Abstract

Direct detection of mid-infrared (MIR) at room temperature commonly suffers from the high background noise and the lack of ideal sensor material. An indirect upconversion method based on nonlinear optics bridges the desired MIR region to the well-developed near-infrared devices. In this paper, we report an experimental study of 3–8 µm MIR upconversion detection with a 1 µm laser-pumped ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$ crystal. This detection scheme is integrated with an optical parametric oscillator and an optical receiver to form a coherent source and detection system that offers high temporal (nanosecond time scale) and spectral resolution (${\le} {{3}}\;{\rm{c}}{{\rm{m}}^{- 1}}$). The wide response band (${\gt}{1.4}$ octave) and large dynamic range (11.5 orders) of this detection scheme benefits from the superior optical properties of this non-oxide crystal, and a minimum detectable energy of 1.02 fJ/pulse is observed with an InGaAs p-i-n photodiode. The upconversion technique outperforms commercial HgCdTe detectors in terms of both sensitivity (2–4.5 orders better) and wavelength response flatness. The aforementioned characteristics of this integrated MIR source and detection system make it of significant interest for applications in high-resolution gas analysis and spectral imaging.

© 2022 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

The mid-infrared (MIR) wavelength band has attracted considerable interest due to numerous cutting-edge applications in environmental sensing, biomedical diagnostics, and molecular spectroscopy. Highly sensitive and fast response MIR detection schemes with low noise at room temperature are in urgent demand for the aforementioned applications [1]. However, the performance of common MIR direct detectors, including both thermal and photon detectors, cannot fulfill these requirements; these detectors are often limited by background radiation and dark-noise, which necessitates the use of cryogenic cooling. The general high cost of thermo-sensitive materials, low bandgap semiconductors, and specialized optical components also restrict the application of such detectors.

An alternative approach to detecting MIR wavelengths is to upconvert the MIR light to the near-infrared (NIR) wavelength range and then detect this upconverted light with well-established and highly sensitive NIR detectors such as Si or InGaAs photodiodes (PDs). This approach works particularly well when integrated with MIR sources [such as optical parametric oscillators (OPOs)] and is highly effective at few-photon-level identification [2] and real-time imaging [35]. To date, a vast majority of nonlinear crystals utilized for the frequency upconversion process are periodically/aperiodically poled lithium niobate [27]; hence, the detectable MIR wavelengths have largely been restricted to below 5 µm (which is the limit of this oxide material).

The wavelength region above 5 µm is very important and features the absorption band of covalent bonds (including atmospheric trace molecules ${{\rm{CO}}_2}$, ${{\rm{NO}}_{X,}}$ and ${{\rm{SO}}_2}$), and it overlaps the blackbody radiation of room temperature objects. Detection of 5.4 µm and 5–10 µm wavelengths has been achieved with non-oxide orientation-patterned GaAs [8] and ${\rm{AgGa}}{{\rm{S}}_2}$ [9], respectively. Ideally, upconversion MIR detection media should exhibit the following characteristics: (1) wide transparency and phase-matching range (these characteristics determine the detection response band), (2) large bandgap (to ensure compatibility with commercial 1 µm lasers and to generate wavelengths suitable for detection using regular Si/InGaAs detectors), and (3) high nonlinearity and high damage threshold (these characteristics impact upon the upconversion efficiency and also the detection responsivity).

A recently developed non-oxide crystal ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$ exhibits many of the above desirable traits. It has a transparency range of 0.47–18 µm, bandgap of 2.64 eV (469 nm), damage threshold of ${{100}}\;{\rm{MW/c}}{{\rm{m}}^2}@{{1064}}\;{\rm{nm}}$, second-order nonlinear coefficient of ${d_{23}}\; \approx \;{{20}}\;{\rm{pm/V}}$, and fixability for fabrication [1012]. ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$ has been used to great effect for the generation of tunable MIR wavelengths beyond 5 µm using both OPO and difference frequency generation (DFG) techniques [1322]. In a similar fashion, it also has significant potential to work as an upconversion medium for MIR wavelength detection. Compared with commercial non-oxide crystals such as ${\rm{AgGa}}{{\rm{S}}_2}$, the main advantage of ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$ is its high damage threshold, which allows it to function as both a high-power generator and detector of MIR wavelengths within an active system.

To the best of our knowledge, this paper presents the first demonstration of both generation and detection of MIR wavelengths using ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$. Prior works were focused on hyper-sensitive single-photon counting or spectral imaging in the mid-wave IR wavelength range. In this paper, we comprehensively characterize of the upconversion detector in both time- and frequency-domain and demonstrate its wide spectral sensitivity and dynamic range. This single crystal covers a broad wavelength span of 3–8 µm, which encompasses the atmospheric transmission window (3–5 µm) and the fingerprint region of trace gas molecules (4–8 µm). We demonstrate that the sensitivity and wavelength response flatness of this upconversion detection scheme incorporating a simple InGaAs p-i-n PD is superior to direct detectors such as those based on HgCdTe.

2. EXPERIMENTAL SETUP

The schematic diagram of the ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$-based MIR upconversion detection scheme, integrated with a MIR-OPO, is shown in Fig. 1. A $Q$-switched Nd:YAG laser (Quantel Q-smart 850, 1.06 µm, 15 ns, 10 Hz) is used, the output of which is divided into two beams. One beam is used to pump a 3–8 µm MIR-OPO, which comprises two flat mirrors M2, M3 and a ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$ crystal C1. The MIR wavelength is tuned by rotating C1 in the $x - z$ plane (${\rm{o}}\; \to \;{\rm{e}} + {\rm{e}}$ phase-matching [23,24]. The MIR beam passes through a Ge low-pass filter and is then collimated by a ${\rm{Ca}}{{\rm{F}}_2}$ lens. This beam is then combined with the other 1.06 µm laser beam (the beam used for the upconversion process, which hereafter is referred to as the “detection light”) at a ${\rm{Ca}}{{\rm{F}}_2}$ dichroic mirror M4. The combined beams (with a diameter of 4.5 mm, parallel) interact inside the other ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$ crystal C2 and generate a NIR beam via DFG. The two ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$ crystals are identical with crystal cuts angles of $\theta = {{52}}^\circ$, $\varphi = {{0}}^\circ$, and dimensions ${{10}} \times {{7}} \times {{15}}\;{\rm{mm}}^3$ (supplied by Technical Institute of Physics and Chemistry, CAS). The residual 1.06 µm beam is split from the upconverted beam using a Glan prism (GP) and is beam-dumped. The upconverted NIR beam is then detected using a range of instruments including an InGaAs PD (Newport 818-BB-30) and an optical spectrum analyzer (Yokogawa AQ6370D).

 figure: Fig. 1.

