Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Giant tunable self-defocusing nonlinearity and dark soliton attraction observed in m-cresol/nylon thermal solutions

Open Access Open Access

Abstract

We report a new type of thermal nonlinear media (m-cresol/nylon solutions) that exhibits a giant tunable self-defocusing nonlinearity. The measured Kerr coefficient in such thermal nonlinear solutions is orders of magnitude higher than that of most previously known thermal materials. In addition, we demonstrate the generation of dark spatial solitons in these isotropic nonlocal nonlinear media, and observe to our knowledge the strongest effect of dark-soliton attraction ever reported in thermal defocusing media.

© 2014 Optical Society of America

1. Introduction

Nonlinear media with self-focusing or defocusing properties have been the subject of intensive studies for decades due to both fundamental scientific interest and their potential applications. For instance, self-defocusing media have served as platforms for many experimental demonstrations of interesting nonlinear optical phenomena such as dark spatial solitons [19] and dispersive shock waves [1014]. An optical soliton is a self-trapped beam that does not change its profile during propagation [1]. Contrary to a bright soliton exhibiting an intensity peak, a dark soliton corresponds to an intensity trough in an otherwise uniform bright background that maintains its shape throughout a nonlinear defocusing medium [2,3]. As light defocuses due to the action of nonlinearity, the diffraction of a dark “notch” (in the one-dimensional case) [2,46] or a dark “hole” (in the two-dimensional case) [79] can be balanced by the self-defocusing nonlinearity, leading to the formation of optical spatial dark solitons. Similar to bright solitons which can behave as self-induced waveguides, dark solitons can also act as straight, Y-splitting, or circular waveguides [4,6,9], which have applications in all-optical switches and couplers.

Solitons also exhibit particle-like behavior, exerting attractive or repelling forces when colliding or propagating at close vicinity [1,15,16]. Dark solitons were traditionally known to only repel from each other [3,17], while bright solitons can attract or repel depending on their relative phases [15,18]. However, over the past several years, studies have shown that attraction can also occur between dark solitons in nonlocal defocusing materials due to their unique properties [1921]. The nonlocal effect saturates the change in refractive index due to formation of dark solitons in close proximity, merging the index-change in the central overlapping area to create a broad waveguide that squeezes the dark solitons together [21].

When light propagates through a thermal nonlinear material, absorption occurs and the material gains heat. The increase in the temperature causes thermal expansion, which, for most materials, reduces the index of refraction [2224]. This phenomenon is known as the thermo-optic effect. If the beam is Gaussian, it will create an index gradient opposite to the temperature gradient, which behaves as a concave lens, thus leading to self-defocusing of an optical beam. Since heat is the main source of the nonlinearity, diffusion causes a nonlocal response of the material to the beam. It has been shown that non-locality can prevent a beam from collapsing, thus supporting stable self-trapped solitons [25].

Since the temperature change (hence the amount of refractive index change) increases with the light intensity for most of the thermal materials, it is a common practice to quantify the strength of this nonlinearity using a Kerr model [26]. This model assumes a Kerr-type intensity-dependent change in the refractive index, Δn = n2I, along the directions transverse to beam propagation, where n2 is known as the Kerr coefficient [26], and is negative for self-defocusing-type nonlinear media. Please note that the non-local thermal effect studied in this paper is different from the optical Kerr effect, in which the nonlinear index change is due to the instantaneous third order nonlinear polarization, χ(3). In general, an optical Kerr effect has a much shorter response time than thermal nonlinear responses, and its Kerr coefficient magnitude is less than that of common thermal nonlinear media.

In this paper, we report a new type of thermal nonlinear media: dilute solutions consisting of nylon dissolved in m-cresol. m-Cresol is an organic liquid, which has been previously used as a solvent for nonlinear optical studies [27]. The m-cresol/nylon solutions exhibit a giant self-defocusing nonlinearity, which can be tuned easily by varying the concentration of nylon. Furthermore, we demonstrate the generation of spatial dark solitons in such media, and observe, to our best knowledge, the strongest attraction between two interacting dark solitons ever reported in thermal defocusing media.

2. Characterization of the self-defocusing nonlinearity in m-cresol/nylon solutions

Our experimental setup is similar to what has been described in [28]. A collimated CW laser beam (λ = 532 nm, Coherent Verdi) with linear polarization in the vertical direction is launched into a glass cuvette containing the m-cresol/nylon solutions. Both the linear and nonlinear propagation dynamics are observed by monitoring the input and output transverse intensity patterns using an imaging lens and a CCD camera. Input and output beam profiles are taken at the inner front and back surfaces of the glass cuvette, respectively.

First, we demonstrate the giant defocusing effect displayed by our nonlinear solutions in Fig. 1(a)-1(c). The Gaussian beam is focused to 12μm (FWHM) at the front surface of a 2mm-long cuvette [Fig. 1(a)], containing an m-cresol/nylon solution with 0.58% mass concentration. When the power is less than 1mW, the beam experiences linear diffraction and its width increases to 33μm (FWHM) after propagating through the 2-mm-long sample [Fig. 1(b)]. As the power is increased to 30mW, the beam experiences remarkable self-defocusing, expanding to 219μm after only 2-mm of propagation, as shown in Fig. 1(c).

 figure: Fig. 1

Fig. 1 Transverse intensity patterns imaged at the input or output surfaces, demonstrating the giant and isotropic self-defocusing effect in the m-cresol/nylon solution. (a) The focused Gaussian beam (12μm FWHM) at the input of the sample. (b) The output (33μm FWHM) due to normal diffraction after propagating 2mm in our sample at a power less than 1mW. (c) The output (219μm FWHM) due to strong defocusing nonlinearity at a power of 30mW. (d) The input dark cross (38 μm stripe width) created by using an amplitude mask of two thin wires. (e) Linear diffraction output after 5mm propagation in the sample at a power less than 1mW. (f) At a power of 100mW, the output profile shows that Y-junctions of diverging solitons are created with little variation between the horizontal and vertical directions.

Download Full Size | PPT Slide | PDF

Next, a cross of thin wires is used as an amplitude mask to create dark stripes, which is then imaged on the front input surface of a 5mm long cuvette containing the same solution mentioned above [Fig. 1(d)]. At a low power (~1mW), the dark cross linearly diffracts as shown in Fig. 1(e). When the power is increased to 100mW, each dark stripe splits into two distinct stripes, forming Y-junctions of diverging solitons [Fig. 1(f)], as expected for nonlinear defocusing media [2,4,6]. We also found that there is less than 5% difference (less than the experimental uncertainties) between the vertical and horizontal stripe widths as well as the stripe separation, indicating the isotropic feature of the nonlinear responses in these thermal nonlinear solutions, which may be different in other liquid crystal [29] or photorefractive polymer [30] based samples.

More importantly, we found that the strength of the nonlinear response of the m-cresol/nylon solutions can be easily controlled by varying the concentration of nylon. We focus the same Gaussian beam with 12μm FWHM into the m-cresol/nylon solutions with different mass concentrations and measure the output profiles at 2mm propagation distance. Figure 2(a) shows the output beam diameter (measured at 86.5% of maximum power) as a function of input power for samples of different concentrations. As the nylon concentration is increased, the beam experiences a stronger self-defocusing effect. Using the z-scan method [26], the Kerr coefficient is determined for these samples with different concentrations of nylon. The absolute value of the measured Kerr coefficient, |n2|, as a function of the nylon concentrations is plotted in Fig. 2(b). By varying the nylon mass concentration from 0 to 3.5%, the measured |n2| increases over two orders of magnitude from 9 × 10−8 cm2/W (pure m-cresol) to 1.6 × 10−5 cm2/W (3.5% nylon). Table 1 presents a comparison of the n2 values between our solutions and those of other strongly-defocusing nonlinear media reported previously. More data of previously reported nonlinearity of typical defocusing media can be found in [26]. The Kerr coefficient of our m-cresol/nylon solution is orders of magnitude higher than that of most previously known thermal nonlinear materials [26].

 figure: Fig. 2

Fig. 2 Quantifying the defocusing nonlinearity of the m-cresol/nylon solutions with different concentrations. (a) The output beam diameter (after 2mm propagation) as a function of input power for different concentrations of nylon. (b) The measured |n2|, absolute values of the Kerr coefficient, as a function of nylon concentrations using the z-scan method. As seen from these figures, the strength of the nonlinearity in our thermal media can be easily turned across a large range, simply by varying the nylon concentration.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Comparison of measured n2 values for various known thermal defocusing media.

3. Generation of 1D dark solitons in m-cresol/nylon solutions

Next we experimentally demonstrate the formation of spatial dark solitons in the above synthetic defocusing media. The 532nm laser beam is collimated to provide bright background illumination. To generate a dark stripe, half of the beam is passed through a thin glass plate, whose orientation is adjusted to provide a π-phase jump at its edge [2]. This π-phase jump creates a dark stripe, due to destructive interference. The dark stripe is imaged onto the inner front surface of a 10 mm long cuvette as the input for our samples, and the output beam profile is recorded when exiting the cuvette.

Figure 3 shows the experimental results obtained with the 10 mm long sample of 0.58% m-cresol/nylon solution. For this concentration, the Kerr coefficient is measured to be n2 = −6 × 10−6 cm2/W, using the z-scan method. The width of the input stripe [Fig. 3(a)] is 39 ± 2μm. As the beam propagates through the sample at low power (<1mW), the beam experiences linear diffraction and the dark stripe widens to 100 ± 3μm at the output, as shown in Fig. 3(b). As the power is increased, the dark stripe experiences less diffraction. At a power of 50mW, the output dark stripe has approximately reached its initial input size within the experimental uncertainty range, forming a dark soliton [Fig. 3(c)]. The decrease in output stripe width saturates as input power is further increased.

 figure: Fig. 3

Fig. 3 Transverse intensity patterns imaged at the input or output surfaces demonstrating formation of a dark soliton observed in m-cresol/nylon solution. (a) Input: a dark stripe with a width of 39 ± 2 μm created using a π-phase mask. (b) Linear output beam profile after 10 mm of propagation at power less than 1 mW. The dark stripe diffracts to a width of 100 ± 3 μm. (c) Nonlinear output beam profile after 10 mm of propagation at 50mW power. The stripe width decreases to 41 ± 2 μm.

Download Full Size | PPT Slide | PDF

4. Dark soliton attraction in m-cresol/nylon solutions

Finally, we demonstrate the interaction between dark solitons employing the giant self-defocusing nonlinearity shown in the above media. Two closely overlapping glass plates were used to create two dark stripes due to two separate π-phase-shifts across the otherwise uniform beam [Fig. 4(a)].Figure 4(b) shows the input stripes (41 ± 2 μm each) separated by a distance of 100 ± 3μm (trough-to-trough). At powers less than 1mW, linear diffraction causes the widths of the stripes to widen after propagating 5mm through 0.58% m-cresol/nylon solution, while the separation remains at 100 ± 3μm [Fig. 4(c)]. Figures 4(d)-4(f) show the output intensity profile at a power of 1.0W, 2.0W, and 3.0W, respectively. As the input power is increased gradually, not only do the widths of the dark stripes decrease, but their separation also decreases as a direct consequence of the nonlocal nonlinear response of the solution. At 3.0W, the widths of the stripes decreases to about 25μm, and the separation decreases to 64 ± 3μm. Figure 4(g) shows the output separation as a function of input power. As the power is increased, the strength of attraction caused by dark soliton interaction in this nonlocal nonlinear medium also increases [21], pulling the dark solitons closer than the input separation. The 36% separation distance reduction at 3.0 W demonstrates a dark-soliton attraction much stronger than what has been reported previously [19].

 figure: Fig. 4

Fig. 4 Demonstration of dark soliton attraction. Transverse intensity patterns imaged at the input or output surfaces showing: (a) Interference indicating the two separate π-phase-jumps; (b) The two dark stripes at the input, separated by a distance of 100μm; (c) Linear output at power less than 1mW after 5mm of propagation. (d)-(f) Output patterns taken at different powers of 1.0, 2.0 and 3.0 W respectively. The stripe separation decreases to 64 μm in (f). (g) Plot of the stripe separation as a function of input power.

Download Full Size | PPT Slide | PDF

5. Summary

In summary, we have demonstrated that m-cresol/nylon solutions exhibit a strong tunable nonlocal self-defocusing nonlinearity that can be used to study dark soliton interactions. The nonlinear Kerr coefficient in such isotropic thermal solutions can be easily tuned across a large range, from n2 = −9 × 10−8 cm2/W to n2 = −1.6 × 10−5 cm2/W, which is orders of magnitude larger than that of most previously reported for other thermal nonlinear media [26]. The strength of the nonlinearity can be easily controlled by varying the nylon concentration in the solutions. In these thermal defocusing media, we generated stable spatial dark solitons with milli-Watt power levels. In addition, we demonstrated strong dark soliton attraction in these nonlocal defocusing media: At 3.0W of laser power, the soliton separation reduced from 100μm to 64μm after 5mm of propagation, showing the strongest dark soliton attractions ever reported. Our results bring about many possibilities of using these thermal solutions as extraordinary nonlinear optical materials for studying nonlinear wave dynamics, including vortex dynamics, modulation instability, and spatial shock waves. Results on shock wave generation in these media will be reported elsewhere [33].

Acknowledgment

This work was supported by the ACS (grant PRF# 52644-UR6), the AFOSR (FA9550-12-1-0111), and by NSF (grants ECCS-1128520, PHY-1100842). The authors would like to thank Jai Prakash and Shima Fardad for assistance and discussion.

References and links

1. Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75(8), 086401 (2012). [CrossRef]   [PubMed]  

2. G. A. Swartzlander Jr, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991). [CrossRef]   [PubMed]  

3. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998). [CrossRef]  

4. B. Luther-Davies and Y. Xiaoping, “Waveguides and Y junctions formed in bulk media by using dark spatial solitons,” Opt. Lett. 17(7), 496–498 (1992). [CrossRef]   [PubMed]  

5. Z. Chen, M. Mitchell, M. F. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21(9), 629–631 (1996). [CrossRef]   [PubMed]  

6. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21(13), 943–945 (1996). [CrossRef]   [PubMed]  

7. G. A. Swartzlander Jr and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69(17), 2503–2506 (1992). [CrossRef]   [PubMed]  

8. G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).

9. Z. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett. 22(23), 1751–1753 (1997). [CrossRef]   [PubMed]  

10. C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett. 32(20), 2930–2932 (2007). [CrossRef]   [PubMed]  

11. N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007). [CrossRef]  

12. W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007). [CrossRef]  

13. N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett. 109(24), 243902 (2012). [CrossRef]   [PubMed]  

14. S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A 87(5), 053811 (2013). [CrossRef]  

15. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8(11), 596–598 (1983). [CrossRef]   [PubMed]  

16. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett. 16(1), 15–17 (1991). [CrossRef]   [PubMed]  

17. K. J. Blow and N. Doran, “Multiple dark soliton solutions of the nonlinear Schrodinger equation,” Phys. Lett. A 107(2), 55–58 (1985). [CrossRef]  

18. S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett. 38(18), 3585–3587 (2013). [CrossRef]   [PubMed]  

19. A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96(4), 043901 (2006). [CrossRef]   [PubMed]  

20. R. Fischer, D. N. Neshev, W. Krolikowski, Y. S. Kivshar, D. Iturbe-Castillo, S. Chavez-Cerda, M. R. Meneghetti, D. P. Caetano, and J. M. Hickman, “Oblique interaction of spatial dark-soliton stripes in nonlocal media,” Opt. Lett. 31(20), 3010–3012 (2006). [CrossRef]   [PubMed]  

21. Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A 82(1), 013826 (2010). [CrossRef]  

22. C. Conti and E. DelRe, “Optical supercavitation in soft matter,” Phys. Rev. Lett. 105(11), 118301 (2010). [CrossRef]   [PubMed]  

23. Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett. 105(16), 163906 (2010). [CrossRef]   [PubMed]  

24. S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014), doi:. [CrossRef]   [PubMed]  

25. D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys. Rev. A 48(6), 4583–4587 (1993). [CrossRef]   [PubMed]  

26. E. Stryland and M. Sheik-Bahae, “Z-Scan Measurements of Optical Nonlinearities,”Characterization techniques and tabulations for organic nonlinear materials,” Characterization Techniques and Tabulations for Organic Nonlinear Materials 655–692 (1998).

27. X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999). [CrossRef]  

28. W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013). [CrossRef]   [PubMed]  

29. G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron. 39(1), 13–21 (2003). [CrossRef]  

30. Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, “Self-trapping of light in an organic photorefractive glass,” Opt. Lett. 28(24), 2509–2511 (2003). [CrossRef]   [PubMed]  

31. Y. Cheung and S. Gayen, “Optical nonlinearities of tea studied by Z-scan and four-wave mixing techniques,” J. Opt. Soc. Am. B 11(4), 636–643 (1994). [CrossRef]  

32. R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater. 31(11), 1591–1594 (2009). [CrossRef]  

33. V. Smith, P. Cala, W. Man, and Z. Chen, “Dark soliton attraction and optical spatial shock waves observed in m-cresol/nylon solutions,” presented at the thirty-fourth Conference on Lasers and Electro-Optics (CLEO:2014), San Jose, CA, USA, 8–13 June. Paper FW3D.1 (2014). [CrossRef]  

References

  • View by:

  1. Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75(8), 086401 (2012).
    [Crossref] [PubMed]
  2. G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
    [Crossref] [PubMed]
  3. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
    [Crossref]
  4. B. Luther-Davies and Y. Xiaoping, “Waveguides and Y junctions formed in bulk media by using dark spatial solitons,” Opt. Lett. 17(7), 496–498 (1992).
    [Crossref] [PubMed]
  5. Z. Chen, M. Mitchell, M. F. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21(9), 629–631 (1996).
    [Crossref] [PubMed]
  6. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21(13), 943–945 (1996).
    [Crossref] [PubMed]
  7. G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69(17), 2503–2506 (1992).
    [Crossref] [PubMed]
  8. G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).
  9. Z. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett. 22(23), 1751–1753 (1997).
    [Crossref] [PubMed]
  10. C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett. 32(20), 2930–2932 (2007).
    [Crossref] [PubMed]
  11. N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007).
    [Crossref]
  12. W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007).
    [Crossref]
  13. N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett. 109(24), 243902 (2012).
    [Crossref] [PubMed]
  14. S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A 87(5), 053811 (2013).
    [Crossref]
  15. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8(11), 596–598 (1983).
    [Crossref] [PubMed]
  16. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett. 16(1), 15–17 (1991).
    [Crossref] [PubMed]
  17. K. J. Blow and N. Doran, “Multiple dark soliton solutions of the nonlinear Schrodinger equation,” Phys. Lett. A 107(2), 55–58 (1985).
    [Crossref]
  18. S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett. 38(18), 3585–3587 (2013).
    [Crossref] [PubMed]
  19. A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96(4), 043901 (2006).
    [Crossref] [PubMed]
  20. R. Fischer, D. N. Neshev, W. Krolikowski, Y. S. Kivshar, D. Iturbe-Castillo, S. Chavez-Cerda, M. R. Meneghetti, D. P. Caetano, and J. M. Hickman, “Oblique interaction of spatial dark-soliton stripes in nonlocal media,” Opt. Lett. 31(20), 3010–3012 (2006).
    [Crossref] [PubMed]
  21. Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A 82(1), 013826 (2010).
    [Crossref]
  22. C. Conti and E. DelRe, “Optical supercavitation in soft matter,” Phys. Rev. Lett. 105(11), 118301 (2010).
    [Crossref] [PubMed]
  23. Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett. 105(16), 163906 (2010).
    [Crossref] [PubMed]
  24. S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014), doi:.
    [Crossref] [PubMed]
  25. D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys. Rev. A 48(6), 4583–4587 (1993).
    [Crossref] [PubMed]
  26. E. Stryland and M. Sheik-Bahae, “Z-Scan Measurements of Optical Nonlinearities,”Characterization techniques and tabulations for organic nonlinear materials,” Characterization Techniques and Tabulations for Organic Nonlinear Materials 655–692 (1998).
  27. X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
    [Crossref]
  28. W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013).
    [Crossref] [PubMed]
  29. G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron. 39(1), 13–21 (2003).
    [Crossref]
  30. Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, “Self-trapping of light in an organic photorefractive glass,” Opt. Lett. 28(24), 2509–2511 (2003).
    [Crossref] [PubMed]
  31. Y. Cheung and S. Gayen, “Optical nonlinearities of tea studied by Z-scan and four-wave mixing techniques,” J. Opt. Soc. Am. B 11(4), 636–643 (1994).
    [Crossref]
  32. R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater. 31(11), 1591–1594 (2009).
    [Crossref]
  33. V. Smith, P. Cala, W. Man, and Z. Chen, “Dark soliton attraction and optical spatial shock waves observed in m-cresol/nylon solutions,” presented at the thirty-fourth Conference on Lasers and Electro-Optics (CLEO:2014), San Jose, CA, USA, 8–13 June. Paper FW3D.1 (2014).
    [Crossref]

2014 (1)

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014), doi:.
[Crossref] [PubMed]

2013 (3)

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013).
[Crossref] [PubMed]

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A 87(5), 053811 (2013).
[Crossref]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett. 38(18), 3585–3587 (2013).
[Crossref] [PubMed]

2012 (2)

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75(8), 086401 (2012).
[Crossref] [PubMed]

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett. 109(24), 243902 (2012).
[Crossref] [PubMed]

2010 (3)

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A 82(1), 013826 (2010).
[Crossref]

C. Conti and E. DelRe, “Optical supercavitation in soft matter,” Phys. Rev. Lett. 105(11), 118301 (2010).
[Crossref] [PubMed]

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett. 105(16), 163906 (2010).
[Crossref] [PubMed]

2009 (1)

R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater. 31(11), 1591–1594 (2009).
[Crossref]

2007 (2)

C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett. 32(20), 2930–2932 (2007).
[Crossref] [PubMed]

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007).
[Crossref]

2006 (2)

2003 (2)

1999 (1)

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
[Crossref]

1998 (1)

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
[Crossref]

1997 (1)

1996 (2)

1995 (1)

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).

1994 (1)

1993 (1)

D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys. Rev. A 48(6), 4583–4587 (1993).
[Crossref] [PubMed]

1992 (2)

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69(17), 2503–2506 (1992).
[Crossref] [PubMed]

B. Luther-Davies and Y. Xiaoping, “Waveguides and Y junctions formed in bulk media by using dark spatial solitons,” Opt. Lett. 17(7), 496–498 (1992).
[Crossref] [PubMed]

1991 (2)

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett. 16(1), 15–17 (1991).
[Crossref] [PubMed]

1985 (1)

K. J. Blow and N. Doran, “Multiple dark soliton solutions of the nonlinear Schrodinger equation,” Phys. Lett. A 107(2), 55–58 (1985).
[Crossref]

1983 (1)

Aitchison, J. S.

Alencar, M.

R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater. 31(11), 1591–1594 (2009).
[Crossref]

Andersen, D. R.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

Asaro, M.

Assanto, G.

G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron. 39(1), 13–21 (2003).
[Crossref]

Bang, O.

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A 82(1), 013826 (2010).
[Crossref]

A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96(4), 043901 (2006).
[Crossref] [PubMed]

Barak, A.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett. 105(16), 163906 (2010).
[Crossref] [PubMed]

Barsi, C.

Bashaw, M. C.

Blasberg, T.

D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys. Rev. A 48(6), 4583–4587 (1993).
[Crossref] [PubMed]

Blow, K. J.

K. J. Blow and N. Doran, “Multiple dark soliton solutions of the nonlinear Schrodinger equation,” Phys. Lett. A 107(2), 55–58 (1985).
[Crossref]

Caetano, D. P.

Chang, B.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
[Crossref]

Chavez-Cerda, S.

Chen, Z.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014), doi:.
[Crossref] [PubMed]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett. 38(18), 3585–3587 (2013).
[Crossref] [PubMed]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013).
[Crossref] [PubMed]

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75(8), 086401 (2012).
[Crossref] [PubMed]

Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, “Self-trapping of light in an organic photorefractive glass,” Opt. Lett. 28(24), 2509–2511 (2003).
[Crossref] [PubMed]

Z. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett. 22(23), 1751–1753 (1997).
[Crossref] [PubMed]

Z. Chen, M. Mitchell, M. F. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21(9), 629–631 (1996).
[Crossref] [PubMed]

Cheung, Y.

Christodoulides, D. N.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014), doi:.
[Crossref] [PubMed]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett. 38(18), 3585–3587 (2013).
[Crossref] [PubMed]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013).
[Crossref] [PubMed]

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75(8), 086401 (2012).
[Crossref] [PubMed]

Conti, C.

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A 87(5), 053811 (2013).
[Crossref]

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett. 109(24), 243902 (2012).
[Crossref] [PubMed]

C. Conti and E. DelRe, “Optical supercavitation in soft matter,” Phys. Rev. Lett. 105(11), 118301 (2010).
[Crossref] [PubMed]

N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007).
[Crossref]

Crosignani, B.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).

DelRe, E.

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A 87(5), 053811 (2013).
[Crossref]

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett. 109(24), 243902 (2012).
[Crossref] [PubMed]

C. Conti and E. DelRe, “Optical supercavitation in soft matter,” Phys. Rev. Lett. 105(11), 118301 (2010).
[Crossref] [PubMed]

Doran, N.

K. J. Blow and N. Doran, “Multiple dark soliton solutions of the nonlinear Schrodinger equation,” Phys. Lett. A 107(2), 55–58 (1985).
[Crossref]

Dreischuh, A.

A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96(4), 043901 (2006).
[Crossref] [PubMed]

Duree, G.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).

Fan, J.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
[Crossref]

Fardad, S.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014), doi:.
[Crossref] [PubMed]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013).
[Crossref] [PubMed]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett. 38(18), 3585–3587 (2013).
[Crossref] [PubMed]

Fejer, M. M.

Fischer, R.

Fleischer, J. W.

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007).
[Crossref]

C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett. 32(20), 2930–2932 (2007).
[Crossref] [PubMed]

Folli, V.

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett. 109(24), 243902 (2012).
[Crossref] [PubMed]

Garrett, M. H.

Gayen, S.

Gentilini, S.

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A 87(5), 053811 (2013).
[Crossref]

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett. 109(24), 243902 (2012).
[Crossref] [PubMed]

Ghofraniha, N.

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A 87(5), 053811 (2013).
[Crossref]

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett. 109(24), 243902 (2012).
[Crossref] [PubMed]

N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007).
[Crossref]

Gordon, J. P.

He, M.

Heinrich, M.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014), doi:.
[Crossref] [PubMed]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013).
[Crossref] [PubMed]

Hickman, J. M.

Hickmann, J.

R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater. 31(11), 1591–1594 (2009).
[Crossref]

Iturbe-Castillo, D.

Jackel, J. L.

Jia, S.

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007).
[Crossref]

Kaplan, A. E.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

Kivshar, Y. S.

Kong, Q.

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A 82(1), 013826 (2010).
[Crossref]

Krolikowski, W.

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A 82(1), 013826 (2010).
[Crossref]

R. Fischer, D. N. Neshev, W. Krolikowski, Y. S. Kivshar, D. Iturbe-Castillo, S. Chavez-Cerda, M. R. Meneghetti, D. P. Caetano, and J. M. Hickman, “Oblique interaction of spatial dark-soliton stripes in nonlocal media,” Opt. Lett. 31(20), 3010–3012 (2006).
[Crossref] [PubMed]

A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96(4), 043901 (2006).
[Crossref] [PubMed]

Lamhot, Y.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett. 105(16), 163906 (2010).
[Crossref] [PubMed]

Lau, M.

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013).
[Crossref] [PubMed]

Law, C. T.

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69(17), 2503–2506 (1992).
[Crossref] [PubMed]

Leaird, D. E.

Liu, X.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
[Crossref]

Luther-Davies, B.

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
[Crossref]

B. Luther-Davies and Y. Xiaoping, “Waveguides and Y junctions formed in bulk media by using dark spatial solitons,” Opt. Lett. 17(7), 496–498 (1992).
[Crossref] [PubMed]

Maker, P. D.

Man, W.

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett. 38(18), 3585–3587 (2013).
[Crossref] [PubMed]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013).
[Crossref] [PubMed]

Meneghetti, M.

R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater. 31(11), 1591–1594 (2009).
[Crossref]

Meneghetti, M. R.

Mills, M. S.

Mitchell, M.

Moerner, W. E.

Morin, M.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).

Muller, R. E.

Neshev, D. N.

Oliver, M. K.

Ostroverkhova, O.

Pan, Z.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
[Crossref]

Peccianti, M.

G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron. 39(1), 13–21 (2003).
[Crossref]

Peleg, O.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett. 105(16), 163906 (2010).
[Crossref] [PubMed]

Petersen, D. E.

A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96(4), 043901 (2006).
[Crossref] [PubMed]

Porto, P. D.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).

Prakash, J.

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013).
[Crossref] [PubMed]

Regan, J. J.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

Ruocco, G.

N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007).
[Crossref]

Salamo, G.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).

Salandrino, A.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014), doi:.
[Crossref] [PubMed]

Segev, M.

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75(8), 086401 (2012).
[Crossref] [PubMed]

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett. 105(16), 163906 (2010).
[Crossref] [PubMed]

Z. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett. 22(23), 1751–1753 (1997).
[Crossref] [PubMed]

Z. Chen, M. Mitchell, M. F. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21(9), 629–631 (1996).
[Crossref] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21(13), 943–945 (1996).
[Crossref] [PubMed]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).

Sharp, E.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).

Shih, M. F.

Si, J.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
[Crossref]

Silberberg, Y.

Smith, P. W. E.

Souza, R.

R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater. 31(11), 1591–1594 (2009).
[Crossref]

Sun, C.

Suter, D.

D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys. Rev. A 48(6), 4583–4587 (1993).
[Crossref] [PubMed]

Swartzlander, G. A.

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69(17), 2503–2506 (1992).
[Crossref] [PubMed]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

Taya, M.

Trillo, S.

N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007).
[Crossref]

Twieg, R. J.

Valley, G. C.

Wan, M.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
[Crossref]

Wan, W.

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007).
[Crossref]

C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett. 32(20), 2930–2932 (2007).
[Crossref] [PubMed]

Wang, Q.

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A 82(1), 013826 (2010).
[Crossref]

Weiner, A. M.

Wilson, D. W.

Xiaoping, Y.

Xie, S.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
[Crossref]

Xu, G.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
[Crossref]

Yang, Q.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
[Crossref]

Yariv, A.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).

Ye, P.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
[Crossref]

Yin, H.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

Zhang, P.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014), doi:.
[Crossref] [PubMed]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013).
[Crossref] [PubMed]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett. 38(18), 3585–3587 (2013).
[Crossref] [PubMed]

Zhang, Z.

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74(2), 164–166 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron. 39(1), 13–21 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014), doi:.
[Crossref] [PubMed]

Nat. Phys. (1)

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007).
[Crossref]

Opt. Lett. (10)

J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8(11), 596–598 (1983).
[Crossref] [PubMed]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett. 16(1), 15–17 (1991).
[Crossref] [PubMed]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett. 38(18), 3585–3587 (2013).
[Crossref] [PubMed]

B. Luther-Davies and Y. Xiaoping, “Waveguides and Y junctions formed in bulk media by using dark spatial solitons,” Opt. Lett. 17(7), 496–498 (1992).
[Crossref] [PubMed]

Z. Chen, M. Mitchell, M. F. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21(9), 629–631 (1996).
[Crossref] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21(13), 943–945 (1996).
[Crossref] [PubMed]

Z. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett. 22(23), 1751–1753 (1997).
[Crossref] [PubMed]

C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett. 32(20), 2930–2932 (2007).
[Crossref] [PubMed]

R. Fischer, D. N. Neshev, W. Krolikowski, Y. S. Kivshar, D. Iturbe-Castillo, S. Chavez-Cerda, M. R. Meneghetti, D. P. Caetano, and J. M. Hickman, “Oblique interaction of spatial dark-soliton stripes in nonlocal media,” Opt. Lett. 31(20), 3010–3012 (2006).
[Crossref] [PubMed]

Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, “Self-trapping of light in an organic photorefractive glass,” Opt. Lett. 28(24), 2509–2511 (2003).
[Crossref] [PubMed]

Opt. Mater. (1)

R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater. 31(11), 1591–1594 (2009).
[Crossref]

Phys. Lett. A (1)

K. J. Blow and N. Doran, “Multiple dark soliton solutions of the nonlinear Schrodinger equation,” Phys. Lett. A 107(2), 55–58 (1985).
[Crossref]

Phys. Rep. (1)

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
[Crossref]

Phys. Rev. A (3)

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A 87(5), 053811 (2013).
[Crossref]

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A 82(1), 013826 (2010).
[Crossref]

D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys. Rev. A 48(6), 4583–4587 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (8)

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111(21), 218302 (2013).
[Crossref] [PubMed]

C. Conti and E. DelRe, “Optical supercavitation in soft matter,” Phys. Rev. Lett. 105(11), 118301 (2010).
[Crossref] [PubMed]

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett. 105(16), 163906 (2010).
[Crossref] [PubMed]

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett. 109(24), 243902 (2012).
[Crossref] [PubMed]

A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96(4), 043901 (2006).
[Crossref] [PubMed]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69(17), 2503–2506 (1992).
[Crossref] [PubMed]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74(11), 1978–1981 (1995).

Rep. Prog. Phys. (1)

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75(8), 086401 (2012).
[Crossref] [PubMed]

Other (3)

N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007).
[Crossref]

E. Stryland and M. Sheik-Bahae, “Z-Scan Measurements of Optical Nonlinearities,”Characterization techniques and tabulations for organic nonlinear materials,” Characterization Techniques and Tabulations for Organic Nonlinear Materials 655–692 (1998).

V. Smith, P. Cala, W. Man, and Z. Chen, “Dark soliton attraction and optical spatial shock waves observed in m-cresol/nylon solutions,” presented at the thirty-fourth Conference on Lasers and Electro-Optics (CLEO:2014), San Jose, CA, USA, 8–13 June. Paper FW3D.1 (2014).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Transverse intensity patterns imaged at the input or output surfaces, demonstrating the giant and isotropic self-defocusing effect in the m-cresol/nylon solution. (a) The focused Gaussian beam (12μm FWHM) at the input of the sample. (b) The output (33μm FWHM) due to normal diffraction after propagating 2mm in our sample at a power less than 1mW. (c) The output (219μm FWHM) due to strong defocusing nonlinearity at a power of 30mW. (d) The input dark cross (38 μm stripe width) created by using an amplitude mask of two thin wires. (e) Linear diffraction output after 5mm propagation in the sample at a power less than 1mW. (f) At a power of 100mW, the output profile shows that Y-junctions of diverging solitons are created with little variation between the horizontal and vertical directions.
Fig. 2
Fig. 2 Quantifying the defocusing nonlinearity of the m-cresol/nylon solutions with different concentrations. (a) The output beam diameter (after 2mm propagation) as a function of input power for different concentrations of nylon. (b) The measured |n2|, absolute values of the Kerr coefficient, as a function of nylon concentrations using the z-scan method. As seen from these figures, the strength of the nonlinearity in our thermal media can be easily turned across a large range, simply by varying the nylon concentration.
Fig. 3
Fig. 3 Transverse intensity patterns imaged at the input or output surfaces demonstrating formation of a dark soliton observed in m-cresol/nylon solution. (a) Input: a dark stripe with a width of 39 ± 2 μm created using a π-phase mask. (b) Linear output beam profile after 10 mm of propagation at power less than 1 mW. The dark stripe diffracts to a width of 100 ± 3 μm. (c) Nonlinear output beam profile after 10 mm of propagation at 50mW power. The stripe width decreases to 41 ± 2 μm.
Fig. 4
Fig. 4 Demonstration of dark soliton attraction. Transverse intensity patterns imaged at the input or output surfaces showing: (a) Interference indicating the two separate π-phase-jumps; (b) The two dark stripes at the input, separated by a distance of 100μm; (c) Linear output at power less than 1mW after 5mm of propagation. (d)-(f) Output patterns taken at different powers of 1.0, 2.0 and 3.0 W respectively. The stripe separation decreases to 64 μm in (f). (g) Plot of the stripe separation as a function of input power.

Tables (1)

Tables Icon

Table 1 Comparison of measured n2 values for various known thermal defocusing media.

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved