Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical trapping of nanoparticles in superfluid helium

Open Access Open Access

Abstract

Although nanoparticles have been used to study the properties of superfluid helium as fluid tracers, the interaction between nanoparticles and superfluid helium has remained largely unexplored. This is due to the lack of a technique to precisely trap and manipulate nanoparticles in superfluid helium. Optical tweezers, the three-dimensional confinement of a nanoparticle by a strongly focused beam of light, have been widely employed in investigating biomaterial nanomechanics, nanoscopic fluid properties, and ultrasensitive detection in various environments such as inside living cells, at gigapascal pressure, and under high vacuum. However, the cryogenic operation of solid-state-particle optical tweezers is poorly understood. In this study, we demonstrate the optical trapping of metallic and dielectric nanoparticles in superfluid helium below 2 K, which is two orders of magnitude lower than in previous experiments. We prepare the nanoparticles via in situ laser ablation. The nanoparticles are stably trapped with a single laser beam tightly focused in the superfluid helium. Our method provides a new approach for studying nanoscopic quantum hydrodynamic effects and interactions between quantum fluids and classical nanoobjects.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. INTRODUCTION

Superfluid helium is a peculiar quantum fluid appearing at low temperatures (below 2.17 K), and it comprises a non-viscous superfluid component with a viscous normal fluid component. The quantum nature of superfluid helium manifests itself in macroscopic phenomena such as unusually efficient heat transport, film flow, and vortex quantization. Owing to the higher transition temperature, a significantly larger number of superfluid helium atoms ($N \sim {10^{25}}$) can be prepared by just pumping helium vapor, which is advantageous compared with other superfluids, such as Bose–Einstein condensates of cold atoms ($N \mathbin{\lower.3ex\hbox{$\buildrel \lt \over{\smash{\scriptstyle\sim}\vphantom{_x}}$}} {10^7}$), which requires complicated experimental techniques such as laser cooling. The large heat capacity ensures that any nanomaterial injected into the superfluid helium is quickly cooled and thermalized. This enables exploring unprecedented interactions between quantum fluids and classical nanomaterials and nanoscopic quantum hydrodynamic effects [13]. A major obstacle in such approaches is the lack of experimental techniques to suspend/levitate the target nanoobject in quantum fluid, and controlling and probing the object motion precisely, although the optical transportation of the nanoparticles was demonstrated previously [4].

In this study, we demonstrate the stable suspension of nanoparticles in superfluid helium using optical trapping. Generally, optical trapping requires high numerical aperture (NA) objective lenses [5,6] comprising several optical components to realize suitable optical potentials. Irrespective of the research design, this is a desirable condition in biomaterial manipulation [68], micro-hydrodynamic studies [9,10], and trapping in extreme conditions [1120]. However, cryogenic conditions prohibit the use of multi-element optics due to the large thermal deformation and fragility of the bonding and housing materials. Optical-levitation-trap schemes have been proposed previously [21], where a long-working-distance and low-NA lens is placed outside cryostats to achieve optical trapping in low-temperature environments (${\sim}180\; {\rm{K}}$). In such techniques, an upward-directed laser beam pushes microparticles, thereby balancing the gravitational force. The low NA results in the relatively weak transverse optical force, which makes it difficult to trap smaller nanoparticles. In this study, we use a high-NA moulded aspheric lens [22] to implement simple all-optical single beam trapping [5]. The lens was placed in the liquid helium cryostat and immersed in superfluid helium as shown in Fig. 1(A). The strong gradient optical force combined with the very small thermal fluctuation energy (${\sim}{10^{- 4}}\;{\rm{eV}}$) realizes stable optical trapping of solid nanoparticles in superfluid helium. Our current study demonstrates optical trapping at 1.4 K, which is two orders of magnitude lower than previously reported [21,23]. The all-optical method enables us to probe the suspended particle properties, such as the size of the particles. Moreover, the method would also provide an unprecedented scheme to study nanoscopic quantum hydrodynamic phenomena such as translational and rotational Brownian motion in quantum fluids [1].

 figure: Fig. 1.

Fig. 1. Optical trapping of gold and zinc oxide nanoparticles in superfluid helium. (A) A linearly polarized laser beam is tightly focused with an aspheric lens (L1) immersed in superfluid helium. The target nanoparticles are loaded in superfluid helium via laser ablation with a focusing lens (L2). (B) SEM image of octahedral gold nanoparticles before laser ablation. (C) TEM image of gold nanoparticles ejected due to laser ablation. (D) Gold nanoparticle size distribution before (red) and after (blue) laser ablation. (E) Zinc oxide micro- and nanoparticles synthesized by laser ablation.

Download Full Size | PPT Slide | PDF

2. EXPERIMENTS

A. Synthesis of Octahedral Gold Nanoparticles

Octahedral gold nanoparticles were synthesized in solution via a previously reported method with a modification [24]. A 20 wt% poly (diallyldimethylammonium chloride) aqueous solution (${\rm{Mw}} = {{100000 - 200000}}$) ($80\; {\rm{mm}}^3$) and a $0.1 \;{\rm{mol}}.{{\rm{dm}}^{- 3}}$ HCl aqueous solution ($80\; {\rm{mm}}^3$) were injected into diethylene glycol ($4.0 \;{\rm{cm}}^3$) in a test tube with magnetic stirring at 30°C. A $19\; {\rm{mm}}^3$ portion of $0.11 \;{\rm{mol}}.{{\rm{dm}}^{- 3}}$ ${\rm{HAuCl}}{{{4}}_4}$ aqueous solution was added into the mixture, followed by heat treatment at 230°C for 60 min with vigorous stirring in a ${{\rm{N}}_2}$ atmosphere. After cooling to room temperature, the synthesized octahedral gold nanoparticles were separated from the solution by adding acetone ($4.0\; {\rm{cm}}^3$), followed by centrifugation at 15,000 rpm for 10 min. The precipitates of gold nanoparticles were dispersed in water, followed by centrifugation (15,000 rpm, 10 min). This washing procedure was repeated three times. Finally, the purified octahedral gold nanoparticles were dispersed again in $1.0\; {\rm{cm}}^3$ water.

B. Optical Trapping in Cryostat

We placed a $3\; {\rm{cm}} \times 3\; {\rm{cm}} \times 3\; {\rm{cm}}$ cuvette in superfluid helium. The cuvette sidewall has a mounting hole for the aspheric lens for optical trapping. The experimental process occurred entirely in this cuvette. The cuvette has small gaps between the walls, ensuring the flow of liquid helium to and from the cuvette. We mounted a coverslip coated with the gold nanoparticles and a bulk sintered semiconductor zinc oxide target in the cuvette. The liquid helium temperature is maintained at approximately 1.4 K during the experiment. Nanosecond light pulses from a frequency-doubled $Q$-switched Nd:YAG laser (wavelength 532 nm, pulse duration 10 ns, repetition rate 10 Hz, and pulse energy 1 mJ) were focused onto the target surface with a spot size of ${\sim}40\; \unicode{x00B5}{\rm m}$, using a lens of 200 mm focal length. The ejected particles were optically trapped using a continuous-wave laser (wavelength 785 nm). The typical power of the laser for the trapping is ${\sim}100 \;{\rm{mW}}$, ranging from 50 mW to 500 mW.

3. RESULTS

A. Calculation of Optical Force and Effective Potential Energy

Figure 2(A) shows the predicted axial optical force, which is along the $x$ axis, and the light propagation direction; the forces shown in the figure were calculated using the parameters matched to the experimental setup, enabling us to investigate whether the stable optical trapping in superfluid helium is possible. The $x$ component of the optical force exerted on a gold nanoparticle is shown as a function of the nanoparticle position $x$ on the optical axis (see Fig. 1(A) for the coordinate system). Gold nanoparticles are widely used in optical trapping, owing to the large polarizability [25] that enables stable optical trapping. The optical force is calculated based on the generalized Lorenz–Mie theory [26] for different particle sizes. The calculated optical force is two to three orders of magnitude higher than the gravitational force; therefore, the gravitational effect is negligible here. Smaller particles remain at equilibrium, where the optical force is zero and the slope of the curve is negative. This ensures that the particles experience a force toward the equilibrium point. This can be seen more clearly in Fig. 2(B), where we show the effective potential energy by integrating the force curve. Note that the optical force normally includes a non-conservative force [27], and the calculated effective potential energy is used just for estimating the stability of the optical trapping.

 figure: Fig. 2.

Fig. 2. Numerically calculated optical force. (A), (C) Axial optical force versus the axial position of the particle with different diameters. (B), (D) Corresponding effective potential energy curves. The data are shown only for the sizes in equilibrium.

Download Full Size | PPT Slide | PDF

The existence of the potential minimum indicates the possibility of stable optical trapping for smaller particles. Figure 2(A) reveals that there is no equilibrium point for larger particles. The overall size dependency is consistent with the Rayleigh scattering cross section of the nanoparticles, and thus, the “pushing” scattering force scales with the sixth power of the particle size [28]. In contrast, the optical dipole force scales with the third power of the particle size [29], which pulls the particle toward the focus of the light. Therefore, the scattering force is dominant for larger particles, whereas for smaller particles, the optical dipole force becomes dominant.

The particle size dependence of the effective potential energy depth is depicted in Fig. 3. It has been established that stable optical trapping requires the potential depth to be larger than $10 \times {k_B}T$. The horizontal green line indicates the corresponding threshold energy for $T = 300\; {\rm{K}}$, showing the difficulty of aspheric-lens-based optical trapping near room temperature. However, much lower threshold energy for superfluid helium (blue line in Fig. 3) enables stable optical trapping. The lower threshold size of the particle is 10 nm, and the upper threshold size of the particles is 77 nm. We also explore the possibility of optical trapping in superfluid helium for dielectric nanoparticles. Zinc oxide is a high-refractive-index material with larger polarizability. Figures 2(C) and 2(D) respectively show the corresponding optical force and effective potential energy curves for zinc oxide. The resulting effective potential energy depth shown in Fig. 3 indicates that stable optical trapping is possible also for zinc oxide nanoparticles of size 10–120 nm.

 figure: Fig. 3.

Fig. 3. Numerically calculated optical effective potential energy for optical trapping threshold diameter estimation. Depth of the effective potential as a function of the particle size with the stability threshold line, which is 10 times the thermal energy (green line for $T = 300\; {\rm{K}}$ and blue line for $T = 1.4\; {\rm{K}}$).

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. Optical trapping of nanoparticles in superfluid helium. (A) Schematic of the experiment. A pulsed nanosecond-laser beam is focused with a lens (L2) onto a target substrate. The loaded/synthesized nanoparticles are dispersed in the superfluid helium and optically trapped by a linearly polarized beam of light focused with a lens (L1) immersed in the superfluid helium. Light scattering from the optically trapped (B) gold and (C) zinc oxide nanoparticle is imaged through the optical windows of the cryostat, and recorded by a CMOS camera. (D) Estimated trapped particle size as a function of the scattering light power. The blue curve corresponds to the calculated relation between the particle size and the scattering power. The red stars indicate experimentally detected scattering powers. The red dotted lines correspond to the eye-guides.

Download Full Size | PPT Slide | PDF

1. Particle Loading

A major issue in nanoparticle optical trapping is preparing slow nanoparticles near the focal point. In particular, cryogenic conditions prohibit the use of the standard procedures such as the “go and pick” scheme [6] or using aerosols [30] to prepare nanoparticles. In this study, we utilize the laser ablation technique to load the nanoparticles [4,31]. Gold nanoparticles are coated on a glass coverslip, mounted in the liquid helium cryostat, and immersed in superfluid helium. The coverslip is irradiated by a pulsed laser light that releases gold nanoparticles. Figures 1(B) and 1(C) are typical scanning and transmission electron microscope (SEM and TEM) images before and after laser-ablation-induced ejection. Noticeable shape changes from octahedrons to spheres indicate that the ejection process accompanies melting and/or vaporization.

Figure 1(D) shows the particle size distribution before and after laser ablation. The size distributions before (after) laser ablation are well fitted using a Gaussian function with a mean of 60 nm (77 nm) and standard deviation of 8 nm (24 nm). Although the size distribution of the ejected gold nanoparticles is broader than that of the original gold nanoparticles, half of the ejected particles lie within the range of the stability-size regime 10-77 nm illustrated in Fig. 3.

Dielectric nanoparticles can be synthesized in situ using laser ablation in superfluid helium. Figure 1(E) shows a typical SEM image of the synthesized zinc oxide particles. The zinc oxide particles are highly spherical [31], which is suitable for optical trapping. Many synthesized zinc oxide particles have dimensionalities in the stability-size regime, although it is difficult to control the synthesized particle size distribution. This is in contrast with the case of gold nanoparticles, where the loaded-particle size distribution reflects the original size distribution.

Figure 4(A) illustrates the experimental arrangement. A gold-nanoparticle-coated coverslip is placed in a cuvette in the liquid helium cryostat. A lens for optical trapping (L1) is mounted in the middle of the cuvette sidewall. The cuvette has small gaps between the walls, ensuring the flow of liquid helium to and from the cuvette. After the liquid helium is transferred to the cryostat, the fluid is cooled using a vacuum pump, and the temperature falls below the superfluid transition temperature. We maintain this temperature 1.4 K during the experiment. The irradiation of a nanosecond laser pulse on the coverslip initiates the gold nanoparticle ejection process, and the ejected nanoparticles are dispersed into the cuvette. The gold nanoparticles exhibit random motion until landing on the cuvette surface or exiting the cuvette.

2. Optical Trapping in Superfluid Helium

Once a nanoparticle reaches the focal point of the tightly focused beam of light, it gets optically trapped. The strong light scattering enables visualizing the trapped nanoparticles, as shown in Fig. 4(B). In addition, the zinc oxide nanoparticles can be optically trapped by replacing the gold-nanoparticle-coated coverslip with the zinc oxide bulk target. In situ laser-ablation synthesis allows dispersing zinc oxide nanoparticles in superfluid helium. The nanoparticles are captured by the optical force and stably trapped thereafter. The trapped nanoparticles are very stable and can remain in the trap typically for over 30 min. If we tentatively block the laser beam, the trapped particle escapes from the trapping site, ensuring that the trapping is truly due to the optical force. An animation is provided in Visualization 1.

 figure: Fig. 5.

Fig. 5. Classical approximation of the expected nanoparticle motion. (A) Effective radial optical potential with a fitted harmonic potential curve. (B) Expected positional power spectral density, assuming classical behavior of the nanoparticle in superfluid helium.

Download Full Size | PPT Slide | PDF

Our method provides an optical-tweezers-based-approach [9,10] to study nanoscopic quantum hydrodynamics and interaction between quantum fluids and classical nanoobjects [13]. Determining the trapped particle size is very necessary because the size governs the interaction between the particle and the surrounding quantum fluid. In our study, zinc oxide particles of sizes ranging from nanometers to micrometers [31] were fabricated through the laser-ablation process. We demonstrate the size determination of the actual trapped particle using the Mie scattering theory [32]. The blue curve in Fig. 4(D) corresponds to the theoretically calculated relation between the particle size and the optical power scattered from the trapped particle into the observation solid angle. The red stars in the figure indicate the detected actual scattering powers obtained from separate trapping events. See Supplement 1 for detailed discussion. Note that the values are corrected in terms of the total detection efficiency, including the transmissivity of the detection optics. The scattering powers are well below the Mie resonance region starting from ${\sim}1 \times 5 \;{\rm{pW}}$, where the relation between particle size and scattering power is not straightforward. In other words, in our experimental condition, Rayleigh scattering is considered a good approximation, where the scattering power is proportional to the sixth power of particle size. Accordingly, the curve is almost straight in the log–log plot. The trapped particle size was determined to be 30–50 nm by comparing the experimental data and the theoretical curve, which exactly matches the calculated stability size range.

4. DISCUSSION AND OUTLOOK

The techniques developed in this study enable trapping and manipulating nanoparticles in superfluid helium and also characterizing the trapped particle all-optically. Our method will open up a new pathway to study quantum hydrodynamics, as our optical trapping scheme can be extended to monitor trapped nanoparticle positions with high spatial and temporal resolutions [10], enabling the observation of Brownian motion in quantum fluid [1]. Rotational and torsional motions of the trapped nanoparticle can also be detected with high accuracy [19,33]. Because the interaction between nanoparticles and superfluid helium is considered to be fundamentally different from the classical fluid case [1,34] and has never before been explicitly revealed experimentally, the nanoparticle motion tracking in superfluid helium would provide invaluable information about quantum hydrodynamics. However, this non-classical nature also makes it challenging to measure the nanoparticle dynamics with appropriate calibration. The nanoparticle motion in the optical trap is commonly recorded using a quadrant photodiode or two balanced photodiodes [13], since the typical characteristic frequency of the motional signal is ${\sim}100\; {\rm{kHz}}$ (see below for our case) and is much higher than the conventional camera frame rates. The determination of the volt-to-meter conversion factor, or the spatial calibration, of the photodiode-based detection is complicated. In particular, the spatial calibration of the overdamped oscillational motion is difficult and needs additional equipment such as a precise translation stage [35,36] when the effective viscosity of the fluid is unknown or the theoretical description of the nanoparticle motion is unclear, as in our case.

Despite the above-mentioned difficulties, nanoparticle motion tracking in superfluid helium is promising. To demonstrate the feasibility of the tracking experiment, we show the classically expected motion of the nanoparticle as a very rough approximation. By fitting the effective optical potential with a harmonic potential as in Fig. 5(A), we can derive the trap stiffness. With a typical nanoparticle size of $D = 40 \;{\rm{nm}}$, the oscillational frequency is calculated to be ${\omega _0}/2\pi = 96\; {\rm{kHz}}$ along the radial direction. If we assume the classical viscosity $\eta = 1.416 \times {10^{- 6}} \; {\rm Pa}\,{\rm s}$ at $T = 1.4\; {\rm{K}}$ [37], the effective damping rate is $\gamma = 3\pi \eta D/m = 2.84 \;{\rm{MHz}}$, indicating the overdamped oscillation. Based on the standard classical Langevin equation, we can estimate the analytical positional power spectral density as shown in Fig. 5(B). The curve shows a clear overdamping behavior with the corner frequency of ${\sim}20\; {\rm{kHz}}$. The typical noise floor is ${\sim}{10^{- 24}} \;{{\rm{m}}^2}/{\rm{Hz}}$ of the similar type technique [38], and ensures that the nanoparticle motion tracking experiment would be possible with appropriate calibration, as mentioned above, and would reveal the fascinating features of the interaction between nanoparticles and superfluid helium.

Another possible extension of the current study is combining our method with existing ingenious techniques for superfluid helium research. One exciting example is the quantum vortex visualization in superfluid helium [39]. When a group of tracer nanoparticles is dispersed in superfluid helium, the particles are stabilized along the quantum vortex line. This is because the quantum vortex core is a local minimum of the pressure field. Therefore, quantum vortex dynamics can be visualized by imaging the scattered light from the nanoparticles, leading to recent experiments and studies on the hidden nature of vortex–vortex interaction [4042]. These remarkable experiments, however, rely on observation of the free motion of the quantum vortex, and the accidental collision of two vortices. Our results exhibit a striking possibility: optical trapping and control of the composite quantum vortex and tracer particle system. This technique could act as a new method to control quantum vortex motion, and dynamically perturb and excite quantum vortex states.

Funding

Precursory Research for Embryonic Science and Technology (JPMJPR18T5, JPMJPR1909); Japan Society for the Promotion of Science (JP17K17841, JP18KK0387, JP21H05019); Ministry of Education, Culture, Sports, Science and Technology (JP16H06505, JP16H06507).

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Supplemental document

See Supplement 1 for supporting content.