Fig. 1. Experimental setup of the ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$-based MIR-OPO and upconversion detection scheme. HWP, half-wave plate; GP, Glan prism; BP, Brewster polarizer; M1, high reflection mirror at 1.06 µm; M2 and M3, OPO cavity mirrors; C1, OPO crystal ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$; VA, variable attenuator; M4, beam combiner; C2, detection crystal ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$.

Download Full Size | PPT Slide | PDF

Here, DFG process was used for the MIR to NIR nonlinear conversion, which is different from previous works {sum-frequency generation (SFG) in [27]}. Strictly speaking, DFG is a frequency downconversion process. In the reports of terahertz (THz) wave indirect (DFG) detection [25,26], it was also called “upconversion” since the THz/MIR information was transferred to another carrier with a higher optical frequency.

3. OPERATION AT NORMAL INCIDENCE

Measurements were first performed with both crystals C1 and C2 aligned such that the 1.06 µm beams (OPO pump beam and “detection light”) were at normal incidence (phase matching for a MIR wavelength of 4.67 µm). The output characteristics of the MIR-OPO are presented in Figs. 2(a) and 2(c). The dynamics of the OPO process including pump depletion and signal growth were examined. The spectrum of the signal light constitutes multiple longitudinal modes because it is resonated within the OPO cavity. The full width at half-maximum (FWHM) of the envelope is 0.448 nm (${{71}}\;{\rm{GHz/2}.{36}}\;{\rm{c}}{{\rm{m}}^{- 1}}$, spectral resolution). When the MIR energy incident on C2 is 0.339 mJ/pulse, the output NIR energy is 0.608 mJ/pulse when a “detection light” energy of 20 mJ/pulse is used. The pulse envelopes and spectrum of the upconverted NIR light are plotted in Figs. 2(b) and 2(d). It should be noted that the time bases of Figs. 2(a) and 2(b) are not synchronized due to the slight difference in the optical paths to the PD. The center wavelengths of the OPO signal and upconverted lights are 1378.462 nm and 1378.374 nm, respectively, with a relative error of 0.2‰; which verifies the targeted MIR wavelength of 4.67 µm.

 figure: Fig. 2.

Fig. 2. (a) Pulse envelopes of the input pump (dashed), signal (solid), and depleted pump lights (dotted) of the MIR-OPO; (b) pulse envelopes of the “detection light” (dashed) and the upconverted light (solid); (c) spectrum of the signal light; (d) spectrum of the upconverted light.

Download Full Size | PPT Slide | PDF

To investigate the relationship between the NIR output of the upconversion detection system and the MIR input, we inserted a variable attenuator (VA) between the ${\rm{Ca}}{{\rm{F}}_2}$ lens and beam combiner M4. The VA comprises five neutral density filters (Edmund, OD 1.0, 1.5, 2.0, 2.0 and 3.0) and an attenuator set (TYDEX ATS-5-50.8). Here, the Edmund neutral density filters were spectrally flat from 2 to 14 µm. The transmission data of the TYDEX attenuator set in MIR band was measured by Bruker Vertex 70 with a total transmission around 1‰, different from the labels in the THz region. This VA can produce a maximum attenuation of more than 12 orders of magnitude. The detection characteristics of both direct detectors and the upconversion system (using a range of NIR detectors) were examined as functions of MIR attenuation. These characteristics are plotted in Fig. 3.

 figure: Fig. 3.

Fig. 3. Comparison between direct (upper part) and upconversion MIR detection (lower part).

Download Full Size | PPT Slide | PDF

Three different types of NIR detectors were used with the upconversion system and included a thermal powermeter (PM; open diamonds in Fig. 3, vertical scale in 10 µW), a Ge-PD based PM (open triangles in Fig. 3, vertical scale in 10 nW) and an InGaAs p-i-n PD (open circles in Fig. 3, vertical scale in mV). With the InGaAs PD, very little background noise was observed as the detection light, OPO signal light, and other undesired light were very well blocked. This low noise level allowed us to connect a transimpedance amplifier (TIA; Thorlabs TIA60) with a gain of ${\sim}{{28}}\;{\rm{dB}}$ to the PD, which further increased the detectability by an additional 2.5 orders of attenuation (open squares in Fig. 3, vertical scale in mV).

Comparison is also made with direct detectors (the upper part of Fig. 3), including a thermal PM (Ophir 3A-FS) and a HgCdTe PD (Thorlabs PDAVJ5, with eight-step internal gain 42 dB). In the plot of Fig. 3, the attenuation (transmittance) of 1 corresponds to a MIR energy of 0.339 mJ/pulse (3.39 mW, as measured with 3A-FS). Here, both the InGaAs and HgCdTe detectors operate at room temperature. When using the upconversion detection scheme (InGaAs$+$TIA), MIR signal could be detected when up to 11.5 orders of attenuation (dynamic range) was applied; this is 2 orders more than what could be achieved when using the commercial HgCdTe detector (at maximum gain, step 8). Notably, when the HgCdTe PD was set at maximum gain, the rise time was of the order of µs (3 dB bandwidth of ${\sim}{0.5}\;{\rm{MHz}}$), significantly slower than the InGaAs PD [Fig. 2(b)].

4. OPERATION ACROSS DIFFERENT MIR WAVELENGTHS

By synchronously rotating the ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$ crystals C1 and C2, the target MIR wavelength (source and detection) could be tuned from 3 to 8 µm. Since the processes of MIR generation and detection in this system use the same nonlinear crystal and phase-matching conditions, the wavelengths of OPO signal light and upconverted light should be equal. Plots of the detected signal and upconverted field wavelengths are shown in Fig. 4 as a function of MIR wavelength. The wavelength range 1227–1651 nm lies firmly in the response range of InGaAs. While very close, there does exist some deviation between the signal and upconverted field wavelengths, and this deviation $|\Delta {\lambda _{{\rm{NIR}}}}|$ generally increases with MIR wavelength and is mainly below 0.4 nm. The relative error $|\Delta {\lambda _{{\rm{MIR}}}}/{\lambda _{{\rm{MIR}}}}|$ is below 2‰ (inset of Fig. 4). DFG is used for detection rather than SFG as it allows us to compare the two NIR wavelengths and verify the accuracy of indirect wavelength measuring intuitively.

 figure: Fig. 4.

Fig. 4. OPO signal and upconverted wavelengths as functions of MIR wavelength. Inset, deviation between two NIR wavelengths (left $y$ axis) and the relative error (right $y$ axis).

Download Full Size | PPT Slide | PDF

We repeated the work shown in Fig. 3 but for different MIR wavelengths in order to explore the spectral response of this ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$-based detection system. The MIR energy incident on crystal C2 without the VA is shown by the solid squares in the upper part of Fig. 5; this can be considered the tuning curve of the MIR-OPO (these values incorporate the loss at combiner M4). The upconverted NIR energy (open squares in the upper part of Fig. 5) is slightly larger than that of MIR through the nonlinear interaction under the “detection light” energy of 20 mJ/pulse. The ratio between the populations of output NIR and incident MIR photons can be calculated with Eq. (1):

$$\frac{{{n_{{\rm{uc}}}}}}{{{n_{{\rm{MIR}}}}}} = \frac{{{E_{{\rm{uc}}}}/h{\nu _{{\rm{uc}}}}}}{{{E_{{\rm{MIR}}}}/h{\nu _{{\rm{MIR}}}}}} = \frac{{{E_{{\rm{uc}}}}{\lambda _{{\rm{uc}}}}}}{{{E_{{\rm{MIR}}}}{\lambda _{{\rm{MIR}}}}}},$$
where $n$ is the population of photons, $E$ is the pulse energy, and subscript uc denotes the upconverted NIR light. This parameter (shown in the inset of Fig. 5) describes the strength of the frequency conversion, which decreases with the MIR wavelength. It has been explained in [27] that the photon conversion capacity is proportional to the product of the three frequencies involved in the detection process. In this case, 1.81 photons at 4 µm or 6.53 photons at 8 µm can generate 1 NIR photon. Here, we do not call it photon conversion efficiency (like those in [2,3]), because the fluence in our DFG detection process is not from the MIR to the upconverted light (different from SFG).
 figure: Fig. 5.

Fig. 5. Maximal MIR (solid squares) and upconverted NIR pulse energies (open squares) versus MIR wavelength (upper part); maximal attenuation achieved with direct (solid circles) and upconversion detection (open circles) versus MIR wavelength (lower part). Inset, ratio between the populations of NIR and MIR photons versus MIR wavelength.

Download Full Size | PPT Slide | PDF

With our most sensitive NIR detector (InGaAs p-i-n PD with TIA), the maximal attenuation is depicted by the open circles in the lower part of Fig. 5. The corresponding value obtained with the HgCdTe PD at step 8 is also depicted by the solid circles. The dynamic range of the direct detector (the reciprocal of attenuation) is 9.5 orders at 4.67 µm and 2.5 orders at 8 µm; these numbers are improved by 2–4.5 orders when using the upconversion detection technique (rising to 11.5 orders at 4.67 µm and 6.65 orders at 8 µm).

The dynamic range of the source-detector system is a function of both the OPO and upconversion processes. The performance of the detection part can be evaluated separately by calculating results shown in Fig. 5. As seen in Fig. 6 (squares), the minimum detectable MIR energy of the upconversion process is as low as 1.02 fJ/pulse (${\sim}{{15}}\;{\rm{ns}}$) at normal incidence (with the system generating and detecting an MIR wavelength of 4.67 µm). Both the OPO and upconversion ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$ crystals are cut similarly at $\theta = {{52}}^\circ$, which leads to approximately equal rotation angles ($\pm 18^ \circ$) for tuning across the range 3 to 8 µm. The sensitivity of the system decreases at the extremes of the tuning range due to reflection losses from the faces of the crystals; this is compounded by the fact that the detection sensitivity decreases with the MIR wavelength, since the strength of upconversion decreases (as discussed above).

 figure: Fig. 6.

Fig. 6. Spectral responses of the ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$-based MIR detection scheme (squares, dashed line) and a commercial HgCdTe detector (circles, solid line).

Download Full Size | PPT Slide | PDF

The sensitivity of this HgCdTe device PDAVJ5 behaves with a dramatic decline at wavelengths above 5 µm (circles in Fig. 6) since it was designed for 2.7–5 µm band. A multi-layer sensor could provide a wider response band but with a lower sensitivity (${\sim}{1.5}$ orders). There should be a trade-off between the response band and the peak detectivity, for the given HgCdTe sensor. By comparing the circles and squares, both the sensitivity and flatness of the upconversion detection approach are better. Besides, although a four-stage Peltier cooling could commonly improve the HgCdTe sensitivity by 1 order, the performance of this presented upconversion detection (only with a simple p-i-n diode) is still 1 order superior.

While a broad detectable wavelength band (3–8 µm) has been demonstrated in this work, it is anticipated that with further system refinements and smaller crystal cuts (smaller $\theta$), expansion of this wavelength range out to 17 µm may be achieved (in accordance with the transparency range of ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$).

5. CONCLUSION AND OUTLOOK

To conclude, the application of ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$ as a superior MIR upconversion detection medium has been demonstrated. In this work, the application of this crystal enabled both the generation and detection of MIR wavelengths across the band 3–8 µm (${\gt}{1.4}$ octaves). A coherent MIR generation and detection system utilizing a commercial 1 µm laser was constructed. MIR pulses were generated by an OPO, and these were detected via upconversion to the NIR wavelength range.

The indirect detection approach could well overcome the drawbacks of traditional MIR detectors. First, the inherent narrowband filter (phase-matching condition) and time window (nanosecond detection laser pulse) greatly restrict the background noise, which is spectrally overlapped with the target MIR signal. Second, as substituted by the high-performance and commercially available NIR devices, the dependence on the less-developed MIR sensors (trade-off between the response band and the peak detectivity of HgCdTe) and optical components (with specialized substrate and coating, commonly customized) can be reduced.

Temporal and spectral characterization of these upconverted pulses was performed. The efficacy of three types of NIR detectors was examined, with the best yielding a detection dynamic range of 11.5 orders. The minimum detectable MIR energy using this approach was 1.02 fJ/pulse using a simple InGaAs p-i-n PD at room temperature. In the 3–5 µm band (the most sensitive region of commercial HgCdTe detectors), the sensitivity of the upconversion detection was ${\ge} {{2}}$ orders better than that of a HgCdTe detector. This advantage became more pronounced (${\ge} {{4}}$ orders higher) in the long wave region of 6–8 µm.

The system presented in this work has potential as a highly effective and sensitive instrument for MIR spectroscopy and imaging applications. This ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$-based active and coherent analysis system even with regular NIR detectors provides a broad and relatively flat wavelength response, large dynamic range, and high temporal and spectral resolution, characteristics which are ideal for multi-gas identification at minute concentrations and IR spectral imaging for medical diagnostics at low transmittance levels. We anticipate that the characteristics of this system can be further improved with the application of high-performance avalanche PDs or electron multiplying silicon charged-coupled devices, combined with noise reduction.

Funding

Youth Innovation Promotion Association of the Chinese Academy of Sciences (2019204); National Natural Science Foundation of China (61505089, 61605235); “XingLiaoYingCai” Talents of Liaoning Province (XLYC2007074); Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program (RC200512).

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

REFERENCES

1. A. Rogalski, Infrared Detectors (CRC Press, 2010).

2. G. Temporão, S. Tanzilli, H. Zbinden, and N. Gisin, “Mid-infrared single-photon counting,” Opt. Lett. 31, 1094–1096 (2006). [CrossRef]  

3. Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102, 241110 (2013). [CrossRef]  

4. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room temperature mid-IR single photon spectral imaging,” Nat. Photonics 6, 788–793 (2012). [CrossRef]  

5. S. Junaid, S. C. Kumar, M. Mathez, M. Hermes, N. Stone, N. Shepherd, M. Ebrahim-Zadeh, P. Tidemand-Lichtenberg, and C. Pedersen, “Video-rate, mid-infrared hyperspectral upconversion imaging,” Optica 6, 702–709 (2019). [CrossRef]  

6. T. W. Neely, L. Nugent-Glandorf, F. Adler, and S. A. Diddams, “Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide,” Opt. Lett. 37, 4332–4334 (2012). [CrossRef]  

7. A. Barh, C. Pedersen, and P. Tidemand-Lichtenberg, “Ultra-broadband mid-wave-IR upconversion detection,” Opt. Lett. 42, 1504–1507 (2017). [CrossRef]  

8. M. G. Hansen, I. Ernsting, S. V. Vasilyev, A. Grisard, E. Lallier, B. Gérard, and S. Schiller, “Robust, frequency-stable and accurate mid-IR laser spectrometer based on frequency comb metrology of quantum cascade lasers upconverted in orientation-patterned GaAs,” Opt. Express 21, 27043–27056 (2013). [CrossRef]  

9. P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, and C. Pedersen, “Mid-infrared upconversion spectroscopy,” J. Opt. Soc. Am. B 33, D28–D35 (2016). [CrossRef]  

10. J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012). [CrossRef]  

11. X. Zhang, J. Yao, W. Yin, Y. Zhu, Y. Wu, and C. Chen, “Determination of the nonlinear optical coefficients of the BaGa4Se7 crystal,” Opt. Express 23, 552–558 (2015). [CrossRef]  

12. E. Boursier, P. Segonds, J. Debray, P. L. Inácio, V. Panyutin, V. Badikov, D. Badikov, V. Petrov, and B. Boulanger, “Angle noncritical phase-matched second-harmonic generation in the monoclinic crystal BaGa4Se7,” Opt. Lett. 40, 4591–4594 (2015). [CrossRef]  

13. F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015). [CrossRef]  

14. N. Y. Kostyukova, A. A. Boyko, V. Badikov, D. Badikov, G. Shevyrayaeva, V. Panyutin, G. M. Marchev, D. B. Kolker, and V. Petrov, “Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm,” Opt. Lett. 41, 3667–3670 (2016). [CrossRef]  

15. M. Sun, Z. Cao, J. Yao, H. Ma, X. Gao, R. Rao, and Y. Wu, “Continuous-wave difference-frequency generation based on BaGa4Se7 crystal,” Opt. Express 27, 4014–4023 (2019). [CrossRef]  

16. D. Xu, J. Zhang, Y. He, Y. Wang, J. Yao, Y. Guo, C. Yan, L. Tang, J. Li, K. Zhong, Y. Wu, and J. Yao, “High-energy, tunable, long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal,” Opt. Lett. 45, 5287–5290 (2020). [CrossRef]  

17. W. Xu, Y. Wang, D. Xu, C. Li, J. Yao, C. Yan, Y. He, M. Nie, Y. Wu, and J. Yao, “High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 µm,” Appl. Phys. B 123, 80 (2017). [CrossRef]  

18. Y. He, Y. Guo, D. Xu, Y. Wang, X. Zhu, J. Yao, C. Yao, L. Tang, J. Li, K. Zhong, C. Liu, X. Fan, Y. Wu, and J. Yao, “High energy and tunable mid-infrared source based on BaGa4Se7 crystal by single-pass difference frequency generation,” Opt. Express 27, 9241–9249 (2019). [CrossRef]  

19. M. Kang, Y. Deng, X. Yan, X. Zeng, Y. Guo, J. Yao, F. Zeng, J. Zheng, K. Zhou, C. Qu, J. Su, and Q. Zhu, “A compact and efficient 4.25 µm BaGa4Se7 optical parametric oscillator,” Chin. Opt. Lett. 17, 121402 (2019). [CrossRef]  

20. Y. Zhang, Y. Zuo, Z. Li, B. Wu, J. Yao, and Y. Shen, “High energy mid-infrared laser pulse output from a BaGa4Se7 crystal-based optical parametric oscillator,” Opt. Lett. 45, 4595–4598 (2020). [CrossRef]  

21. D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018). [CrossRef]  

22. B. Zhao, Y. Chen, B. Yao, J. Yao, Y. Guo, R. Wang, T. Dai, and X. Duan, “High-efficiency, tunable 8-9 µm BaGa4Se7 optical parametric oscillator pumped at 2.1 µm,” Opt. Mater. Express 8, 3332–3337 (2018). [CrossRef]  

23. E. Boursier, P. Segonds, B. Ménaert, V. Badikov, V. Panyutin, D. Badikov, V. Petrov, and B. Boulanger, “Phase-matching directions and refined Sellmeier equations of the monoclinic acentric crystal BaGa4Se7,” Opt. Lett. 41, 2731–2734 (2016). [CrossRef]  

24. K. Kato, K. Miyata, and V. Petrov, “Phase-matching properties of BaGa4Se7 for SHG and SFG in the 0.901-10.5910 µm range,” Appl. Opt. 56, 2978–2981 (2017). [CrossRef]  

25. Y. J. Ding and W. Shi, “Efficient THz generation and frequency upconversion in GaP crystals,” Solid-State Electron. 50, 1128–1136 (2006). [CrossRef]  

26. M. J. Khan, J. C. Chen, Z. L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17, 79–84 (2011). [CrossRef]  

27. M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010). [CrossRef]  

References

  • View by:

  1. A. Rogalski, Infrared Detectors (CRC Press, 2010).
  2. G. Temporão, S. Tanzilli, H. Zbinden, and N. Gisin, “Mid-infrared single-photon counting,” Opt. Lett. 31, 1094–1096 (2006).
    [Crossref]
  3. Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102, 241110 (2013).
    [Crossref]
  4. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room temperature mid-IR single photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
    [Crossref]
  5. S. Junaid, S. C. Kumar, M. Mathez, M. Hermes, N. Stone, N. Shepherd, M. Ebrahim-Zadeh, P. Tidemand-Lichtenberg, and C. Pedersen, “Video-rate, mid-infrared hyperspectral upconversion imaging,” Optica 6, 702–709 (2019).
    [Crossref]
  6. T. W. Neely, L. Nugent-Glandorf, F. Adler, and S. A. Diddams, “Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide,” Opt. Lett. 37, 4332–4334 (2012).
    [Crossref]
  7. A. Barh, C. Pedersen, and P. Tidemand-Lichtenberg, “Ultra-broadband mid-wave-IR upconversion detection,” Opt. Lett. 42, 1504–1507 (2017).
    [Crossref]
  8. M. G. Hansen, I. Ernsting, S. V. Vasilyev, A. Grisard, E. Lallier, B. Gérard, and S. Schiller, “Robust, frequency-stable and accurate mid-IR laser spectrometer based on frequency comb metrology of quantum cascade lasers upconverted in orientation-patterned GaAs,” Opt. Express 21, 27043–27056 (2013).
    [Crossref]
  9. P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, and C. Pedersen, “Mid-infrared upconversion spectroscopy,” J. Opt. Soc. Am. B 33, D28–D35 (2016).
    [Crossref]
  10. J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
    [Crossref]
  11. X. Zhang, J. Yao, W. Yin, Y. Zhu, Y. Wu, and C. Chen, “Determination of the nonlinear optical coefficients of the BaGa4Se7 crystal,” Opt. Express 23, 552–558 (2015).
    [Crossref]
  12. E. Boursier, P. Segonds, J. Debray, P. L. Inácio, V. Panyutin, V. Badikov, D. Badikov, V. Petrov, and B. Boulanger, “Angle noncritical phase-matched second-harmonic generation in the monoclinic crystal BaGa4Se7,” Opt. Lett. 40, 4591–4594 (2015).
    [Crossref]
  13. F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
    [Crossref]
  14. N. Y. Kostyukova, A. A. Boyko, V. Badikov, D. Badikov, G. Shevyrayaeva, V. Panyutin, G. M. Marchev, D. B. Kolker, and V. Petrov, “Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm,” Opt. Lett. 41, 3667–3670 (2016).
    [Crossref]
  15. M. Sun, Z. Cao, J. Yao, H. Ma, X. Gao, R. Rao, and Y. Wu, “Continuous-wave difference-frequency generation based on BaGa4Se7 crystal,” Opt. Express 27, 4014–4023 (2019).
    [Crossref]
  16. D. Xu, J. Zhang, Y. He, Y. Wang, J. Yao, Y. Guo, C. Yan, L. Tang, J. Li, K. Zhong, Y. Wu, and J. Yao, “High-energy, tunable, long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal,” Opt. Lett. 45, 5287–5290 (2020).
    [Crossref]
  17. W. Xu, Y. Wang, D. Xu, C. Li, J. Yao, C. Yan, Y. He, M. Nie, Y. Wu, and J. Yao, “High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 µm,” Appl. Phys. B 123, 80 (2017).
    [Crossref]
  18. Y. He, Y. Guo, D. Xu, Y. Wang, X. Zhu, J. Yao, C. Yao, L. Tang, J. Li, K. Zhong, C. Liu, X. Fan, Y. Wu, and J. Yao, “High energy and tunable mid-infrared source based on BaGa4Se7 crystal by single-pass difference frequency generation,” Opt. Express 27, 9241–9249 (2019).
    [Crossref]
  19. M. Kang, Y. Deng, X. Yan, X. Zeng, Y. Guo, J. Yao, F. Zeng, J. Zheng, K. Zhou, C. Qu, J. Su, and Q. Zhu, “A compact and efficient 4.25 µm BaGa4Se7 optical parametric oscillator,” Chin. Opt. Lett. 17, 121402 (2019).
    [Crossref]
  20. Y. Zhang, Y. Zuo, Z. Li, B. Wu, J. Yao, and Y. Shen, “High energy mid-infrared laser pulse output from a BaGa4Se7 crystal-based optical parametric oscillator,” Opt. Lett. 45, 4595–4598 (2020).
    [Crossref]
  21. D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
    [Crossref]
  22. B. Zhao, Y. Chen, B. Yao, J. Yao, Y. Guo, R. Wang, T. Dai, and X. Duan, “High-efficiency, tunable 8-9 µm BaGa4Se7 optical parametric oscillator pumped at 2.1 µm,” Opt. Mater. Express 8, 3332–3337 (2018).
    [Crossref]
  23. E. Boursier, P. Segonds, B. Ménaert, V. Badikov, V. Panyutin, D. Badikov, V. Petrov, and B. Boulanger, “Phase-matching directions and refined Sellmeier equations of the monoclinic acentric crystal BaGa4Se7,” Opt. Lett. 41, 2731–2734 (2016).
    [Crossref]
  24. K. Kato, K. Miyata, and V. Petrov, “Phase-matching properties of BaGa4Se7 for SHG and SFG in the 0.901-10.5910 µm range,” Appl. Opt. 56, 2978–2981 (2017).
    [Crossref]
  25. Y. J. Ding and W. Shi, “Efficient THz generation and frequency upconversion in GaP crystals,” Solid-State Electron. 50, 1128–1136 (2006).
    [Crossref]
  26. M. J. Khan, J. C. Chen, Z. L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17, 79–84 (2011).
    [Crossref]
  27. M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010).
    [Crossref]

2020 (2)

2019 (4)

2018 (2)

D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
[Crossref]

B. Zhao, Y. Chen, B. Yao, J. Yao, Y. Guo, R. Wang, T. Dai, and X. Duan, “High-efficiency, tunable 8-9 µm BaGa4Se7 optical parametric oscillator pumped at 2.1 µm,” Opt. Mater. Express 8, 3332–3337 (2018).
[Crossref]

2017 (3)

K. Kato, K. Miyata, and V. Petrov, “Phase-matching properties of BaGa4Se7 for SHG and SFG in the 0.901-10.5910 µm range,” Appl. Opt. 56, 2978–2981 (2017).
[Crossref]

A. Barh, C. Pedersen, and P. Tidemand-Lichtenberg, “Ultra-broadband mid-wave-IR upconversion detection,” Opt. Lett. 42, 1504–1507 (2017).
[Crossref]

W. Xu, Y. Wang, D. Xu, C. Li, J. Yao, C. Yan, Y. He, M. Nie, Y. Wu, and J. Yao, “High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 µm,” Appl. Phys. B 123, 80 (2017).
[Crossref]

2016 (3)

2015 (3)

2013 (2)

2012 (3)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room temperature mid-IR single photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[Crossref]

T. W. Neely, L. Nugent-Glandorf, F. Adler, and S. A. Diddams, “Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide,” Opt. Lett. 37, 4332–4334 (2012).
[Crossref]

J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
[Crossref]

2011 (1)

M. J. Khan, J. C. Chen, Z. L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17, 79–84 (2011).
[Crossref]

2010 (1)

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010).
[Crossref]

2006 (2)

Y. J. Ding and W. Shi, “Efficient THz generation and frequency upconversion in GaP crystals,” Solid-State Electron. 50, 1128–1136 (2006).
[Crossref]

G. Temporão, S. Tanzilli, H. Zbinden, and N. Gisin, “Mid-infrared single-photon counting,” Opt. Lett. 31, 1094–1096 (2006).
[Crossref]

Adler, F.

Andersen, H. V.

Badikov, D.

Badikov, D. V.

D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
[Crossref]

Badikov, V.

Badikov, V. V.

D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
[Crossref]

Barh, A.

Bivona, S.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010).
[Crossref]

Boulanger, B.

Boursier, E.

Boyko, A. A.

D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
[Crossref]

N. Y. Kostyukova, A. A. Boyko, V. Badikov, D. Badikov, G. Shevyrayaeva, V. Panyutin, G. M. Marchev, D. B. Kolker, and V. Petrov, “Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm,” Opt. Lett. 41, 3667–3670 (2016).
[Crossref]

Busacca, A. C.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010).
[Crossref]

Cao, Z.

Chen, C.

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

X. Zhang, J. Yao, W. Yin, Y. Zhu, Y. Wu, and C. Chen, “Determination of the nonlinear optical coefficients of the BaGa4Se7 crystal,” Opt. Express 23, 552–558 (2015).
[Crossref]

Chen, J. C.

M. J. Khan, J. C. Chen, Z. L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17, 79–84 (2011).
[Crossref]

Chen, Y.

Cherchi, M.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010).
[Crossref]

Cino, A. C.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010).
[Crossref]

Cui, D.

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

Dai, T.

Dam, J. S.

P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, and C. Pedersen, “Mid-infrared upconversion spectroscopy,” J. Opt. Soc. Am. B 33, D28–D35 (2016).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room temperature mid-IR single photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[Crossref]

Debray, J.

Deng, Y.

Diddams, S. A.

Ding, Y. J.

Y. J. Ding and W. Shi, “Efficient THz generation and frequency upconversion in GaP crystals,” Solid-State Electron. 50, 1128–1136 (2006).
[Crossref]

Duan, X.

Ebrahim-Zadeh, M.

Ernsting, I.

Fan, X.

Feng, K.

J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
[Crossref]

Gao, X.

Gérard, B.

Gisin, N.

Grisard, A.

Guo, Y.

Hansen, M. G.

He, Y.

Hermes, M.

Høgstedt, L.

Hu, Z.

J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
[Crossref]

Huang, K.

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102, 241110 (2013).
[Crossref]

Inácio, P. L.

Junaid, S.

Kang, M.

Karapuzikov, A. A.

D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
[Crossref]

Kato, K.

Kaushik, S.

M. J. Khan, J. C. Chen, Z. L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17, 79–84 (2011).
[Crossref]

Khan, M. J.

M. J. Khan, J. C. Chen, Z. L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17, 79–84 (2011).
[Crossref]

Kolker, D. B.

D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
[Crossref]

N. Y. Kostyukova, A. A. Boyko, V. Badikov, D. Badikov, G. Shevyrayaeva, V. Panyutin, G. M. Marchev, D. B. Kolker, and V. Petrov, “Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm,” Opt. Lett. 41, 3667–3670 (2016).
[Crossref]

Kostyukova, N. Y.

Kumar, S. C.

Lallier, E.

Leone, C.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010).
[Crossref]

Li, C.

W. Xu, Y. Wang, D. Xu, C. Li, J. Yao, C. Yan, Y. He, M. Nie, Y. Wu, and J. Yao, “High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 µm,” Appl. Phys. B 123, 80 (2017).
[Crossref]

Li, J.

Li, X.

J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
[Crossref]

Li, Z.

Liau, Z. L.

M. J. Khan, J. C. Chen, Z. L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17, 79–84 (2011).
[Crossref]

Lin, Z.

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

Liu, C.

Lu, Q.

J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
[Crossref]

Ma, H.

Marchev, G. M.

Mathez, M.

Mei, D.

J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
[Crossref]

Ménaert, B.

Miyata, K.

Neely, T. W.

Ni, Y.

J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
[Crossref]

Nie, M.

W. Xu, Y. Wang, D. Xu, C. Li, J. Yao, C. Yan, Y. He, M. Nie, Y. Wu, and J. Yao, “High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 µm,” Appl. Phys. B 123, 80 (2017).
[Crossref]

Nugent-Glandorf, L.

Oliveri, R. L.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010).
[Crossref]

Pan, H.

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102, 241110 (2013).
[Crossref]

Panyutin, V.

Pedersen, C.

Peng, Q.

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

Petrov, V.

Qu, C.

Rao, R.

Rogalski, A.

A. Rogalski, Infrared Detectors (CRC Press, 2010).

Sanseverino, S. R.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010).
[Crossref]

Schiller, S.

Segonds, P.

Shadrintseva, A. G.

D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
[Crossref]

Shen, Y.

Shepherd, N.

Shevyrayaeva, G.

Shi, W.

Y. J. Ding and W. Shi, “Efficient THz generation and frequency upconversion in GaP crystals,” Solid-State Electron. 50, 1128–1136 (2006).
[Crossref]

Stivala, S.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010).
[Crossref]

Stone, N.

Su, J.

Sun, M.

Tang, L.

Tanzilli, S.

Taormina, A.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010).
[Crossref]

Temporão, G.

Tidemand-Lichtenberg, P.

Tretyakova, N. N.

D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
[Crossref]

Vasilyev, S. V.

Wang, R.

Wang, Y.

Wu, B.

Wu, E.

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102, 241110 (2013).
[Crossref]

Wu, Y.

D. Xu, J. Zhang, Y. He, Y. Wang, J. Yao, Y. Guo, C. Yan, L. Tang, J. Li, K. Zhong, Y. Wu, and J. Yao, “High-energy, tunable, long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal,” Opt. Lett. 45, 5287–5290 (2020).
[Crossref]

M. Sun, Z. Cao, J. Yao, H. Ma, X. Gao, R. Rao, and Y. Wu, “Continuous-wave difference-frequency generation based on BaGa4Se7 crystal,” Opt. Express 27, 4014–4023 (2019).
[Crossref]

Y. He, Y. Guo, D. Xu, Y. Wang, X. Zhu, J. Yao, C. Yao, L. Tang, J. Li, K. Zhong, C. Liu, X. Fan, Y. Wu, and J. Yao, “High energy and tunable mid-infrared source based on BaGa4Se7 crystal by single-pass difference frequency generation,” Opt. Express 27, 9241–9249 (2019).
[Crossref]

W. Xu, Y. Wang, D. Xu, C. Li, J. Yao, C. Yan, Y. He, M. Nie, Y. Wu, and J. Yao, “High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 µm,” Appl. Phys. B 123, 80 (2017).
[Crossref]

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

X. Zhang, J. Yao, W. Yin, Y. Zhu, Y. Wu, and C. Chen, “Determination of the nonlinear optical coefficients of the BaGa4Se7 crystal,” Opt. Express 23, 552–558 (2015).
[Crossref]

J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
[Crossref]

Xu, D.

Xu, H.

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

Xu, W.

W. Xu, Y. Wang, D. Xu, C. Li, J. Yao, C. Yan, Y. He, M. Nie, Y. Wu, and J. Yao, “High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 µm,” Appl. Phys. B 123, 80 (2017).
[Crossref]

Xu, Z.

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

Yan, C.

D. Xu, J. Zhang, Y. He, Y. Wang, J. Yao, Y. Guo, C. Yan, L. Tang, J. Li, K. Zhong, Y. Wu, and J. Yao, “High-energy, tunable, long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal,” Opt. Lett. 45, 5287–5290 (2020).
[Crossref]

W. Xu, Y. Wang, D. Xu, C. Li, J. Yao, C. Yan, Y. He, M. Nie, Y. Wu, and J. Yao, “High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 µm,” Appl. Phys. B 123, 80 (2017).
[Crossref]

Yan, X.

Yang, F.

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

Yao, B.

Yao, C.

Yao, J.

D. Xu, J. Zhang, Y. He, Y. Wang, J. Yao, Y. Guo, C. Yan, L. Tang, J. Li, K. Zhong, Y. Wu, and J. Yao, “High-energy, tunable, long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal,” Opt. Lett. 45, 5287–5290 (2020).
[Crossref]

D. Xu, J. Zhang, Y. He, Y. Wang, J. Yao, Y. Guo, C. Yan, L. Tang, J. Li, K. Zhong, Y. Wu, and J. Yao, “High-energy, tunable, long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal,” Opt. Lett. 45, 5287–5290 (2020).
[Crossref]

Y. Zhang, Y. Zuo, Z. Li, B. Wu, J. Yao, and Y. Shen, “High energy mid-infrared laser pulse output from a BaGa4Se7 crystal-based optical parametric oscillator,” Opt. Lett. 45, 4595–4598 (2020).
[Crossref]

M. Sun, Z. Cao, J. Yao, H. Ma, X. Gao, R. Rao, and Y. Wu, “Continuous-wave difference-frequency generation based on BaGa4Se7 crystal,” Opt. Express 27, 4014–4023 (2019).
[Crossref]

Y. He, Y. Guo, D. Xu, Y. Wang, X. Zhu, J. Yao, C. Yao, L. Tang, J. Li, K. Zhong, C. Liu, X. Fan, Y. Wu, and J. Yao, “High energy and tunable mid-infrared source based on BaGa4Se7 crystal by single-pass difference frequency generation,” Opt. Express 27, 9241–9249 (2019).
[Crossref]

Y. He, Y. Guo, D. Xu, Y. Wang, X. Zhu, J. Yao, C. Yao, L. Tang, J. Li, K. Zhong, C. Liu, X. Fan, Y. Wu, and J. Yao, “High energy and tunable mid-infrared source based on BaGa4Se7 crystal by single-pass difference frequency generation,” Opt. Express 27, 9241–9249 (2019).
[Crossref]

M. Kang, Y. Deng, X. Yan, X. Zeng, Y. Guo, J. Yao, F. Zeng, J. Zheng, K. Zhou, C. Qu, J. Su, and Q. Zhu, “A compact and efficient 4.25 µm BaGa4Se7 optical parametric oscillator,” Chin. Opt. Lett. 17, 121402 (2019).
[Crossref]

B. Zhao, Y. Chen, B. Yao, J. Yao, Y. Guo, R. Wang, T. Dai, and X. Duan, “High-efficiency, tunable 8-9 µm BaGa4Se7 optical parametric oscillator pumped at 2.1 µm,” Opt. Mater. Express 8, 3332–3337 (2018).
[Crossref]

W. Xu, Y. Wang, D. Xu, C. Li, J. Yao, C. Yan, Y. He, M. Nie, Y. Wu, and J. Yao, “High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 µm,” Appl. Phys. B 123, 80 (2017).
[Crossref]

W. Xu, Y. Wang, D. Xu, C. Li, J. Yao, C. Yan, Y. He, M. Nie, Y. Wu, and J. Yao, “High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 µm,” Appl. Phys. B 123, 80 (2017).
[Crossref]

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

X. Zhang, J. Yao, W. Yin, Y. Zhu, Y. Wu, and C. Chen, “Determination of the nonlinear optical coefficients of the BaGa4Se7 crystal,” Opt. Express 23, 552–558 (2015).
[Crossref]

J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
[Crossref]

Yin, W.

X. Zhang, J. Yao, W. Yin, Y. Zhu, Y. Wu, and C. Chen, “Determination of the nonlinear optical coefficients of the BaGa4Se7 crystal,” Opt. Express 23, 552–558 (2015).
[Crossref]

J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
[Crossref]

Yu Kostyukova, N.

D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
[Crossref]

Zbinden, H.

Zeng, F.

Zeng, H.

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102, 241110 (2013).
[Crossref]

Zeng, X.

Zenov, K. G.

D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
[Crossref]

Zhai, N.

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

Zhang, F.

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

Zhang, J.

D. Xu, J. Zhang, Y. He, Y. Wang, J. Yao, Y. Guo, C. Yan, L. Tang, J. Li, K. Zhong, Y. Wu, and J. Yao, “High-energy, tunable, long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal,” Opt. Lett. 45, 5287–5290 (2020).
[Crossref]

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

Zhang, X.

Zhang, Y.

Zhang, Z.

J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
[Crossref]

Zhao, B.

Zheng, J.

Zhong, K.

Zhou, K.

Zhou, Q.

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102, 241110 (2013).
[Crossref]

Zhu, Q.

Zhu, X.

Zhu, Y.

Zondy, J. J.

D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
[Crossref]

Zong, N.

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

Zuo, Y.

Appl. Opt. (1)

Appl. Phys. B (1)

W. Xu, Y. Wang, D. Xu, C. Li, J. Yao, C. Yan, Y. He, M. Nie, Y. Wu, and J. Yao, “High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 µm,” Appl. Phys. B 123, 80 (2017).
[Crossref]

Appl. Phys. Lett. (1)

Q. Zhou, K. Huang, H. Pan, E. Wu, and H. Zeng, “Ultrasensitive mid-infrared up-conversion imaging at few-photon level,” Appl. Phys. Lett. 102, 241110 (2013).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron. 46, 368–376 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. Khan, J. C. Chen, Z. L. Liau, and S. Kaushik, “Ultrasensitive, room temperature detection of THz radiation using nonlinear parametric conversion,” IEEE J. Sel. Top. Quantum Electron. 17, 79–84 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Yang, J. Yao, H. Xu, F. Zhang, N. Zhai, Z. Lin, N. Zong, Q. Peng, J. Zhang, D. Cui, Y. Wu, C. Chen, and Z. Xu, “Midinfrared optical parametric amplifier with 6.4–11 µm range based on BaGa4Se7,” IEEE Photon. Technol. Lett. 27, 1100–1103 (2015).
[Crossref]

J. Cryst. Growth (1)

J. Yao, W. Yin, K. Feng, X. Li, D. Mei, Q. Lu, Y. Ni, Z. Zhang, Z. Hu, and Y. Wu, “Growth and characterization of BaGa4Se7 crystal,” J. Cryst. Growth 346, 1–4 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Commun. (1)

D. B. Kolker, N. Yu Kostyukova, A. A. Boyko, V. V. Badikov, D. V. Badikov, A. G. Shadrintseva, N. N. Tretyakova, K. G. Zenov, A. A. Karapuzikov, and J. J. Zondy, “Widely tunable (2.6-10.4 µm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser,” J. Phys. Commun. 2, 035039 (2018).
[Crossref]

Nat. Photonics (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room temperature mid-IR single photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

D. Xu, J. Zhang, Y. He, Y. Wang, J. Yao, Y. Guo, C. Yan, L. Tang, J. Li, K. Zhong, Y. Wu, and J. Yao, “High-energy, tunable, long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal,” Opt. Lett. 45, 5287–5290 (2020).
[Crossref]

E. Boursier, P. Segonds, J. Debray, P. L. Inácio, V. Panyutin, V. Badikov, D. Badikov, V. Petrov, and B. Boulanger, “Angle noncritical phase-matched second-harmonic generation in the monoclinic crystal BaGa4Se7,” Opt. Lett. 40, 4591–4594 (2015).
[Crossref]

N. Y. Kostyukova, A. A. Boyko, V. Badikov, D. Badikov, G. Shevyrayaeva, V. Panyutin, G. M. Marchev, D. B. Kolker, and V. Petrov, “Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm,” Opt. Lett. 41, 3667–3670 (2016).
[Crossref]

T. W. Neely, L. Nugent-Glandorf, F. Adler, and S. A. Diddams, “Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide,” Opt. Lett. 37, 4332–4334 (2012).
[Crossref]

A. Barh, C. Pedersen, and P. Tidemand-Lichtenberg, “Ultra-broadband mid-wave-IR upconversion detection,” Opt. Lett. 42, 1504–1507 (2017).
[Crossref]

G. Temporão, S. Tanzilli, H. Zbinden, and N. Gisin, “Mid-infrared single-photon counting,” Opt. Lett. 31, 1094–1096 (2006).
[Crossref]

Y. Zhang, Y. Zuo, Z. Li, B. Wu, J. Yao, and Y. Shen, “High energy mid-infrared laser pulse output from a BaGa4Se7 crystal-based optical parametric oscillator,” Opt. Lett. 45, 4595–4598 (2020).
[Crossref]

E. Boursier, P. Segonds, B. Ménaert, V. Badikov, V. Panyutin, D. Badikov, V. Petrov, and B. Boulanger, “Phase-matching directions and refined Sellmeier equations of the monoclinic acentric crystal BaGa4Se7,” Opt. Lett. 41, 2731–2734 (2016).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Solid-State Electron. (1)

Y. J. Ding and W. Shi, “Efficient THz generation and frequency upconversion in GaP crystals,” Solid-State Electron. 50, 1128–1136 (2006).
[Crossref]

Other (1)

A. Rogalski, Infrared Detectors (CRC Press, 2010).

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup of the ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$-based MIR-OPO and upconversion detection scheme. HWP, half-wave plate; GP, Glan prism; BP, Brewster polarizer; M1, high reflection mirror at 1.06 µm; M2 and M3, OPO cavity mirrors; C1, OPO crystal ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$; VA, variable attenuator; M4, beam combiner; C2, detection crystal ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$.
Fig. 2.
Fig. 2. (a) Pulse envelopes of the input pump (dashed), signal (solid), and depleted pump lights (dotted) of the MIR-OPO; (b) pulse envelopes of the “detection light” (dashed) and the upconverted light (solid); (c) spectrum of the signal light; (d) spectrum of the upconverted light.
Fig. 3.
Fig. 3. Comparison between direct (upper part) and upconversion MIR detection (lower part).
Fig. 4.
Fig. 4. OPO signal and upconverted wavelengths as functions of MIR wavelength. Inset, deviation between two NIR wavelengths (left $y$ axis) and the relative error (right $y$ axis).
Fig. 5.
Fig. 5. Maximal MIR (solid squares) and upconverted NIR pulse energies (open squares) versus MIR wavelength (upper part); maximal attenuation achieved with direct (solid circles) and upconversion detection (open circles) versus MIR wavelength (lower part). Inset, ratio between the populations of NIR and MIR photons versus MIR wavelength.
Fig. 6.
Fig. 6. Spectral responses of the ${\rm{BaG}}{{\rm{a}}_4}{\rm{S}}{{\rm{e}}_7}$-based MIR detection scheme (squares, dashed line) and a commercial HgCdTe detector (circles, solid line).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n u c n M I R = E u c / h ν u c E M I R / h ν M I R = E u c λ u c E M I R λ M I R ,