HR-TEM and EELS study on phase transitions of Ge2Sb2Te5 chalcogenides,” Ultramicroscopy 108(11), 1408–1419 (2008).
[Crossref]
M. C. Jung, Y. M. Lee, H. D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, “Ge nitride formation in N-doped amorphous Ge2Sb 2Te5,” Appl. Phys. Lett. 91(8), 083514 (2007).
[Crossref]
R. Wang, Z. Song, W. Song, T. Xin, S. Lv, S. Song, and J. Liu, “Phase-change memory based on matched Ge-Te, Sb-Te, and In-Te octahedrons: Improved electrical performances and robust thermal stability,” InfoMat 3(9), 1008–1015 (2021).
[Crossref]
R. Wang, Z. Song, W. Song, T. Xin, S. Lv, S. Song, and J. Liu, “Phase-change memory based on matched Ge-Te, Sb-Te, and In-Te octahedrons: Improved electrical performances and robust thermal stability,” InfoMat 3(9), 1008–1015 (2021).
[Crossref]
T. Li, J. Shen, L. Wu, Z. Song, S. Lv, D. Cai, S. Zhang, T. Guo, S. Song, and M. Zhu, “Atomic-Scale Observation of Carbon Distribution in High-Performance Carbon-Doped Ge2Sb2Te5 and Its Influence on Crystallization Behavior,” J. Phys. Chem. C 123(21), 13377–13384 (2019).
[Crossref]
T. Guo, S. Song, Y. Zheng, Y. Xue, S. Yan, Y. Liu, T. Li, G. Liu, Y. Wang, Z. Song, M. Qi, and S. Feng, “Excellent thermal stability owing to Ge and C doping in Sb2Te-based high-speed phase-change memory,” Nanotechnology 29(50), 505710 (2018).
[Crossref]
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, and S. Feng, “High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application,” Appl. Phys. Lett. 105(24), 243113 (2014).
[Crossref]
L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Basic wet-etching solutions for Ge2Sb2Te5 phase change material,” J. Electrochem. Soc. 157(4), H470 (2010).
[Crossref]
G. Feng, B. Liu, Z. Song, S. Feng, and B. Chen, “Reactive ion etching of Ge2Sb2Te5 in CHF3/O2 plasma for nonvolatile phase-change memory device,” Electrochem. Solid-State Lett. 10(5), D47–50 (2007).
[Crossref]
D. Gostimirovic, R. Soref, and W. N. Ye, “Resonant bistable 2 × 2 crossbar switches using dual nanobeams clad with phase-change material,” OSA Continuum 4(4), 1316 (2021).
[Crossref]
F. De Leonardis, R. Soref, V. M. N. Passaro, Y. Zhang, and J. Hu, “Broadband electro-optical crossbar switches using low-loss Ge2Sb2Se4Te1 phase change material,” J. Lightwave Technol. 37(13), 3183–3191 (2019).
[Crossref]
Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
[Crossref]
M. Miscuglio, J. Meng, O. Yesiliurt, Y. Zhang, L. J. Prokopeva, A. Mehrabian, J. Hu, A. V. Kildishev, and V. J. Sorger, “Intelligent edge processing with photonic multilevel memory,” in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) (2020), Paper IM2A.4 (The Optical Society, 2020), p. IM2A.4.
M. B. Sky, N. Sosa, T. Masuda, W. Kim, S. Kim, A. Ray, R. Bruce, J. Gonsalves, Y. Zhu, K. Suu, and C. Lam, “Crystalline-as-deposited ALD phase change material confined PCM cell for high density storage class memory,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2016-Febru, pp. 3.6.1–3.6.4.
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29(6), 1806181 (2019).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455 (2018).
[Crossref]
M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]
J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]
C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]
X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]
M. G. Herrmann, R. P. Stoffel, I. Sergueev, H. C. Wille, O. Leupold, M. Ait Haddouch, G. Sala, D. L. Abernathy, J. Voigt, R. P. Hermann, R. Dronskowski, and K. Friese, “Lattice dynamics of Sb2Se3 from inelastic neutron and x-ray scattering,” Phys. Status Solidi B 257(6), 2000063 (2020).
[Crossref]
Ž. Živković, N. Štrbac, D. Živkovič, D. Grujičić, and B. Boyanov, “Kinetics and mechanism of Sb2Se3 oxidation process,” Thermochim. Acta 383(1-2), 137–143 (2002).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
M. B. Sky, N. Sosa, T. Masuda, W. Kim, S. Kim, A. Ray, R. Bruce, J. Gonsalves, Y. Zhu, K. Suu, and C. Lam, “Crystalline-as-deposited ALD phase change material confined PCM cell for high density storage class memory,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2016-Febru, pp. 3.6.1–3.6.4.
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]
H. Taghinejad, S. Abdollahramezani, A. A. Eftekhar, T. Fan, A. H. Hosseinnia, O. Hemmatyar, A. Eshaghian Dorche, A. Gallmon, and A. Adibi, “ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics,” Opt. Express 29(13), 20449 (2021).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]
N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]
H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 7171–7187 (2020).
[Crossref]
R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano Lett. 10(2), 414–419 (2010).
[Crossref]
M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]
X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]
A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]
X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref]
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]
J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, and M. S. Mills, “Artificial neural network discovery of a switchable metasurface reflector,” Opt. Express 28(17), 24629 (2020).
[Crossref]
M. Delaney, I. Zeimpekis, H. Du, X. Yan, M. Banakar, D. J. Thomson, D. W. Hewak, and O. L. Muskens, “Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material,” Sci. Adv. 7(25), 3500–3516 (2021).
[Crossref]
K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref]
K. Gao, K. Du, S. Tian, H. Wang, L. Zhang, Y. Guo, B. Luo, W. Zhang, and T. Mei, “Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation,” Adv. Funct. Mater. 31(35), 2103327 (2021).
[Crossref]
L. Lu, Z. Dong, F. Tijiptoharsono, R. J. H. Ng, H. Wang, S. D. Rezaei, Y. Wang, H. S. Leong, P. C. Lim, J. K. W. Yang, and R. E. Simpson, “Reversible tuning of Mie resonances in the visible spectrum,” ACS Nano 15(12), 19722–19732 (2021).
[Crossref]
X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref]
A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano Lett. 10(2), 414–419 (2010).
[Crossref]
K. Aryana, Y. Zhang, J. A. Tomko, M. S. Bin Hoque, E. R. Hoglund, D. H. Olson, J. Nag, J. C. Read, C. Ríos, J. Hu, and P. E. Hopkins, “Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te,” Nat. Commun. 12(1), 7187 (2021).
[Crossref]
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, and X. Miao, “Recent advances on neuromorphic devices based on chalcogenide phase-change materials,” Adv. Funct. Mater. 30(50), 2003419 (2020).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
C. Rivera-Rodríguez, E. Prokhorov, G. Trapaga, E. Morales-Sánchez, M. Hernandez-Landaverde, Y. Kovalenko, and J. González-Hernández, “Mechanism of crystallization of oxygen-doped amorphous Ge 1Sb2Te4 thin films,” J. Appl. Phys. 96(2), 1040–1046 (2004).
[Crossref]
R. Golovchak, Y. G. Choi, S. Kozyukhin, Y. Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek, and H. Jain, “Oxygen incorporation into GST phase-change memory matrix,” Appl. Surf. Sci. 332, 533–541 (2015).
[Crossref]
J. Faneca, L. Trimby, I. Zeimpekis, M. Delaney, D. W. Hewak, F. Y. Gardes, C. D. Wright, and A. Baldycheva, “On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials,” Opt. Express 28(11), 16394 (2020).
[Crossref]
S. Tripathi, P. Kotula, M. K. Singh, C. Ghosh, G. Bakan, H. Silva, and C. B. Carter, “Role of oxygen on chemical segregation in uncapped Ge2Sb2Te5 thin films on silicon nitride,” ECS J. Solid State Sci. Technol. 9(5), 054007 (2020).
[Crossref]
C. Ruiz de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. Garcia-Cuevas Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. David Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7(5), 476–484 (2020).
[Crossref]
K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]
K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]
R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano Lett. 10(2), 414–419 (2010).
[Crossref]
E. Gourvest, B. Pelissier, C. Vallée, A. Roule, S. Lhostis, and S. Maitrejean, “Impact of oxidation on Ge2Sb2Te5 and GeTe phase-change properties,” J. Electrochem. Soc. 159(4), H373–H377 (2012).
[Crossref]
M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. Van Der Tol, and V. Pruneri, “Optical switching at 1.55 µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]
E. R. Meinders, A. V. Mijiritskii, L. Van Pieterson, and W. Matthias, “Optical data storage: phase-change media and recording,” Opt. Data Storage Phase-Change Media Rec., 1–173 (2006).
J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, and M. S. Mills, “Artificial neural network discovery of a switchable metasurface reflector,” Opt. Express 28(17), 24629 (2020).
[Crossref]
G. Novielli, A. Ghetti, E. Varesi, A. Mauri, and R. Sacco, “Atomic migration in phase change materials,” Tech. Dig. - Int. Electron Devices Meet. IEDM (2013).
L. Crespi, A. L. Lacaita, M. Boniardi, E. Varesi, A. Ghetti, A. Redaelli, and G. D’Arrigo, “Modeling of atomic migration phenomena in phase change memory devices,” in 2015 IEEE 7th International Memory Workshop, IMW 2015 (Institute of Electrical and Electronics Engineers Inc., 2015).
N. Fleck, O. S. Hutter, L. J. Phillips, H. Shiel, T. D. C. Hobson, V. R. Dhanak, T. D. Veal, F. Jäckel, K. Durose, and J. D. Major, “How oxygen exposure improves the back contact and performance of antimony selenide solar cells,” ACS Appl. Mater. Interfaces 12(47), 52595–52602 (2020).
[Crossref]
A. Padilla, G. W. Burr, C. T. Rettner, T. Topuria, P. M. Rice, B. Jackson, K. Virwani, A. J. Kellock, D. Dupouy, A. Debunne, R. M. Shelby, K. Gopalakrishnan, R. S. Shenoy, and B. N. Kurdi, “Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices,” J. Appl. Phys. 110(5), 054501 (2011).
[Crossref]
A. Debunne, K. Virwani, A. Padilla, G. W. Burr, A. J. Kellock, V. R. Deline, R. M. Shelby, and B. Jackson, “Evidence of crystallization–induced segregation in the phase change material Te-rich GST,” J. Electrochem. Soc. 158(10), H965 (2011).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).
M. G. Herrmann, R. P. Stoffel, I. Sergueev, H. C. Wille, O. Leupold, M. Ait Haddouch, G. Sala, D. L. Abernathy, J. Voigt, R. P. Hermann, R. Dronskowski, and K. Friese, “Lattice dynamics of Sb2Se3 from inelastic neutron and x-ray scattering,” Phys. Status Solidi B 257(6), 2000063 (2020).
[Crossref]
Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]
C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]
L. Lu, Z. Dong, F. Tijiptoharsono, R. J. H. Ng, H. Wang, S. D. Rezaei, Y. Wang, H. S. Leong, P. C. Lim, J. K. W. Yang, and R. E. Simpson, “Reversible tuning of Mie resonances in the visible spectrum,” ACS Nano 15(12), 19722–19732 (2021).
[Crossref]
K. Gao, K. Du, S. Tian, H. Wang, L. Zhang, Y. Guo, B. Luo, W. Zhang, and T. Mei, “Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation,” Adv. Funct. Mater. 31(35), 2103327 (2021).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 7171–7187 (2020).
[Crossref]
L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Basic wet-etching solutions for Ge2Sb2Te5 phase change material,” J. Electrochem. Soc. 157(4), H470 (2010).
[Crossref]
H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]
H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]
Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]
R. Wang, Z. Song, W. Song, T. Xin, S. Lv, S. Song, and J. Liu, “Phase-change memory based on matched Ge-Te, Sb-Te, and In-Te octahedrons: Improved electrical performances and robust thermal stability,” InfoMat 3(9), 1008–1015 (2021).
[Crossref]
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
Y. Wang, P. Landreman, D. Schoen, K. Okabe, A. Marshall, U. Celano, H.-S. P. Wong, J. Park, and M. L. Brongersma, “Electrical tuning of phase-change antennas and metasurfaces,” Nat. Nanotechnol. 16(6), 667–672 (2021).
[Crossref]
L. Lu, Z. Dong, F. Tijiptoharsono, R. J. H. Ng, H. Wang, S. D. Rezaei, Y. Wang, H. S. Leong, P. C. Lim, J. K. W. Yang, and R. E. Simpson, “Reversible tuning of Mie resonances in the visible spectrum,” ACS Nano 15(12), 19722–19732 (2021).
[Crossref]
T. Guo, S. Song, Y. Zheng, Y. Xue, S. Yan, Y. Liu, T. Li, G. Liu, Y. Wang, Z. Song, M. Qi, and S. Feng, “Excellent thermal stability owing to Ge and C doping in Sb2Te-based high-speed phase-change memory,” Nanotechnology 29(50), 505710 (2018).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
Z. Fang, J. Zheng, A. Saxena, J. Whitehead, Y. Chen, and A. Majumdar, “Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material,” Adv. Opt. Mater. 9(9), 2002049 (2021).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
S. W. Nam, C. Kim, M. H. Kwon, H. S. Lee, J. S. Wi, D. Lee, T. Y. Lee, Y. Khang, and K. B. Kim, “Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing,” Appl. Phys. Lett. 92(11), 111913 (2008).
[Crossref]
M. G. Herrmann, R. P. Stoffel, I. Sergueev, H. C. Wille, O. Leupold, M. Ait Haddouch, G. Sala, D. L. Abernathy, J. Voigt, R. P. Hermann, R. Dronskowski, and K. Friese, “Lattice dynamics of Sb2Se3 from inelastic neutron and x-ray scattering,” Phys. Status Solidi B 257(6), 2000063 (2020).
[Crossref]
M. N. Julian, C. Williams, S. Borg, S. Bartram, and H. J. Kim, “Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging,” Optica 7(7), 746–754 (2020).
[Crossref]
C. Williams, N. Hong, M. Julian, S. Borg, and H. J. Kim, “Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe,” Opt. Express 28(7), 10583 (2020).
[Crossref]
W. K. Njoroge, H.-W. Wöltgens, and M. Wuttig, “Density changes upon crystallization of Ge2Sb2.04Te4.74 films,” J. Vac. Sci. Technol., A 20(1), 230–233 (2002).
[Crossref]
S. Ho Oh, K. Baek, S. Kyu Son, K. Song, J. Won Oh, S.-J. Jeon, W. Kim, J. Hee Yoo, and K. Jeung Lee, “In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5,” Nanoscale Adv. 2(9), 3841–3848 (2020).
[Crossref]
Y. Wang, P. Landreman, D. Schoen, K. Okabe, A. Marshall, U. Celano, H.-S. P. Wong, J. Park, and M. L. Brongersma, “Electrical tuning of phase-change antennas and metasurfaces,” Nat. Nanotechnol. 16(6), 667–672 (2021).
[Crossref]
L. Goux, D. T. Castro, G. A. M. Hurkx, J. G. Lisoni, R. Delhougne, D. J. Gravesteijn, K. Attenborough, and D. J. Wouters, “Degradation of the reset switching during endurance testing of a phase-change line cell,” IEEE Trans. Electron Devices 56(2), 354–358 (2009).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
E. Gemo, J. Faneca, S. G.-C. Carrillo, A. Baldycheva, W. H. P. Pernice, H. Bhaskaran, and C. D. Wright, “A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices,” J. Appl. Phys. 129(11), 110902 (2021).
[Crossref]
J. Faneca, S. Garcia-Cuevas Carrillo, E. Gemo, C. R. de Galarreta, T. Domínguez Bucio, F. Y. Gardes, H. Bhaskaran, W. H. P. Pernice, C. D. Wright, and A. Baldycheva, “Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands,” Opt. Mater. Express 10(8), 1778 (2020).
[Crossref]
J. Faneca, L. Trimby, I. Zeimpekis, M. Delaney, D. W. Hewak, F. Y. Gardes, C. D. Wright, and A. Baldycheva, “On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials,” Opt. Express 28(11), 16394 (2020).
[Crossref]
N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]
J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
[Crossref]
C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455 (2018).
[Crossref]
M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]
J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref]
C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]
P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]
J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater,” Adv. Mater. 32(31), 2001218 (2020).
[Crossref]
C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
T. Li, J. Shen, L. Wu, Z. Song, S. Lv, D. Cai, S. Zhang, T. Guo, S. Song, and M. Zhu, “Atomic-Scale Observation of Carbon Distribution in High-Performance Carbon-Doped Ge2Sb2Te5 and Its Influence on Crystallization Behavior,” J. Phys. Chem. C 123(21), 13377–13384 (2019).
[Crossref]
W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, and S. Feng, “High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application,” Appl. Phys. Lett. 105(24), 243113 (2014).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
J. H. Park, J. H. Kim, D. H. Ko, Z. Wu, D. H. Ahn, S. O. Park, and K. H. Hwang, “Use of NH3 etchant for voids suppression to enhance set cycles in CGeSbTe-based phase change memory devices,” Thin Solid Films 616, 502–506 (2016).
[Crossref]
X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]
M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]
A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]
X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref]
M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref]
W. K. Njoroge, H. Dieker, and M. Wuttig, “Influence of dielectric capping layers on the crystallization kinetics of Ag5In6Sb59Te30 films,” J. Appl. Phys. 96(5), 2624–2627 (2004).
[Crossref]
W. K. Njoroge, H.-W. Wöltgens, and M. Wuttig, “Density changes upon crystallization of Ge2Sb2.04Te4.74 films,” J. Vac. Sci. Technol., A 20(1), 230–233 (2002).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv:2104.10381 (2021).
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Basic wet-etching solutions for Ge2Sb2Te5 phase change material,” J. Electrochem. Soc. 157(4), H470 (2010).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
R. Wang, Z. Song, W. Song, T. Xin, S. Lv, S. Song, and J. Liu, “Phase-change memory based on matched Ge-Te, Sb-Te, and In-Te octahedrons: Improved electrical performances and robust thermal stability,” InfoMat 3(9), 1008–1015 (2021).
[Crossref]
R. Golovchak, Y. G. Choi, S. Kozyukhin, Y. Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek, and H. Jain, “Oxygen incorporation into GST phase-change memory matrix,” Appl. Surf. Sci. 332, 533–541 (2015).
[Crossref]
H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]
H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, and X. Miao, “Recent advances on neuromorphic devices based on chalcogenide phase-change materials,” Adv. Funct. Mater. 30(50), 2003419 (2020).
[Crossref]
J. Zheng, S. Zhu, P. Xu, S. Dunham, and A. Majumdar, “Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters,” ACS Appl. Mater. Interfaces 12(19), 21827–21836 (2020).
[Crossref]
J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater,” Adv. Mater. 32(31), 2001218 (2020).
[Crossref]
P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase-change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
T. Guo, S. Song, Y. Zheng, Y. Xue, S. Yan, Y. Liu, T. Li, G. Liu, Y. Wang, Z. Song, M. Qi, and S. Feng, “Excellent thermal stability owing to Ge and C doping in Sb2Te-based high-speed phase-change memory,” Nanotechnology 29(50), 505710 (2018).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
E. Yalon, I. M. Datye, J. S. Moon, K. A. Son, K. Lee, and E. Pop, “Energy-efficient indirectly heated phase change RF switch,” IEEE Electron Device Lett. 40(3), 455–458 (2019).
[Crossref]
J. Moon, H. Seo, K. K. Son, E. Yalon, K. Lee, E. Flores, G. Candia, and E. Pop, “Reconfigurable infrared spectral imaging with phase change materials,” in SPIE Proceedings (SPIE, 2019), Vol. 10982, p. 32.
M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref]
R. Kojima, T. Kouzaki, T. Matsunaga, and N. Yamada, “Quantitative study of nitrogen doping effect on cyclability of Ge-Sb-Te phase-change optical disks,” in Optical Data Storage (SPIE, 1998), Vol. 3401, pp. 14–23.
T. Guo, S. Song, Y. Zheng, Y. Xue, S. Yan, Y. Liu, T. Li, G. Liu, Y. Wang, Z. Song, M. Qi, and S. Feng, “Excellent thermal stability owing to Ge and C doping in Sb2Te-based high-speed phase-change memory,” Nanotechnology 29(50), 505710 (2018).
[Crossref]
M. Delaney, I. Zeimpekis, H. Du, X. Yan, M. Banakar, D. J. Thomson, D. W. Hewak, and O. L. Muskens, “Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material,” Sci. Adv. 7(25), 3500–3516 (2021).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
L. Lu, Z. Dong, F. Tijiptoharsono, R. J. H. Ng, H. Wang, S. D. Rezaei, Y. Wang, H. S. Leong, P. C. Lim, J. K. W. Yang, and R. E. Simpson, “Reversible tuning of Mie resonances in the visible spectrum,” ACS Nano 15(12), 19722–19732 (2021).
[Crossref]
H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. S. Tan, R. E. Simpson, and J. K. W. Yang, “Rewritable color nanoprints in antimony trisulfide films,” Sci. Adv. 6(51), 7171–7187 (2020).
[Crossref]
W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29(6), 1806181 (2019).
[Crossref]
T. Y. Yang, J. Y. Cho, Y. J. Park, and Y. C. Joo, “Driving forces for elemental demixing of GeSbTe in phase-change memory: computational study to design a durable device,” Curr. Appl. Phys. 13(7), 1426–1432 (2013).
[Crossref]
Y. J. Park, T. Y. Yang, J. Y. Cho, S. Y. Lee, and Y. C. Joo, “Electrical current-induced gradual failure of crystalline Ge2Sb2Te5 for phase-change memory,” Appl. Phys. Lett. 103(7), 073503 (2013).
[Crossref]
T. Y. Yang, I. M. Park, B. J. Kim, and Y. C. Joo, “Atomic migration in molten and crystalline Ge2Sb2Te5 under high electric field,” Appl. Phys. Lett. 95(3), 032104 (2009).
[Crossref]
T.-Y. Yang, I.-M. Park, H.-Y. You, S.-H. Oh, K.-W. Yi, and Y.-C. Joo, “Change of damage mechanism by the frequency of applied pulsed DC in the Ge2Sb2Te5 Line,” J. Electrochem. Soc. 156(8), H617 (2009).
[Crossref]
W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, and S. Feng, “High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application,” Appl. Phys. Lett. 105(24), 243113 (2014).
[Crossref]
L. V. Yashina, R. Püttner, V. S. Neudachina, T. S. Zyubina, V. I. Shtanov, and M. V. Poygin, “X-ray photoelectron studies of clean and oxidized α-GeTe (111) surfaces,” J. Appl. Phys. 103(9), 094909 (2008).
[Crossref]
Z. Zhang, J. Pan, Y. L. Foo, L. W. W. Fang, Y. C. Yeo, R. Zhao, L. Shi, and T. C. Chong, “Effective method for preparation of oxide-free Ge2Sb2Te5 surface: An X-ray photoelectron spectroscopy study,” Appl. Surf. Sci. 256(24), 7696–7699 (2010).
[Crossref]
P. Yeoh, Y. Ma, D. A. Cullen, J. A. Bain, and M. Skowronski, “Thermal-gradient-driven elemental segregation in Ge2Sb2Te5 phase change memory cells,” Appl. Phys. Lett. 114(16), 163507 (2019).
[Crossref]
S. K. Kang, M. H. Jeon, J. Y. Park, M. S. Jhon, and G. Y. Yeom, “Etch damage of Ge2Sb2Te5 for different halogen gases,” Jpn. J. Appl. Phys. 50(8), 086501 (2011).
[Crossref]
S.-K. Kang, M. H. Jeon, J. Y. Park, G. Y. Yeom, M. S. Jhon, B. W. Koo, and Y. W. Kim, “Effect of Halogen-Based Neutral Beam on the Etching of Ge2Sb2Te5,” J. Electrochem. Soc. 158(8), H768 (2011).
[Crossref]
S. K. Kang, J. S. Oh, B. J. Park, S. W. Kim, J. T. Lim, G. Y. Yeom, C. J. Kang, and G. J. Min, “X-ray photoelectron spectroscopic study of Ge2Sb2Te5 etched by fluorocarbon inductively coupled plasmas,” Appl. Phys. Lett. 93(4), 043126 (2008).
[Crossref]
M. Miscuglio, J. Meng, O. Yesiliurt, Y. Zhang, L. J. Prokopeva, A. Mehrabian, J. Hu, A. V. Kildishev, and V. J. Sorger, “Intelligent edge processing with photonic multilevel memory,” in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) (2020), Paper IM2A.4 (The Optical Society, 2020), p. IM2A.4.
T.-Y. Yang, I.-M. Park, H.-Y. You, S.-H. Oh, K.-W. Yi, and Y.-C. Joo, “Change of damage mechanism by the frequency of applied pulsed DC in the Ge2Sb2Te5 Line,” J. Electrochem. Soc. 156(8), H617 (2009).
[Crossref]
W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, and S. Feng, “High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application,” Appl. Phys. Lett. 105(24), 243113 (2014).
[Crossref]
X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]
A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref]
X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref]
T.-Y. Yang, I.-M. Park, H.-Y. You, S.-H. Oh, K.-W. Yi, and Y.-C. Joo, “Change of damage mechanism by the frequency of applied pulsed DC in the Ge2Sb2Te5 Line,” J. Electrochem. Soc. 156(8), H617 (2009).
[Crossref]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, H. Bhaskaran, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature 589(7840), 52–58 (2021).
[Crossref]
J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
[Crossref]
N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]
C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited],” Opt. Mater. Express 8(9), 2455 (2018).
[Crossref]
I. M. Park, J. K. Jung, S. O. Ryu, K. J. Choi, B. G. Yu, Y. B. Park, S. M. Han, and Y. C. Joo, “Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory,” Thin Solid Films 517(2), 848–852 (2008).
[Crossref]
C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]
Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]
F. Yue, R. Piccoli, M. Y. Shalaginov, T. Gu, K. A. Richardson, R. Morandotti, J. Hu, and L. Razzari, “Nonlinear mid-infrared metasurface based on a phase-change material,” Laser Photonics Rev. 15(3), 2000373 (2021).
[Crossref]
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]
M. Delaney, I. Zeimpekis, H. Du, X. Yan, M. Banakar, D. J. Thomson, D. W. Hewak, and O. L. Muskens, “Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material,” Sci. Adv. 7(25), 3500–3516 (2021).
[Crossref]
M. Delaney, I. Zeimpekis, D. Lawson, D. W. Hewak, and O. L. Muskens, “A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3,” Adv. Funct. Mater. 30(36), 2002447 (2020).
[Crossref]
J. Faneca, L. Trimby, I. Zeimpekis, M. Delaney, D. W. Hewak, F. Y. Gardes, C. D. Wright, and A. Baldycheva, “On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials,” Opt. Express 28(11), 16394 (2020).
[Crossref]
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewak, M. Wuttig, A. Alu, O. L. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv:2107.12159 (2021).
X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Basic wet-etching solutions for Ge2Sb2Te5 phase change material,” J. Electrochem. Soc. 157(4), H470 (2010).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]
H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]
B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]
K. Gao, K. Du, S. Tian, H. Wang, L. Zhang, Y. Guo, B. Luo, W. Zhang, and T. Mei, “Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation,” Adv. Funct. Mater. 31(35), 2103327 (2021).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
[Crossref]
T. Li, J. Shen, L. Wu, Z. Song, S. Lv, D. Cai, S. Zhang, T. Guo, S. Song, and M. Zhu, “Atomic-Scale Observation of Carbon Distribution in High-Performance Carbon-Doped Ge2Sb2Te5 and Its Influence on Crystallization Behavior,” J. Phys. Chem. C 123(21), 13377–13384 (2019).
[Crossref]
K. Gao, K. Du, S. Tian, H. Wang, L. Zhang, Y. Guo, B. Luo, W. Zhang, and T. Mei, “Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation,” Adv. Funct. Mater. 31(35), 2103327 (2021).
[Crossref]
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, and X. Miao, “Recent advances on neuromorphic devices based on chalcogenide phase-change materials,” Adv. Funct. Mater. 30(50), 2003419 (2020).
[Crossref]
S. A. Song, W. Zhang, H. Sik Jeong, J. G. Kim, and Y. J. Kim, “In situ dynamic HR-TEM and EELS study on phase transitions of Ge2Sb2Te5 chalcogenides,” Ultramicroscopy 108(11), 1408–1419 (2008).
[Crossref]
C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photonics 6(1), 87–92 (2019).
[Crossref]
T. Cao, X. Zhang, W. Dong, L. Lu, X. Zhou, X. Zhuang, J. Deng, X. Cheng, G. Li, and R. E. Simpson, “Tuneable thermal emission using chalcogenide metasurface,” Adv. Opt. Mater. 6(16), 1800169 (2018).
[Crossref]
K. Aryana, Y. Zhang, J. A. Tomko, M. S. Bin Hoque, E. R. Hoglund, D. H. Olson, J. Nag, J. C. Read, C. Ríos, J. Hu, and P. E. Hopkins, “Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te,” Nat. Commun. 12(1), 7187 (2021).
[Crossref]
Y. Zhang, Q. Zhang, C. Ríos, M. Y. Shalaginov, J. B. Chou, C. Roberts, P. Miller, P. Robinson, V. Liberman, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Transient tap couplers for wafer-level photonic testing based on optical phase change materials,” ACS Photonics 8(7), 1903–1908 (2021).
[Crossref]
M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. A. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]
C. Ríos, Y. Zhang, M. Y. Shalaginov, S. Deckoff-Jones, H. Wang, S. An, H. Zhang, M. Kang, K. A. Richardson, C. Roberts, J. B. Chou, V. Liberman, S. A. Vitale, J. Kong, T. Gu, and J. Hu, “Multi-level electro-thermal switching of optical phase-change materials using graphene,” Adv. Photo. Res. 2(1), 2000034 (2021).
[Crossref]
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]
Y. Zhang, C. Ríos, M. Y. Shalaginov, M. Li, A. Majumdar, T. Gu, and J. Hu, “Myths and truths about optical phase change materials: a perspective,” Appl. Phys. Lett. 118(21), 210501 (2021).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
Y. Zhang and J. Hu, “Reconfigurable optics-a phase change for the better,” Am. Ceram. Soc. Bull. 99, 36–37 (2020).
[Crossref]
F. De Leonardis, R. Soref, V. M. N. Passaro, Y. Zhang, and J. Hu, “Broadband electro-optical crossbar switches using low-loss Ge2Sb2Se4Te1 phase change material,” J. Lightwave Technol. 37(13), 3183–3191 (2019).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
[Crossref]
C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
M. Miscuglio, J. Meng, O. Yesiliurt, Y. Zhang, L. J. Prokopeva, A. Mehrabian, J. Hu, A. V. Kildishev, and V. J. Sorger, “Intelligent edge processing with photonic multilevel memory,” in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) (2020), Paper IM2A.4 (The Optical Society, 2020), p. IM2A.4.
Z. Zhang, J. Pan, Y. L. Foo, L. W. W. Fang, Y. C. Yeo, R. Zhao, L. Shi, and T. C. Chong, “Effective method for preparation of oxide-free Ge2Sb2Te5 surface: An X-ray photoelectron spectroscopy study,” Appl. Surf. Sci. 256(24), 7696–7699 (2010).
[Crossref]
Z. Zhang, J. Pan, Y. L. Foo, L. W. W. Fang, Y. C. Yeo, R. Zhao, L. Shi, and T. C. Chong, “Effective method for preparation of oxide-free Ge2Sb2Te5 surface: An X-ray photoelectron spectroscopy study,” Appl. Surf. Sci. 256(24), 7696–7699 (2010).
[Crossref]
Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]
B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]
M. Y. Shalaginov, S. D. Campbell, S. An, Y. Zhang, C. Ríos, E. B. Whiting, Y. Wu, L. Kang, B. Zheng, C. Fowler, H. Zhang, D. H. Werner, J. Hu, and T. Gu, “Design for quality: reconfigurable flat optics based on active metasurfaces,” Nanophotonics 9(11), 3505–3534 (2020).
[Crossref]
Y. Zhang, J. Li, J. B. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in 2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings (OSA, 2017), Vol. 2017-Janua, pp. 1–2.
Z. Fang, J. Zheng, A. Saxena, J. Whitehead, Y. Chen, and A. Majumdar, “Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material,” Adv. Opt. Mater. 9(9), 2002049 (2021).
[Crossref]
J. Zheng, S. Zhu, P. Xu, S. Dunham, and A. Majumdar, “Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters,” ACS Appl. Mater. Interfaces 12(19), 21827–21836 (2020).
[Crossref]
J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater,” Adv. Mater. 32(31), 2001218 (2020).
[Crossref]
P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase-change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]
T. Guo, S. Song, Y. Zheng, Y. Xue, S. Yan, Y. Liu, T. Li, G. Liu, Y. Wang, Z. Song, M. Qi, and S. Feng, “Excellent thermal stability owing to Ge and C doping in Sb2Te-based high-speed phase-change memory,” Nanotechnology 29(50), 505710 (2018).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]
H. Zhang, L. Zhou, J. Xu, N. Wang, H. Hu, L. Lu, B. M. A. Rahman, and J. Chen, “Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material,” Sci. Bull. 64(11), 782–789 (2019).
[Crossref]
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, and X. Miao, “Recent advances on neuromorphic devices based on chalcogenide phase-change materials,” Adv. Funct. Mater. 30(50), 2003419 (2020).
[Crossref]
Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]
W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, and S. Feng, “High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application,” Appl. Phys. Lett. 105(24), 243113 (2014).
[Crossref]
W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29(6), 1806181 (2019).
[Crossref]
T. Cao, X. Zhang, W. Dong, L. Lu, X. Zhou, X. Zhuang, J. Deng, X. Cheng, G. Li, and R. E. Simpson, “Tuneable thermal emission using chalcogenide metasurface,” Adv. Opt. Mater. 6(16), 1800169 (2018).
[Crossref]
W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, and S. Feng, “High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application,” Appl. Phys. Lett. 105(24), 243113 (2014).
[Crossref]
H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photonics 6(9), 2205–2212 (2019).
[Crossref]
T. Li, J. Shen, L. Wu, Z. Song, S. Lv, D. Cai, S. Zhang, T. Guo, S. Song, and M. Zhu, “Atomic-Scale Observation of Carbon Distribution in High-Performance Carbon-Doped Ge2Sb2Te5 and Its Influence on Crystallization Behavior,” J. Phys. Chem. C 123(21), 13377–13384 (2019).
[Crossref]
D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015).
[Crossref]
J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater,” Adv. Mater. 32(31), 2001218 (2020).
[Crossref]
J. Zheng, S. Zhu, P. Xu, S. Dunham, and A. Majumdar, “Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters,” ACS Appl. Mater. Interfaces 12(19), 21827–21836 (2020).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J. J. Cha, Y. Xie, J. J. Cha, W. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, and Y. Kim, “Self-healing of a confined phase change memory device with a metallic surfactant layer,” Adv. Mater. 30(9), 1705587 (2018).
[Crossref]
W. Kim, S. Kim, R. Bruce, F. Carta, G. Fraczak, A. Ray, C. Lam, M. Brightsky, Y. Zhu, T. Masuda, K. Suu, Y. Xie, Y. Kim, and J. J. Cha, “Reliability benefits of a metallic liner in confined PCM,” in IEEE International Reliability Physics Symposium Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), Vol. 2018-March, pp. 6D.51–6D.55.
M. B. Sky, N. Sosa, T. Masuda, W. Kim, S. Kim, A. Ray, R. Bruce, J. Gonsalves, Y. Zhu, K. Suu, and C. Lam, “Crystalline-as-deposited ALD phase change material confined PCM cell for high density storage class memory,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2016-Febru, pp. 3.6.1–3.6.4.
P. Y. Du, J. Y. Wu, T. H. Hsu, M. H. Lee, T. Y. Wang, H. Y. Cheng, E. K. Lai, S. C. Lai, H. L. Lung, S. B. Kim, M. J. BrightSky, Y. Zhu, S. Mittal, R. Cheek, S. Raoux, E. A. Joseph, A. Schrott, J. Li, and C. Lam, “The impact of melting during reset operation on the reliability of phase change memory,” IEEE Int. Reliab. Phys. Symp. Proc. (2012).
W. Kim, M. Brightsky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H. Y. Cheng, A. Ray, Y. Zhu, H. L. Lung, K. Suu, and C. Lam, “ALD-based confined PCM with a metallic liner toward unlimited endurance,” in Technical Digest - International Electron Devices Meeting, IEDM (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 4.2.1–4.2.4.
T. Cao, X. Zhang, W. Dong, L. Lu, X. Zhou, X. Zhuang, J. Deng, X. Cheng, G. Li, and R. E. Simpson, “Tuneable thermal emission using chalcogenide metasurface,” Adv. Opt. Mater. 6(16), 1800169 (2018).
[Crossref]
Ž. Živković, N. Štrbac, D. Živkovič, D. Grujičić, and B. Boyanov, “Kinetics and mechanism of Sb2Se3 oxidation process,” Thermochim. Acta 383(1-2), 137–143 (2002).
[Crossref]
Ž. Živković, N. Štrbac, D. Živkovič, D. Grujičić, and B. Boyanov, “Kinetics and mechanism of Sb2Se3 oxidation process,” Thermochim. Acta 383(1-2), 137–143 (2002).
[Crossref]
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, and L. Qiao, “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” Sol. Energy 201, 227–246 (2020).
[Crossref]
Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, V. Sousa, L. Perniola, J. F. Nodin, A. Persico, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Reimbold, G. Pananakakis, and B. De Salvo, “Carbon-doped Ge2Sb2Te5 phase-change memory devices featuring reduced RESET current and power consumption,” Eur. Solid-State Device Res. Conf.286–289 (2012).
L. V. Yashina, R. Püttner, V. S. Neudachina, T. S. Zyubina, V. I. Shtanov, and M. V. Poygin, “X-ray photoelectron studies of clean and oxidized α-GeTe (111) surfaces,” J. Appl. Phys. 103(9), 094909 (2008).
[Crossref]