REFERENCES

1. X. Li, R. Cheng, T. Li, and Q. Niu, “Brownian motion in superfluid 4He,” arXiv:1107.0485 [cond-mat.stat-mech] (2011).

2. N. L. Balazs, “Brownian motion of a mirror in superfluid helium,” Phys. Rev. 109, 232–234 (1958). [CrossRef]  

3. P. Moroshkin, P. Leiderer, K. Kono, S. Inui, and M. Tsubota, “Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium,” Phys. Rev. Lett. 122, 174502 (2019). [CrossRef]  

4. K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243, 3829–3833 (2006). [CrossRef]  

5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]  

6. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef]  

7. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987). [CrossRef]  

8. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993). [CrossRef]  

9. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998). [CrossRef]  

10. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010). [CrossRef]  

11. T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011). [CrossRef]  

12. J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9, 425–429 (2014). [CrossRef]  

13. F. Ricci, M. T. Cuairan, G. P. Conangla, A. W. Schell, and R. Quidant, “Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing,” Nano Lett. 19, 6711–6715 (2019). [CrossRef]  

14. R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013). [CrossRef]  

15. A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976). [CrossRef]  

16. J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012). [CrossRef]  

17. J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, “Ultrasensitive torque detection with an optically levitated nanorotor,” Nat. Nanotechnol. 15, 89–93 (2020). [CrossRef]  

18. A. T. M. A. Rahman and P. F. Barker, “Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals,” Nat. Photonics 11, 634–638 (2017). [CrossRef]  

19. Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013). [CrossRef]  

20. Y. Arita, S. H. Simpson, P. Zemánek, and K. Dholakia, “Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling,” Sci. Adv. 6, eaaz9858 (2020). [CrossRef]  

21. C. Mund and R. Zellner, “Optical levitation of single microdroplets at temperatures down to 180K,” ChemPhysChem 4, 630–638 (2003). [CrossRef]  

22. Y. Minowa, Y. Toyota, and M. Ashida, “In situ tuning of whispering gallery modes of levitated silica microspheres,” J. Opt. Soc. Am. B 34, C20–C24 (2017). [CrossRef]  

23. S. Ishizaka, T. Wada, and N. Kitamura, “In situ observations of freezing processes of single micrometer-sized aqueous ammonium sulfate droplets in air,” Chem. Phys. Lett. 506, 117–121 (2011). [CrossRef]  

24. C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2, 1760–1769 (2008). [CrossRef]  

25. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994). [CrossRef]  

26. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196 (2007). [CrossRef]  

27. S. Divitt, L. Rondin, and L. Novotny, “Cancellation of non-conservative scattering forces in optical traps by counter-propagating beams,” Opt. Lett. 40, 1900–1903 (2015). [CrossRef]  

28. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

29. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]  

30. Y. Minowa, R. Kawai, and M. Ashida, “Optical levitation of a microdroplet containing a single quantum dot,” Opt. Lett. 40, 906–909 (2015). [CrossRef]  

31. Y. Minowa, Y. Oguni, and M. Ashida, “Inner structure of ZnO microspheres fabricated via laser ablation in superfluid helium,” Opt. Express 25, 10449–10455 (2017). [CrossRef]  

32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

33. T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016). [CrossRef]  

34. J. Jäger, B. Schuderer, and W. Schoepe, “Turbulent and laminar drag of superfluid helium on an oscillating microsphere,” Phys. Rev. Lett. 74, 566–569 (1995). [CrossRef]  

35. S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A 9, S264–S266 (2007). [CrossRef]  

36. S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006). [CrossRef]  

37. R. J. Donnelly and C. F. Barenghi, “The observed properties of liquid helium at the saturated vapor pressure,” J. Phys. Chem. Ref. Data 27, 1217–1274 (1998). [CrossRef]  

38. M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175–179 (2013). [CrossRef]  

39. G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, “Superfluid helium: visualization of quantized vortices,” Nature 441, 588 (2006). [CrossRef]  

40. G. P. Bewley, M. S. Paoletti, K. R. Sreenivasan, and D. P. Lathrop, “Characterization of reconnecting vortices in superfluid helium,” Proc. Natl. Acad. Sci. USA 105, 13707–13710 (2008). [CrossRef]  

41. M. S. Paoletti, M. E. Fisher, and D. P. Lathrop, “Reconnection dynamics for quantized vortices,” Phys. D 239, 1367–1377 (2010). [CrossRef]  

42. Y. Minowa, S. Aoyagi, S. Inui, T. Nakagawa, G. Asaka, M. Tsubota, and M. Ashida, “Visualisation of quantised vortex reconnection as enabled by laser ablation,” arXiv:2107.04826 [cond-mat, physics:physics] (2021).

References

  • View by:

  1. X. Li, R. Cheng, T. Li, and Q. Niu, “Brownian motion in superfluid 4He,” arXiv:1107.0485 [cond-mat.stat-mech] (2011).
  2. N. L. Balazs, “Brownian motion of a mirror in superfluid helium,” Phys. Rev. 109, 232–234 (1958).
    [Crossref]
  3. P. Moroshkin, P. Leiderer, K. Kono, S. Inui, and M. Tsubota, “Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium,” Phys. Rev. Lett. 122, 174502 (2019).
    [Crossref]
  4. K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243, 3829–3833 (2006).
    [Crossref]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref]
  6. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [Crossref]
  7. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
    [Crossref]
  8. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
    [Crossref]
  9. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
    [Crossref]
  10. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
    [Crossref]
  11. T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
    [Crossref]
  12. J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9, 425–429 (2014).
    [Crossref]
  13. F. Ricci, M. T. Cuairan, G. P. Conangla, A. W. Schell, and R. Quidant, “Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing,” Nano Lett. 19, 6711–6715 (2019).
    [Crossref]
  14. R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
    [Crossref]
  15. A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).
    [Crossref]
  16. J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
    [Crossref]
  17. J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, “Ultrasensitive torque detection with an optically levitated nanorotor,” Nat. Nanotechnol. 15, 89–93 (2020).
    [Crossref]
  18. A. T. M. A. Rahman and P. F. Barker, “Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals,” Nat. Photonics 11, 634–638 (2017).
    [Crossref]
  19. Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
    [Crossref]
  20. Y. Arita, S. H. Simpson, P. Zemánek, and K. Dholakia, “Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling,” Sci. Adv. 6, eaaz9858 (2020).
    [Crossref]
  21. C. Mund and R. Zellner, “Optical levitation of single microdroplets at temperatures down to 180K,” ChemPhysChem 4, 630–638 (2003).
    [Crossref]
  22. Y. Minowa, Y. Toyota, and M. Ashida, “In situ tuning of whispering gallery modes of levitated silica microspheres,” J. Opt. Soc. Am. B 34, C20–C24 (2017).
    [Crossref]
  23. S. Ishizaka, T. Wada, and N. Kitamura, “In situ observations of freezing processes of single micrometer-sized aqueous ammonium sulfate droplets in air,” Chem. Phys. Lett. 506, 117–121 (2011).
    [Crossref]
  24. C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2, 1760–1769 (2008).
    [Crossref]
  25. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
    [Crossref]
  26. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196 (2007).
    [Crossref]
  27. S. Divitt, L. Rondin, and L. Novotny, “Cancellation of non-conservative scattering forces in optical traps by counter-propagating beams,” Opt. Lett. 40, 1900–1903 (2015).
    [Crossref]
  28. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  29. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
    [Crossref]
  30. Y. Minowa, R. Kawai, and M. Ashida, “Optical levitation of a microdroplet containing a single quantum dot,” Opt. Lett. 40, 906–909 (2015).
    [Crossref]
  31. Y. Minowa, Y. Oguni, and M. Ashida, “Inner structure of ZnO microspheres fabricated via laser ablation in superfluid helium,” Opt. Express 25, 10449–10455 (2017).
    [Crossref]
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  33. T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
    [Crossref]
  34. J. Jäger, B. Schuderer, and W. Schoepe, “Turbulent and laminar drag of superfluid helium on an oscillating microsphere,” Phys. Rev. Lett. 74, 566–569 (1995).
    [Crossref]
  35. S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A 9, S264–S266 (2007).
    [Crossref]
  36. S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
    [Crossref]
  37. R. J. Donnelly and C. F. Barenghi, “The observed properties of liquid helium at the saturated vapor pressure,” J. Phys. Chem. Ref. Data 27, 1217–1274 (1998).
    [Crossref]
  38. M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175–179 (2013).
    [Crossref]
  39. G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, “Superfluid helium: visualization of quantized vortices,” Nature 441, 588 (2006).
    [Crossref]
  40. G. P. Bewley, M. S. Paoletti, K. R. Sreenivasan, and D. P. Lathrop, “Characterization of reconnecting vortices in superfluid helium,” Proc. Natl. Acad. Sci. USA 105, 13707–13710 (2008).
    [Crossref]
  41. M. S. Paoletti, M. E. Fisher, and D. P. Lathrop, “Reconnection dynamics for quantized vortices,” Phys. D 239, 1367–1377 (2010).
    [Crossref]
  42. Y. Minowa, S. Aoyagi, S. Inui, T. Nakagawa, G. Asaka, M. Tsubota, and M. Ashida, “Visualisation of quantised vortex reconnection as enabled by laser ablation,” arXiv:2107.04826 [cond-mat, physics:physics] (2021).

2020 (2)

J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, “Ultrasensitive torque detection with an optically levitated nanorotor,” Nat. Nanotechnol. 15, 89–93 (2020).
[Crossref]

Y. Arita, S. H. Simpson, P. Zemánek, and K. Dholakia, “Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling,” Sci. Adv. 6, eaaz9858 (2020).
[Crossref]

2019 (2)

F. Ricci, M. T. Cuairan, G. P. Conangla, A. W. Schell, and R. Quidant, “Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing,” Nano Lett. 19, 6711–6715 (2019).
[Crossref]

P. Moroshkin, P. Leiderer, K. Kono, S. Inui, and M. Tsubota, “Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium,” Phys. Rev. Lett. 122, 174502 (2019).
[Crossref]

2017 (3)

2016 (1)

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref]

2015 (2)

2014 (1)

J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9, 425–429 (2014).
[Crossref]

2013 (3)

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175–179 (2013).
[Crossref]

2012 (1)

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

2011 (2)

S. Ishizaka, T. Wada, and N. Kitamura, “In situ observations of freezing processes of single micrometer-sized aqueous ammonium sulfate droplets in air,” Chem. Phys. Lett. 506, 117–121 (2011).
[Crossref]

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

2010 (2)

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

M. S. Paoletti, M. E. Fisher, and D. P. Lathrop, “Reconnection dynamics for quantized vortices,” Phys. D 239, 1367–1377 (2010).
[Crossref]

2008 (2)

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2, 1760–1769 (2008).
[Crossref]

G. P. Bewley, M. S. Paoletti, K. R. Sreenivasan, and D. P. Lathrop, “Characterization of reconnecting vortices in superfluid helium,” Proc. Natl. Acad. Sci. USA 105, 13707–13710 (2008).
[Crossref]

2007 (2)

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A 9, S264–S266 (2007).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196 (2007).
[Crossref]

2006 (3)

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, “Superfluid helium: visualization of quantized vortices,” Nature 441, 588 (2006).
[Crossref]

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243, 3829–3833 (2006).
[Crossref]

2003 (1)

C. Mund and R. Zellner, “Optical levitation of single microdroplets at temperatures down to 180K,” ChemPhysChem 4, 630–638 (2003).
[Crossref]

1998 (2)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

R. J. Donnelly and C. F. Barenghi, “The observed properties of liquid helium at the saturated vapor pressure,” J. Phys. Chem. Ref. Data 27, 1217–1274 (1998).
[Crossref]

1996 (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

1995 (1)

J. Jäger, B. Schuderer, and W. Schoepe, “Turbulent and laminar drag of superfluid helium on an oscillating microsphere,” Phys. Rev. Lett. 74, 566–569 (1995).
[Crossref]

1994 (1)

1993 (1)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[Crossref]

1987 (2)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref]

1986 (1)

1976 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).
[Crossref]

1958 (1)

N. L. Balazs, “Brownian motion of a mirror in superfluid helium,” Phys. Rev. 109, 232–234 (1958).
[Crossref]

Ahn, J.

J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, “Ultrasensitive torque detection with an optically levitated nanorotor,” Nat. Nanotechnol. 15, 89–93 (2020).
[Crossref]

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref]

Anders, J.

J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9, 425–429 (2014).
[Crossref]

Aoyagi, S.

Y. Minowa, S. Aoyagi, S. Inui, T. Nakagawa, G. Asaka, M. Tsubota, and M. Ashida, “Visualisation of quantised vortex reconnection as enabled by laser ablation,” arXiv:2107.04826 [cond-mat, physics:physics] (2021).

Arita, Y.

Y. Arita, S. H. Simpson, P. Zemánek, and K. Dholakia, “Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling,” Sci. Adv. 6, eaaz9858 (2020).
[Crossref]

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

Asaka, G.

Y. Minowa, S. Aoyagi, S. Inui, T. Nakagawa, G. Asaka, M. Tsubota, and M. Ashida, “Visualisation of quantised vortex reconnection as enabled by laser ablation,” arXiv:2107.04826 [cond-mat, physics:physics] (2021).

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

Ashida, M.

Y. Minowa, Y. Toyota, and M. Ashida, “In situ tuning of whispering gallery modes of levitated silica microspheres,” J. Opt. Soc. Am. B 34, C20–C24 (2017).
[Crossref]

Y. Minowa, Y. Oguni, and M. Ashida, “Inner structure of ZnO microspheres fabricated via laser ablation in superfluid helium,” Opt. Express 25, 10449–10455 (2017).
[Crossref]

Y. Minowa, R. Kawai, and M. Ashida, “Optical levitation of a microdroplet containing a single quantum dot,” Opt. Lett. 40, 906–909 (2015).
[Crossref]

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243, 3829–3833 (2006).
[Crossref]

Y. Minowa, S. Aoyagi, S. Inui, T. Nakagawa, G. Asaka, M. Tsubota, and M. Ashida, “Visualisation of quantised vortex reconnection as enabled by laser ablation,” arXiv:2107.04826 [cond-mat, physics:physics] (2021).

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).
[Crossref]

Balazs, N. L.

N. L. Balazs, “Brownian motion of a mirror in superfluid helium,” Phys. Rev. 109, 232–234 (1958).
[Crossref]

Bang, J.

J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, “Ultrasensitive torque detection with an optically levitated nanorotor,” Nat. Nanotechnol. 15, 89–93 (2020).
[Crossref]

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref]

Barenghi, C. F.

R. J. Donnelly and C. F. Barenghi, “The observed properties of liquid helium at the saturated vapor pressure,” J. Phys. Chem. Ref. Data 27, 1217–1274 (1998).
[Crossref]

Barker, P.

J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9, 425–429 (2014).
[Crossref]

Barker, P. F.

A. T. M. A. Rahman and P. F. Barker, “Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals,” Nat. Photonics 11, 634–638 (2017).
[Crossref]

Bewley, G. P.

G. P. Bewley, M. S. Paoletti, K. R. Sreenivasan, and D. P. Lathrop, “Characterization of reconnecting vortices in superfluid helium,” Proc. Natl. Acad. Sci. USA 105, 13707–13710 (2008).
[Crossref]

G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, “Superfluid helium: visualization of quantized vortices,” Nature 441, 588 (2006).
[Crossref]

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
[Crossref]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bowman, R. W.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196 (2007).
[Crossref]

Brown, L. J.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175–179 (2013).
[Crossref]

Chen, M.

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2, 1760–1769 (2008).
[Crossref]

Cheng, R.

X. Li, R. Cheng, T. Li, and Q. Niu, “Brownian motion in superfluid 4He,” arXiv:1107.0485 [cond-mat.stat-mech] (2011).

Cho, S. O.

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2, 1760–1769 (2008).
[Crossref]

Chu, S.

Conangla, G. P.

F. Ricci, M. T. Cuairan, G. P. Conangla, A. W. Schell, and R. Quidant, “Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing,” Nano Lett. 19, 6711–6715 (2019).
[Crossref]

Cuairan, M. T.

F. Ricci, M. T. Cuairan, G. P. Conangla, A. W. Schell, and R. Quidant, “Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing,” Nano Lett. 19, 6711–6715 (2019).
[Crossref]

de Abajo, F. J. G.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175–179 (2013).
[Crossref]

Deesuwan, T.

J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9, 425–429 (2014).
[Crossref]

Deutsch, B.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Dholakia, K.

Y. Arita, S. H. Simpson, P. Zemánek, and K. Dholakia, “Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling,” Sci. Adv. 6, eaaz9858 (2020).
[Crossref]

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

Di Leonardo, R.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

Divitt, S.

Donnelly, R. J.

R. J. Donnelly and C. F. Barenghi, “The observed properties of liquid helium at the saturated vapor pressure,” J. Phys. Chem. Ref. Data 27, 1217–1274 (1998).
[Crossref]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).
[Crossref]

Fisher, M. E.

M. S. Paoletti, M. E. Fisher, and D. P. Lathrop, “Reconnection dynamics for quantized vortices,” Phys. D 239, 1367–1377 (2010).
[Crossref]

Flyvbjerg, H.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Gao, X.

J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, “Ultrasensitive torque detection with an optically levitated nanorotor,” Nat. Nanotechnol. 15, 89–93 (2020).
[Crossref]

Geiselmann, M.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175–179 (2013).
[Crossref]

Gibson, G.

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A 9, S264–S266 (2007).
[Crossref]

Gibson, G. M.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

Gieseler, J.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196 (2007).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Hoang, T. M.

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref]

Howard, J.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Ichimiya, M.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243, 3829–3833 (2006).
[Crossref]

Iida, T.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243, 3829–3833 (2006).
[Crossref]

Imaizumi, K.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243, 3829–3833 (2006).
[Crossref]

Inaba, K.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243, 3829–3833 (2006).
[Crossref]

Inui, S.

P. Moroshkin, P. Leiderer, K. Kono, S. Inui, and M. Tsubota, “Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium,” Phys. Rev. Lett. 122, 174502 (2019).
[Crossref]

Y. Minowa, S. Aoyagi, S. Inui, T. Nakagawa, G. Asaka, M. Tsubota, and M. Ashida, “Visualisation of quantised vortex reconnection as enabled by laser ablation,” arXiv:2107.04826 [cond-mat, physics:physics] (2021).

Ishihara, H.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243, 3829–3833 (2006).
[Crossref]

Ishizaka, S.

S. Ishizaka, T. Wada, and N. Kitamura, “In situ observations of freezing processes of single micrometer-sized aqueous ammonium sulfate droplets in air,” Chem. Phys. Lett. 506, 117–121 (2011).
[Crossref]

Itoh, T.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243, 3829–3833 (2006).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Jäger, J.

J. Jäger, B. Schuderer, and W. Schoepe, “Turbulent and laminar drag of superfluid helium on an oscillating microsphere,” Phys. Rev. Lett. 74, 566–569 (1995).
[Crossref]

Ju, P.

J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, “Ultrasensitive torque detection with an optically levitated nanorotor,” Nat. Nanotechnol. 15, 89–93 (2020).
[Crossref]

Juan, M. L.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175–179 (2013).
[Crossref]

Jülicher, F.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Katayama, K.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243, 3829–3833 (2006).
[Crossref]

Kawai, R.

Keen, S.

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A 9, S264–S266 (2007).
[Crossref]

Kheifets, S.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

Kitamura, N.

S. Ishizaka, T. Wada, and N. Kitamura, “In situ observations of freezing processes of single micrometer-sized aqueous ammonium sulfate droplets in air,” Chem. Phys. Lett. 506, 117–121 (2011).
[Crossref]

Knöner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196 (2007).
[Crossref]

Kono, K.

P. Moroshkin, P. Leiderer, K. Kono, S. Inui, and M. Tsubota, “Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium,” Phys. Rev. Lett. 122, 174502 (2019).
[Crossref]

Koppens, F.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175–179 (2013).
[Crossref]

Lathrop, D. P.

M. S. Paoletti, M. E. Fisher, and D. P. Lathrop, “Reconnection dynamics for quantized vortices,” Phys. D 239, 1367–1377 (2010).
[Crossref]

G. P. Bewley, M. S. Paoletti, K. R. Sreenivasan, and D. P. Lathrop, “Characterization of reconnecting vortices in superfluid helium,” Proc. Natl. Acad. Sci. USA 105, 13707–13710 (2008).
[Crossref]

G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, “Superfluid helium: visualization of quantized vortices,” Nature 441, 588 (2006).
[Crossref]

Leach, J.

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A 9, S264–S266 (2007).
[Crossref]

Lee, E. J.

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2, 1760–1769 (2008).
[Crossref]

Leiderer, P.

P. Moroshkin, P. Leiderer, K. Kono, S. Inui, and M. Tsubota, “Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium,” Phys. Rev. Lett. 122, 174502 (2019).
[Crossref]

Li, C.

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2, 1760–1769 (2008).
[Crossref]

Li, T.

J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, “Ultrasensitive torque detection with an optically levitated nanorotor,” Nat. Nanotechnol. 15, 89–93 (2020).
[Crossref]

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref]

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

X. Li, R. Cheng, T. Li, and Q. Niu, “Brownian motion in superfluid 4He,” arXiv:1107.0485 [cond-mat.stat-mech] (2011).

Li, X.

X. Li, R. Cheng, T. Li, and Q. Niu, “Brownian motion in superfluid 4He,” arXiv:1107.0485 [cond-mat.stat-mech] (2011).

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196 (2007).
[Crossref]

Ma, Y.

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref]

Mazilu, M.

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

Medellin, D.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

Millen, J.

J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9, 425–429 (2014).
[Crossref]

Minowa, Y.

Moroshkin, P.

P. Moroshkin, P. Leiderer, K. Kono, S. Inui, and M. Tsubota, “Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium,” Phys. Rev. Lett. 122, 174502 (2019).
[Crossref]

Mund, C.

C. Mund and R. Zellner, “Optical levitation of single microdroplets at temperatures down to 180K,” ChemPhysChem 4, 630–638 (2003).
[Crossref]

Nakagawa, T.

Y. Minowa, S. Aoyagi, S. Inui, T. Nakagawa, G. Asaka, M. Tsubota, and M. Ashida, “Visualisation of quantised vortex reconnection as enabled by laser ablation,” arXiv:2107.04826 [cond-mat, physics:physics] (2021).

Nieminen, T. A.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196 (2007).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Niu, Q.

X. Li, R. Cheng, T. Li, and Q. Niu, “Brownian motion in superfluid 4He,” arXiv:1107.0485 [cond-mat.stat-mech] (2011).

Novotny, L.

S. Divitt, L. Rondin, and L. Novotny, “Cancellation of non-conservative scattering forces in optical traps by counter-propagating beams,” Opt. Lett. 40, 1900–1903 (2015).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Oguni, Y.

Padgett, M. J.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A 9, S264–S266 (2007).
[Crossref]

Paoletti, M. S.

M. S. Paoletti, M. E. Fisher, and D. P. Lathrop, “Reconnection dynamics for quantized vortices,” Phys. D 239, 1367–1377 (2010).
[Crossref]

G. P. Bewley, M. S. Paoletti, K. R. Sreenivasan, and D. P. Lathrop, “Characterization of reconnecting vortices in superfluid helium,” Proc. Natl. Acad. Sci. USA 105, 13707–13710 (2008).
[Crossref]

Pavone, F. S.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Quidant, R.

F. Ricci, M. T. Cuairan, G. P. Conangla, A. W. Schell, and R. Quidant, “Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing,” Nano Lett. 19, 6711–6715 (2019).
[Crossref]

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175–179 (2013).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Rahman, A. T. M. A.

A. T. M. A. Rahman and P. F. Barker, “Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals,” Nat. Photonics 11, 634–638 (2017).
[Crossref]

Raizen, M. G.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

Renger, J.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175–179 (2013).
[Crossref]

Ricci, F.

F. Ricci, M. T. Cuairan, G. P. Conangla, A. W. Schell, and R. Quidant, “Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing,” Nano Lett. 19, 6711–6715 (2019).
[Crossref]

Robicheaux, F.

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref]

Rondin, L.

Rubinsztein-Dunlop, H.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196 (2007).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Saglimbeni, F.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

Say, J. M.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175–179 (2013).
[Crossref]

Schäffer, E.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Schell, A. W.

F. Ricci, M. T. Cuairan, G. P. Conangla, A. W. Schell, and R. Quidant, “Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing,” Nano Lett. 19, 6711–6715 (2019).
[Crossref]

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[Crossref]

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[Crossref]

Schoepe, W.

J. Jäger, B. Schuderer, and W. Schoepe, “Turbulent and laminar drag of superfluid helium on an oscillating microsphere,” Phys. Rev. Lett. 74, 566–569 (1995).
[Crossref]

Schuderer, B.

J. Jäger, B. Schuderer, and W. Schoepe, “Turbulent and laminar drag of superfluid helium on an oscillating microsphere,” Phys. Rev. Lett. 74, 566–569 (1995).
[Crossref]

Shuford, K. L.

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2, 1760–1769 (2008).
[Crossref]

Simpson, S. H.

Y. Arita, S. H. Simpson, P. Zemánek, and K. Dholakia, “Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling,” Sci. Adv. 6, eaaz9858 (2020).
[Crossref]

Sreenivasan, K. R.

G. P. Bewley, M. S. Paoletti, K. R. Sreenivasan, and D. P. Lathrop, “Characterization of reconnecting vortices in superfluid helium,” Proc. Natl. Acad. Sci. USA 105, 13707–13710 (2008).
[Crossref]

G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, “Superfluid helium: visualization of quantized vortices,” Nature 441, 588 (2006).
[Crossref]

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196 (2007).
[Crossref]

Svoboda, K.

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
[Crossref]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[Crossref]

Tolic-Nørrelykke, S. F.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Toyota, Y.

Tsubota, M.

P. Moroshkin, P. Leiderer, K. Kono, S. Inui, and M. Tsubota, “Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium,” Phys. Rev. Lett. 122, 174502 (2019).
[Crossref]

Y. Minowa, S. Aoyagi, S. Inui, T. Nakagawa, G. Asaka, M. Tsubota, and M. Ashida, “Visualisation of quantised vortex reconnection as enabled by laser ablation,” arXiv:2107.04826 [cond-mat, physics:physics] (2021).

Wada, T.

S. Ishizaka, T. Wada, and N. Kitamura, “In situ observations of freezing processes of single micrometer-sized aqueous ammonium sulfate droplets in air,” Chem. Phys. Lett. 506, 117–121 (2011).
[Crossref]

Xu, Z.

J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, “Ultrasensitive torque detection with an optically levitated nanorotor,” Nat. Nanotechnol. 15, 89–93 (2020).
[Crossref]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref]

Yin, Z.-Q.

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref]

Zellner, R.

C. Mund and R. Zellner, “Optical levitation of single microdroplets at temperatures down to 180K,” ChemPhysChem 4, 630–638 (2003).
[Crossref]

Zemánek, P.

Y. Arita, S. H. Simpson, P. Zemánek, and K. Dholakia, “Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling,” Sci. Adv. 6, eaaz9858 (2020).
[Crossref]

ACS Nano (1)

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2, 1760–1769 (2008).
[Crossref]

Appl. Phys. Lett. (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).
[Crossref]

Chem. Phys. Lett. (1)

S. Ishizaka, T. Wada, and N. Kitamura, “In situ observations of freezing processes of single micrometer-sized aqueous ammonium sulfate droplets in air,” Chem. Phys. Lett. 506, 117–121 (2011).
[Crossref]

ChemPhysChem (1)

C. Mund and R. Zellner, “Optical levitation of single microdroplets at temperatures down to 180K,” ChemPhysChem 4, 630–638 (2003).
[Crossref]

J. Opt. A (2)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196 (2007).
[Crossref]

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A 9, S264–S266 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

R. J. Donnelly and C. F. Barenghi, “The observed properties of liquid helium at the saturated vapor pressure,” J. Phys. Chem. Ref. Data 27, 1217–1274 (1998).
[Crossref]

Nano Lett. (1)

F. Ricci, M. T. Cuairan, G. P. Conangla, A. W. Schell, and R. Quidant, “Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing,” Nano Lett. 19, 6711–6715 (2019).
[Crossref]

Nat. Commun. (1)

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

Nat. Nanotechnol. (3)

J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9, 425–429 (2014).
[Crossref]

J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, “Ultrasensitive torque detection with an optically levitated nanorotor,” Nat. Nanotechnol. 15, 89–93 (2020).
[Crossref]

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol. 8, 175–179 (2013).
[Crossref]

Nat. Photonics (1)

A. T. M. A. Rahman and P. F. Barker, “Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals,” Nat. Photonics 11, 634–638 (2017).
[Crossref]

Nat. Phys. (1)

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

Nature (4)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, “Superfluid helium: visualization of quantized vortices,” Nature 441, 588 (2006).
[Crossref]

Opt. Commun. (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. D (1)

M. S. Paoletti, M. E. Fisher, and D. P. Lathrop, “Reconnection dynamics for quantized vortices,” Phys. D 239, 1367–1377 (2010).
[Crossref]

Phys. Rev. (1)

N. L. Balazs, “Brownian motion of a mirror in superfluid helium,” Phys. Rev. 109, 232–234 (1958).
[Crossref]

Phys. Rev. Lett. (5)

P. Moroshkin, P. Leiderer, K. Kono, S. Inui, and M. Tsubota, “Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium,” Phys. Rev. Lett. 122, 174502 (2019).
[Crossref]

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref]

J. Jäger, B. Schuderer, and W. Schoepe, “Turbulent and laminar drag of superfluid helium on an oscillating microsphere,” Phys. Rev. Lett. 74, 566–569 (1995).
[Crossref]

Phys. Status Solidi B (1)

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243, 3829–3833 (2006).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

G. P. Bewley, M. S. Paoletti, K. R. Sreenivasan, and D. P. Lathrop, “Characterization of reconnecting vortices in superfluid helium,” Proc. Natl. Acad. Sci. USA 105, 13707–13710 (2008).
[Crossref]

Rev. Sci. Instrum. (1)

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Sci. Adv. (1)

Y. Arita, S. H. Simpson, P. Zemánek, and K. Dholakia, “Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling,” Sci. Adv. 6, eaaz9858 (2020).
[Crossref]

Science (2)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

Other (4)

X. Li, R. Cheng, T. Li, and Q. Niu, “Brownian motion in superfluid 4He,” arXiv:1107.0485 [cond-mat.stat-mech] (2011).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Y. Minowa, S. Aoyagi, S. Inui, T. Nakagawa, G. Asaka, M. Tsubota, and M. Ashida, “Visualisation of quantised vortex reconnection as enabled by laser ablation,” arXiv:2107.04826 [cond-mat, physics:physics] (2021).

Supplementary Material (2)

NameDescription
Supplement 1       Supplemental document
Visualization 1       Optical trapping of nanoparticles in superfluid helium visualized by the light scattering

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Optical trapping of gold and zinc oxide nanoparticles in superfluid helium. (A) A linearly polarized laser beam is tightly focused with an aspheric lens (L1) immersed in superfluid helium. The target nanoparticles are loaded in superfluid helium via laser ablation with a focusing lens (L2). (B) SEM image of octahedral gold nanoparticles before laser ablation. (C) TEM image of gold nanoparticles ejected due to laser ablation. (D) Gold nanoparticle size distribution before (red) and after (blue) laser ablation. (E) Zinc oxide micro- and nanoparticles synthesized by laser ablation.
Fig. 2.
Fig. 2. Numerically calculated optical force. (A), (C) Axial optical force versus the axial position of the particle with different diameters. (B), (D) Corresponding effective potential energy curves. The data are shown only for the sizes in equilibrium.
Fig. 3.
Fig. 3. Numerically calculated optical effective potential energy for optical trapping threshold diameter estimation. Depth of the effective potential as a function of the particle size with the stability threshold line, which is 10 times the thermal energy (green line for $T = 300\; {\rm{K}}$ and blue line for $T = 1.4\; {\rm{K}}$).
Fig. 4.
Fig. 4. Optical trapping of nanoparticles in superfluid helium. (A) Schematic of the experiment. A pulsed nanosecond-laser beam is focused with a lens (L2) onto a target substrate. The loaded/synthesized nanoparticles are dispersed in the superfluid helium and optically trapped by a linearly polarized beam of light focused with a lens (L1) immersed in the superfluid helium. Light scattering from the optically trapped (B) gold and (C) zinc oxide nanoparticle is imaged through the optical windows of the cryostat, and recorded by a CMOS camera. (D) Estimated trapped particle size as a function of the scattering light power. The blue curve corresponds to the calculated relation between the particle size and the scattering power. The red stars indicate experimentally detected scattering powers. The red dotted lines correspond to the eye-guides.
Fig. 5.
Fig. 5. Classical approximation of the expected nanoparticle motion. (A) Effective radial optical potential with a fitted harmonic potential curve. (B) Expected positional power spectral density, assuming classical behavior of the nanoparticle in superfluid helium.

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved