Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Sub-diffraction-limit Fourier-plane laser scanning microscopy

Open Access Open Access

Abstract

Resolving features that are smaller than the diffraction limit is an intricate yet fascinating challenge that many scientists are working on. Heretofore, most techniques that can circumvent this resolution limit, such as super-resolution microscopy or electron microscopy, lead to a permanent modification of the sample. Consequently, noninvasive approaches are of special interest. Here we introduce an all-linear far-field measurement and imaging modality for the investigation of ensembles of sub-diffraction-limit sized nanostructures. Our technique is based on laser scanning, polarization resolved Fourier-plane measurements and optimizing a theoretical model of the investigated system to resemble the measurement. As an experimental demonstration, we apply this method to gold nanoparticle clusters and derive their positions and respective sizes with an accuracy down to several nanometers, even if multiple particles are located directly adjacent. Our technique showcases the capabilities of microscopy techniques when combined with careful analysis of light scattered off a specimen.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. INTRODUCTION

In modern science, plasmonic nanoparticles play a tremendously important role owing to their high potential for sensing applications in a variety of fields [16]. In the early 2000s, there was particularly large interest in interacting sub-wavelength sized nanoparticles [710]. The general approach was based on resonance shifts in spectral measurements, as a result of the distance and polarization dependent plasmon coupling between pairs of nanoparticles. Hence, the observed spectral shift also allowed for retrieving, e.g., the particle distance. Although powerful, the approach fails as soon as the particle number and size are varied, because the situation becomes increasingly sophisticated, rendering many particle arrangements virtually indistinguishable by means of pure spectroscopy [11].

Measuring with multiple sub-diffraction-limit spaced features is also a common problem in microscopy that eventually gave rise to a whole field of research, i.e., super-resolution microscopy [1216]. Most techniques of this category are usually based on fluorescence microscopy and, ergo, require a contamination of the specimen with fluorescent dyes. The resolution enhancement for super-resolution imaging techniques that are not reliant on any form of sample modification is generally more limited. For instance, with modified confocal laser scanning microscopy or structured illumination microscopy an up to twofold lateral spatial resolution enhancement can be achieved [1720].

Of course, there are other specialized techniques such as near-field scanning optical microscopes (NSOM) or scanning electron microscopes (SEM) that can surpass the resolution limit of standard optical microscopes with ease. However, these techniques struggle with their respective challenges and cannot be categorized as optical far-field techniques; hence a fair comparison is barely possible.

Nowadays, the toolbox for the investigation of nanostructures is enormous, and new approaches are published every year [21,22]. Especially in the context of video microscopy, many powerful techniques keep emerging, enabling real-time particle tracking with astonishing precision [23,24]. Nonetheless, these techniques almost exclusively deal with single or distant nanostructures and fail as soon as a significant coupling between two or more nanostructures occurs, an important aspect that is usually not taken into account. Ultimately, the number of optical techniques capable of dealing with multiple nanometer-sized coherent emitters is strongly limited.

In this paper, we present an all-linear, optical far-field measurement and imaging modality and apply it to clusters of sub-diffraction-limit sized nanospheres. With the size of these nanoparticles being well below the resolution limit, if two or more of them sit immediately adjacent to each other, they cannot be resolved individually by conventional imaging microscopy. Our method is based on scanning an area of interest on a specimen and recording polarization and angle resolved images of the transmitted light (angular spectrum). The measured data is evaluated by an algorithm creating a particle ensemble model and calculating the respective excited dipole moments and their mutual coupling. This model adapts automatically and successively to resemble the measured data as precisely as possible. Finally the algorithm returns the number of particles as well as all positions and sizes. We validate our experimental results by comparing them to benchmark SEM images and achieve a very convincing agreement.

2. EXPERIMENTAL SETUP

For the sample we use commercially available gold nanospheres with a size of $150\;{\rm{nm}} \pm 20{\rm{nm}}$, suspended in ${{\rm dd}}{{\rm{H}}_2}{\rm{O}}$. A drop of this solution is placed on a BK7 glass substrate. After 60 s, the residual of the drop is blown off the substrate using compressed nitrogen. This procedure allows for some of the particles to settle on the substrate and form random multi-particle arrangements. The number of particles deposited on the substrate can be influenced by the waiting time until the drop of liquid is removed.

 figure: Fig. 1.

Fig. 1. Schematic illustration of the experimental setup. An incoming Gaussian laser beam at a wavelength of $532\,\,{\rm{nm}}$ is circularly polarized by a linear polarizer and a quarter-wave plate. Two confocally aligned microscope objectives (MOs) are used to illuminate the sample and subsequently collect the transmitted light. The sample, carrying the ensembles of nanoparticles, is positioned in the joint focal plane of the MOs. For precise control of the sample position, the sample holder is attached to a 3D piezo stage (not shown). Two liquid crystal cells and a linear polarizer form the polarization analysis unit that can measure arbitrary polarization states. A single lens is used to image the Fourier plane of the MOs onto a conventional CMOS camera.

Download Full Size | PPT Slide | PDF

The experimental setup employed for the optical measurements starts with an incoming Gaussian beam ($\lambda = 532\,\,{\rm{nm}}$, bandwidth $\Delta \lambda \approx 4\,\,{\rm{nm}}$) that is circularly polarized by a linear polarizer and a quarter-wave plate. A schematic illustration of this setup is shown in Fig. 1. For illumination of the sample and collection of the transmitted light, we use two confocally aligned high numerical aperture (NA) microscope objectives [${{\rm{MO}}_1}$ (Leica Microsystems, HCX PL FLUOTAR, 100x/0.90) and ${{\rm{MO}}_2}$ (Leica Microsystems, HC PL FLUOTAR, 100x/1.32 OIL)]. The sample is placed in the joint focal plane of the two MOs and is carried by a multi-axis piezo scanner [Physik Instrumente (PI) GmbH & Co. KG, P-527 & E-710.4CL]. After ${{\rm{MO}}_2}$, the beam path is brought to a horizontal progression and the Fourier plane of ${{\rm{MO}}_2}$ is imaged onto a CMOS camera (The Imaging Source Europe GmbH, DMK 33UX252). Two liquid crystal variable retarders can be used to project any arbitrary 2D polarization state onto the linear transmission axis of the subsequent linear polarizer [25,26]. This enables us to record fully polarization resolved far-field images of the light collected by ${{\rm{MO}}_2}$, without requiring mechanically moving parts. A more detailed description of the core setup can be found in [27]. This experimental setup in combination with various polarization measurement approaches has been proven to be very powerful for the reconstruction of dipole moments [28,29].

3. MEASUREMENT AND EVALUATION

Before proceeding to the main measurements, we discuss some optional steps. During the evaluation process described later, it will be necessary to calculate the focal field generated by ${{\rm{MO}}_1}$. Having said that, the resulting focal field is heavily dependent on potential aberrations of both the incoming beam as well as the focusing objective ${{\rm{MO}}_1}$. Therefore, we use a technique described in Ref. [30] to characterize the angular spectrum that is transmitted through ${{\rm{MO}}_1}$. From these measurements, we gain precise knowledge about the intensity, phase, and polarization distribution of the angular spectrum impinging onto the sample. In turn, this enables a more precise calculation of the focal field and as a result also a higher accuracy of all subsequent measurement and data analysis steps. As mentioned before, this step is optional, especially if a beam and a microscope objective are used that are known to be of very high quality.

We now switch to the actual experiment, begin by scanning the sample discussed above in the focal plane, and integrate over the entire far-field images on the camera. In that sense, the setup is operated like a laser scanning microscope, but using a camera as a detector allows us to analyze the spatial structure of the light after its interaction with the sample. With a camera, we can apply selected masks and integrate predefined regions of the imaged angular spectrum, eventually enabling the information retrieval discussed above. For example, similar to the operation of a dark-field microscope, we can access an angular region containing only scattered light, present in a circular region between ${{\rm{NA}}_1}$ and ${{\rm{NA}}_2}$ [compare Fig. 2(a)], and selectively integrate it on the camera. Further, using the liquid crystal variable retarders, the measured polarization state can also be selected. These two features are pivotal for the final measurements, but they can also be utilized to improve image contrast for the initial laser scans. Low-resolution scans with a relatively large step size of 1 µm are performed over the sample to find some nanoparticles on the substrate. In Fig. 2(b) we show a scan image of an area on the sample where the nanoparticles formed many small clusters. These small clusters are well suited to demonstrate the capabilities of our technique. Consequently, all measurements shown later are recorded within this field. Similar to other laser scanning microscopy approaches, in principle the scan field can be chosen almost arbitrarily large. Nevertheless, for reasons of time, computational effort, and ease of use, we choose to measure smaller fields of a few $\unicode{x00B5}{{\rm{m}}^2}$ at a time. For the actual measurements, we scan over the chosen areas with a step size of 60 nm and record six polarization resolved far-field images for each position. The camera exposure time was set to 2 ms, whereas the gain was set to 0 dB. One exemplary measured region that we will use for the explanation of the evaluation algorithm is depicted in Fig. 2(c) as a dark-field scan image.

 figure: Fig. 2.

Fig. 2. (a) Exemplary measured Fourier-plane image of ${{\rm{MO}}_2}$. The numerical aperture (NA) of both microscope objectives is indicated in the image by a circle. In the annular region between ${{\rm{NA}}_1}$ and ${{\rm{NA}}_2}$ only the light scattered by the nanostructures is present. (b) Large area laser scan (integrating across the full angular spectrum). The image shows many smaller clusters of nanoparticles. All measurements shown in this paper were performed within this field. (c) Small area dark-field laser scan (integrating the circular region between ${{\rm{NA}}_1}$ and ${{\rm{NA}}_2}$). The starting configuration for the theoretical particle arrangement entering the optimization algorithm is indicated by white circles (positions and diameters). (d) Measured and fitted Stokes parameters for a single position after completion of the optimization algorithm.

Download Full Size | PPT Slide | PDF

The basic principle of our data evaluation is the creation of a hypothetical particle ensemble and the change of its parameters until it resembles the measured data as close as possible. In order to create a first model of the theoretical particle distribution, hypothetical particles are placed on a grid with a grid spacing of $240\,\,{\rm{nm}}$ and an initial particle radius of $40\,\,{\rm{nm}}$. The measured dark-field scan image is now taken as a guide to remove all particles at positions where the recorded scan image does not surpass a predefined threshold. The resulting initial particle distribution is indicated in Fig. 2(c) by white circles.

Now a function is needed that can calculate how the measured data for such a sample would look in theory. To this purpose, we start to compute the focal field distribution present in the experiment from the earlier reconstructed incoming angular spectrum by utilizing vectorial diffraction theory [31,32]. Next, the excited electric and magnetic dipole moments in the given focal fields are calculated by Mie theory and a coupled dipole model [33,34]. Taking into account the coupling between neighboring dipoles, and thus also particles, is absolutely crucial. Subsequently, the far fields of all dipoles emitting into the glass substrate (transmission) are calculated via dyadic Green’s functions [32,35]. In addition, the interference of the dipole emissions and the transmitted angular spectrum of the excitation beam is considered. The theory and equations required to calculate focal fields and far-fields of dipoles are explained in detail in Ref. [32], whereas an excellent derivation of the Mie coefficients can be found in Ref. [36]. The equations to perform the coupled dipole calculation are less widely used; thus they are explained extensively in Supplement 1, Section 6. At this point we attain the required function that can compute theoretical far-field distributions of the artificially created sample, excited by a beam, equivalent to the one in the experiment. As we are using a regular camera in the experiment, we do not gain spatial phase information in our measurements. However, the polarization resolved images allow us to calculate the angularly resolved Stokes parameters, which can then be compared to the particle model.

We proceed by running a nonlinear optimization algorithm that uses the lateral coordinates and radii of the particles as free parameters to minimize the difference between measurement and theory. All particles are assumed to sit on the substrate; thus the $z$-coordinates are given by the particle radii. Moreover, particles are not allowed to overlap with each other more than a few nanometers. If during the optimization procedure a particle becomes smaller than a minimal radius threshold (here set to $32\,\,{\rm{nm}}$), we infer that this particle is nonexistent on the real sample. The algorithm removes the hypothetical particle and continues optimizing the remaining. If there are no significant changes anymore in the optimized parameters, the algorithm stops and returns the created final particle model and its parameters. After the optimization is finished, Fig. 2(d) exemplarily shows the measured and theoretically calculated Stokes parameters for a single position in the scan. More details regarding the exact strategy of the evaluation procedure and the utilized optimization algorithm are provided in Supplement 1, Section 3. Furthermore, for the particle ensemble shown in Fig. 2(c), all intermediate configurations of the particle model were saved and compiled into a video (see Visualization 1). An explanation of the video can also be found in Supplement 1, Section 3.

4. DISCUSSION

To judge the performance of our method, we recorded high-resolution SEM images of the areas that were measured optically before. It is very important that all optical measurements of the sample are completed before this step. An SEM usually causes a carbon contamination of the areas that are observed [37]. The additional carbon layer on the gold nanoparticles significantly modifies their optical response, therefore rendering the sample unusable for further optical measurements. To avoid surface-charging and improve the quality of the SEM images, the sample was coated with an approximately 1 nm thick chromium layer. More information regarding the SEM images and the coating can be found in Supplement 1, Section 2.

In Fig. 3, we show high-resolution laser scan images for seven investigated regions of our sample with varying complexity. Underneath each laser scan image, we show a corresponding SEM image of the same area. The particle parameters that were derived by our algorithm are indicated as red circles plotted as an overlay to the SEM image. Positions and sizes of the circles refer to the experimentally retrieved particle coordinates and diameters, respectively. To correlate the two images, reference particle coordinates were read from the SEM images. Thereafter, for each of the seven measurements, the SEM reference coordinate frame and the measurement coordinate frame are inversely translated by their respective mean particle coordinates.

 figure: Fig. 3.

Fig. 3. Results. High-resolution laser-scan images (integrating across the full angular spectrum) and below their corresponding scanning electron microscope (SEM) images. The experimental results, retrieved from the optical measurements, are shown as red circles on the SEM images. In all images, the scale bar corresponds to $532\,\,{\rm{nm}}$.

Download Full Size | PPT Slide | PDF

The results for the particle ensemble discussed earlier [Fig. 2(c)] are shown in Fig. 3(a). As can be seen, the derived particle parameters coincide with the reference SEM image extremely well. Not only was the number of particles properly determined at each of the three spots in the laser scan image, but the particle positions and radii are also all correct up to only a few nanometers. We would like to emphasize here that the conventional laser scan images shown in Fig. 3 are already very close to the limit of what can be achieved by conventional microscopy, as we used very tight focusing during the experiment.

Next, we show the measurement of a single nanoparticle in Fig. 3(b). This measurement was mostly recorded to facilitate the development of the optimization algorithm described above, but it also demonstrates that if a particle is close to spherical, its sub-wavelength size is retrieved very accurately as well. Inspecting further measurements in Figs. 3(c)–3(g), we notice that the vast majority of all particles were correctly identified. It can be observed therein that for larger particle clusters the error of the retrieved parameters seems to increase. This can be attributed to the following effects. First, for the given excitation wavelength and particle size, additional weak higher-order multipoles are excited that are not yet considered. This also became visible when inspecting the residual values during the optimization process. Especially at larger particle clusters, this can lead to noticeable errors due to the coupling between the nanostructures. Second, the underlying SEM images reveal that many of the nanoparticles exhibit considerable deviations from the assumed spherical shape. As the dipole response of a particle is strongly dependent on its shape, the assumption that the particles are spherical will lead to errors in the parameter retrieval.

In Fig. 3(d), we show the measurement of a larger field with size around ${{6}}\;\unicode{x00B5}{\rm m} \times {{6}}\;{\rm{\unicode{x00B5}{\rm m}}}$. Several of the SEM images, in particular the one in Fig. 3(d), show that the chosen fabrication method left some debris in the vicinity of the particles. On the right side of the field it can be seen that our technique can deal with a surprisingly high amount of debris on the sample while still retrieving positions and sizes of most of the particles with great accuracy. However, on the bottom left, where most of the debris is located, the unaccounted artifacts caused our algorithm to spuriously place additional particles or respond with an increased position error. This area is shown magnified as an inset in Fig. 3(d).

To provide more quantitative information about the precision of the presented results, the particle positions extracted from the SEM images are used to calculate estimated errors using the unbiased sample variance. The resulting values are ${\sigma _x} = 15.00\,\,{\rm{nm}}$, ${\sigma _y} = 13.28\,\,{\rm{nm}}$, and ${\sigma _r} = 5.44\,\,{\rm{nm}}$. Additional details regarding the exact procedure for the calculation of these values can be found in Section 1 of Supplement 1, where we also provide more information, numbers, and a discussion with respect to the minimal particle radius threshold and the duration of measurement and data evaluation.

Before concluding, we want to address the evident question of how far one could get by simply fitting point spread functions of single particles and ignoring their mutual interaction. Although it obviously works perfectly fine if individual structures are well separated, if they sit in close vicinity to each other, this will fail. The enormous error that would result from such an approach can be estimated from Fig. 3(a) by inspecting how much light is scattered by a single particle and by a cluster of three particles. Disregarding inter-particle coupling would infer a factor of three difference; however, what we measure and predict by the coupled dipole model is significantly below this simple estimation, and is not even reaching a factor of two.

5. OUTLOOK

As for virtually every microscopy technique that investigates sub-diffraction-limit features, some assumptions were required during the process described above. In addition to the earlier discussed minimal particle radius, here we had to assume that the particle shape and material are known. Effectively, this left the particle number, sizes, and radii to be determined. Although this already provides a very powerful tool, we envision various possible extensions and improvements of the proposed method that are worth mentioning here before drawing a conclusion.

A. Materials

Apart from the gold nanoparticles, this technique could also be readily used for various other materials, as long as they exhibit a reasonable dipole response. We expect it to work even better for high-refractive-index dielectric particles, e.g., made of silicon, as they provide useful additional features [38]. Stronger scattering signals, strong magnetic dipoles, sharp resonances—all of these features facilitate the retrieval of particle parameters, especially their sizes. This would in turn also increase the range of particle radii that could be sensed simultaneously. In addition, tailoring the input beam and its focal field may help optimize the technique even further.

To work simultaneously with different materials or a very broad range of particle sizes, it is conceivable to feed the evaluation algorithm with measured data for multiple wavelengths. This will provide additional spectral information that is commonly used for the identification of material properties.

B. Nanostructure Geometry

In addition to spheres, there are other simple geometries such as nanorods and cylinders that could be implemented in a rather straightforward fashion. In particular, the implementation of cylinders could enable applications in lithography, may it be as a tool for quality control or for alignment purposes of several layers during the manufacturing processes [39].

If the parameters of more complex and nonideal particles are to be retrieved, generally the dipole approximation is not valid anymore and the method needs to be extended to higher-order multipoles. For the measurement and retrieval of such higher-order multipoles, phase information is crucial to clearly identify all multipoles [40]. Hence, a phase sensitive detector such as a Shack–Hartmann sensor [41] or some form of interferometric phase measurement is needed. With the implementation of higher-order multipoles, the computational effort during the evaluation would also increase. A promising approach is based on the utilization of an artificial neural network for data evaluation. In recent years, machine learning has proven to be a very powerful tool, and it also was utilized successfully in the field of microscopy [24,42]. Our first theoretical tests in this direction gave encouraging results. It is actually possible to retrieve the positions of adjacent nanoparticles with a surprisingly simple neural network. We envision this to be an important step, but it goes beyond the scope of this paper.

6. CONCLUSION

In conclusion, we have demonstrated an optical and all-linear imaging modality combining laser scanning microscopy, Fourier-plane polarimetry, and multipole retrieval for the reconstruction of sub-diffraction-limit nanoparticle ensembles. We performed a detailed analysis of the measured far-fields and utilized a custom algorithm that uses this data to automatically create a model of the investigated sample area. Our technique has proven to be powerful and versatile, resembling the vast majority of the examined features down to a few nanometers. Measuring the distribution of nanoparticles is a very common task in science, especially in biology, where the synthesis of gold nanoparticles and their interaction with bacteria is attracting a lot of attention [4345]. Therefore, we believe this technique can find many applications related to the far-field reconstruction of more complicated nanostructures and arrangements.

Funding

European Commission (829116).

Acknowledgment

We thank Andreas Hohenau (University of Graz) for recording all SEM images shown in this paper. These images provided a very valuable reference for the proposed measurement technique.

Disclosures

The authors declare no conflicts of interest.

Data availability

The unprocessed measured data underlying the results presented in this manuscript is openly available from Dataset 1, Ref. [46].

Supplemental document

See Supplement 1 for supporting content.

REFERENCES

1. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997). [CrossRef]  

2. H. Li and L. Rothberg, “Colorimetric detection of dna sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proc. Natl. Acad. Sci. USA 101, 14036–14039 (2004). [CrossRef]  

3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]  

4. J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132, 9600–9601 (2010). [CrossRef]  

5. B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J. Phys. Chem. C 115, 24437–24453 (2011). [CrossRef]  

6. T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2014). [CrossRef]  

7. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003). [CrossRef]  

8. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003). [CrossRef]  

9. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005). [CrossRef]  

10. B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005). [CrossRef]  

11. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011). [CrossRef]  

12. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef]  

13. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006). [CrossRef]  

14. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006). [CrossRef]  

15. S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007). [CrossRef]  

16. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017). [CrossRef]  

17. C. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977). [CrossRef]  

18. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000). [CrossRef]  

19. G. M. R. De Luca, R. M. P. Breedijk, R. A. J. Brandt, C. H. C. Zeelenberg, B. E. de Jong, W. Timmermans, L. N. Azar, R. A. Hoebe, S. Stallinga, and E. M. M. Manders, “Re-scan confocal microscopy: scanning twice for better resolution,” Biomed. Opt. Express 4, 2644–2656 (2013). [CrossRef]  

20. C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104, 198101 (2010). [CrossRef]  

21. P. Zhang, S. Lee, H. Yu, N. Fang, and S. Ho Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5, 11447 (2015). [CrossRef]  

22. S. L. Oscurato, F. Borbone, R. C. Devlin, F. Capasso, P. Maddalena, and A. Ambrosio, “New microscopy technique based on position localization of scattering particles,” Opt. Express 25, 11530–11549 (2017). [CrossRef]  

23. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]  

24. S. Helgadottir, A. Argun, and G. Volpe, “Digital video microscopy enhanced by deep learning,” Optica 6, 506–513 (2019). [CrossRef]  

25. M. Martinelli and R. A. Chipman, “Endless polarization control algorithm using adjustable linear retarders with fixed axes,” J. Lightwave Technol. 21, 2089–2096 (2003). [CrossRef]  

26. G. L. Morales, M. del Mar Sánchez-López, and I. Moreno, “Liquid-crystal polarization state generator,” Proc. SPIE 11351, 180–190 (2020). [CrossRef]  

27. T. Bauer, “Probe-based nano-interferometric reconstruction of tightly focused vectorial light fields,” Doctoral thesis (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017).

28. J. S. Eismann, M. Neugebauer, and P. Banzer, “Exciting a chiral dipole moment in an achiral nanostructure,” Optica 5, 954–959 (2018). [CrossRef]  

29. S. Nechayev, J. S. Eismann, M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99, 041801 (2019). [CrossRef]  

30. J. S. Eismann, M. Neugebauer, K. Mantel, and P. Banzer, “Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer,” Light Sci. Appl. 10, 223 (2021). [CrossRef]  

31. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959). [CrossRef]  

32. L. Novotny, Principles of Nano-optics, 2nd ed. (Cambridge University, 2012).

33. P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. 117, 13573–13584 (2013). [CrossRef]  

34. A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photon. 2, 1423–1428 (2015). [CrossRef]  

35. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Paperback Series (1998).

37. A. J. V. Griffiths and T. Walther, “Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning,” J. Phys. Conf. Ser. 241, 012017 (2010). [CrossRef]  

38. P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015). [CrossRef]  

39. T. A. W. Wolterink, R. D. Buijs, G. Gerini, E. Verhagen, and A. F. Koenderink, “Calibration-based overlay sensing with minimal-footprint targets,” Appl. Phys. Lett. 119, 111104 (2021). [CrossRef]  

40. “Super-Pixels: redefining the way we sense the world,” 2021, https://cordis.europa.eu/project/id/829116.

41. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refractive Surg. 17, S573–S577 (2001). [CrossRef]  

42. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017). [CrossRef]  

43. S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, “Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata,” Mater. Lett. 61, 3984–3987 (2007). [CrossRef]  

44. N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011). [CrossRef]  

45. W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba, “Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges,” J. Nanopart. Res. 21, 186 (2019). [CrossRef]  

46. J. S. Eismann and P. Banzer, “Laser scan and polarization resolved Fourier-plane measurements of nanoparticle clusters,” Zenodo, 2022, https://doi.org/10.5281/zenodo.6226189.

References

  • View by:

  1. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
    [Crossref]
  2. H. Li and L. Rothberg, “Colorimetric detection of dna sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proc. Natl. Acad. Sci. USA 101, 14036–14039 (2004).
    [Crossref]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  4. J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132, 9600–9601 (2010).
    [Crossref]
  5. B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J. Phys. Chem. C 115, 24437–24453 (2011).
    [Crossref]
  6. T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2014).
    [Crossref]
  7. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
    [Crossref]
  8. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
    [Crossref]
  9. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
    [Crossref]
  10. B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).
    [Crossref]
  11. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [Crossref]
  12. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref]
  13. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref]
  14. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [Crossref]
  15. S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
    [Crossref]
  16. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
    [Crossref]
  17. C. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
    [Crossref]
  18. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref]
  19. G. M. R. De Luca, R. M. P. Breedijk, R. A. J. Brandt, C. H. C. Zeelenberg, B. E. de Jong, W. Timmermans, L. N. Azar, R. A. Hoebe, S. Stallinga, and E. M. M. Manders, “Re-scan confocal microscopy: scanning twice for better resolution,” Biomed. Opt. Express 4, 2644–2656 (2013).
    [Crossref]
  20. C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104, 198101 (2010).
    [Crossref]
  21. P. Zhang, S. Lee, H. Yu, N. Fang, and S. Ho Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5, 11447 (2015).
    [Crossref]
  22. S. L. Oscurato, F. Borbone, R. C. Devlin, F. Capasso, P. Maddalena, and A. Ambrosio, “New microscopy technique based on position localization of scattering particles,” Opt. Express 25, 11530–11549 (2017).
    [Crossref]
  23. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
    [Crossref]
  24. S. Helgadottir, A. Argun, and G. Volpe, “Digital video microscopy enhanced by deep learning,” Optica 6, 506–513 (2019).
    [Crossref]
  25. M. Martinelli and R. A. Chipman, “Endless polarization control algorithm using adjustable linear retarders with fixed axes,” J. Lightwave Technol. 21, 2089–2096 (2003).
    [Crossref]
  26. G. L. Morales, M. del Mar Sánchez-López, and I. Moreno, “Liquid-crystal polarization state generator,” Proc. SPIE 11351, 180–190 (2020).
    [Crossref]
  27. T. Bauer, “Probe-based nano-interferometric reconstruction of tightly focused vectorial light fields,” Doctoral thesis (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017).
  28. J. S. Eismann, M. Neugebauer, and P. Banzer, “Exciting a chiral dipole moment in an achiral nanostructure,” Optica 5, 954–959 (2018).
    [Crossref]
  29. S. Nechayev, J. S. Eismann, M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99, 041801 (2019).
    [Crossref]
  30. J. S. Eismann, M. Neugebauer, K. Mantel, and P. Banzer, “Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer,” Light Sci. Appl. 10, 223 (2021).
    [Crossref]
  31. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
    [Crossref]
  32. L. Novotny, Principles of Nano-optics, 2nd ed. (Cambridge University, 2012).
  33. P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. 117, 13573–13584 (2013).
    [Crossref]
  34. A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photon. 2, 1423–1428 (2015).
    [Crossref]
  35. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Paperback Series (1998).
  37. A. J. V. Griffiths and T. Walther, “Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning,” J. Phys. Conf. Ser. 241, 012017 (2010).
    [Crossref]
  38. P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
    [Crossref]
  39. T. A. W. Wolterink, R. D. Buijs, G. Gerini, E. Verhagen, and A. F. Koenderink, “Calibration-based overlay sensing with minimal-footprint targets,” Appl. Phys. Lett. 119, 111104 (2021).
    [Crossref]
  40. “Super-Pixels: redefining the way we sense the world,” 2021, https://cordis.europa.eu/project/id/829116 .
  41. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refractive Surg. 17, S573–S577 (2001).
    [Crossref]
  42. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).
    [Crossref]
  43. S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, “Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata,” Mater. Lett. 61, 3984–3987 (2007).
    [Crossref]
  44. N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
    [Crossref]
  45. W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba, “Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges,” J. Nanopart. Res. 21, 186 (2019).
    [Crossref]
  46. J. S. Eismann and P. Banzer, “Laser scan and polarization resolved Fourier-plane measurements of nanoparticle clusters,” Zenodo, 2022, https://doi.org/10.5281/zenodo.6226189.

2021 (2)

J. S. Eismann, M. Neugebauer, K. Mantel, and P. Banzer, “Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer,” Light Sci. Appl. 10, 223 (2021).
[Crossref]

T. A. W. Wolterink, R. D. Buijs, G. Gerini, E. Verhagen, and A. F. Koenderink, “Calibration-based overlay sensing with minimal-footprint targets,” Appl. Phys. Lett. 119, 111104 (2021).
[Crossref]

2020 (1)

G. L. Morales, M. del Mar Sánchez-López, and I. Moreno, “Liquid-crystal polarization state generator,” Proc. SPIE 11351, 180–190 (2020).
[Crossref]

2019 (3)

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99, 041801 (2019).
[Crossref]

S. Helgadottir, A. Argun, and G. Volpe, “Digital video microscopy enhanced by deep learning,” Optica 6, 506–513 (2019).
[Crossref]

W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba, “Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges,” J. Nanopart. Res. 21, 186 (2019).
[Crossref]

2018 (1)

2017 (3)

S. L. Oscurato, F. Borbone, R. C. Devlin, F. Capasso, P. Maddalena, and A. Ambrosio, “New microscopy technique based on position localization of scattering particles,” Opt. Express 25, 11530–11549 (2017).
[Crossref]

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).
[Crossref]

2015 (3)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

P. Zhang, S. Lee, H. Yu, N. Fang, and S. Ho Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5, 11447 (2015).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photon. 2, 1423–1428 (2015).
[Crossref]

2014 (1)

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2014).
[Crossref]

2013 (2)

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. 117, 13573–13584 (2013).
[Crossref]

G. M. R. De Luca, R. M. P. Breedijk, R. A. J. Brandt, C. H. C. Zeelenberg, B. E. de Jong, W. Timmermans, L. N. Azar, R. A. Hoebe, S. Stallinga, and E. M. M. Manders, “Re-scan confocal microscopy: scanning twice for better resolution,” Biomed. Opt. Express 4, 2644–2656 (2013).
[Crossref]

2011 (3)

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J. Phys. Chem. C 115, 24437–24453 (2011).
[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref]

2010 (3)

J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132, 9600–9601 (2010).
[Crossref]

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104, 198101 (2010).
[Crossref]

A. J. V. Griffiths and T. Walther, “Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning,” J. Phys. Conf. Ser. 241, 012017 (2010).
[Crossref]

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

2007 (2)

S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
[Crossref]

S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, “Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata,” Mater. Lett. 61, 3984–3987 (2007).
[Crossref]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

2005 (2)

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).
[Crossref]

2004 (1)

H. Li and L. Rothberg, “Colorimetric detection of dna sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proc. Natl. Acad. Sci. USA 101, 14036–14039 (2004).
[Crossref]

2003 (3)

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

M. Martinelli and R. A. Chipman, “Endless polarization control algorithm using adjustable linear retarders with fixed axes,” J. Lightwave Technol. 21, 2089–2096 (2003).
[Crossref]

2001 (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refractive Surg. 17, S573–S577 (2001).
[Crossref]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

1997 (1)

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref]

1996 (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[Crossref]

1994 (1)

1977 (1)

C. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
[Crossref]

Agarwal, H.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).
[Crossref]

Aizpurua, J.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. 117, 13573–13584 (2013).
[Crossref]

Albella, P.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. 117, 13573–13584 (2013).
[Crossref]

Alivisatos, A. P.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).
[Crossref]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Ambrosio, A.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Argun, A.

Aussenegg, F.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Azar, L. N.

Bag, A.

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99, 041801 (2019).
[Crossref]

Balzarotti, F.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Banzer, P.

J. S. Eismann, M. Neugebauer, K. Mantel, and P. Banzer, “Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer,” Light Sci. Appl. 10, 223 (2021).
[Crossref]

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99, 041801 (2019).
[Crossref]

J. S. Eismann, M. Neugebauer, and P. Banzer, “Exciting a chiral dipole moment in an achiral nanostructure,” Optica 5, 954–959 (2018).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2014).
[Crossref]

Bastús, N. G.

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Bauer, T.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2014).
[Crossref]

T. Bauer, “Probe-based nano-interferometric reconstruction of tightly focused vectorial light fields,” Doctoral thesis (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017).

Bejnordi, B. E.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Paperback Series (1998).

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Borbone, F.

Boriskina, S. V.

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J. Phys. Chem. C 115, 24437–24453 (2011).
[Crossref]

Brandt, R. A. J.

Breedijk, R. M. P.

Brzychczy-Wloch, M.

W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba, “Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges,” J. Nanopart. Res. 21, 186 (2019).
[Crossref]

Buijs, R. D.

T. A. W. Wolterink, R. D. Buijs, G. Gerini, E. Verhagen, and A. F. Koenderink, “Calibration-based overlay sensing with minimal-footprint targets,” Appl. Phys. Lett. 119, 111104 (2021).
[Crossref]

Capasso, F.

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

Chen, J. I. L.

J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132, 9600–9601 (2010).
[Crossref]

Chen, Y.

J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132, 9600–9601 (2010).
[Crossref]

Chichkov, B. N.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photon. 2, 1423–1428 (2015).
[Crossref]

Chipman, R. A.

Choudhury, A.

C. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
[Crossref]

Ciompi, F.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).
[Crossref]

Comenge, J.

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref]

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

de Jong, B. E.

De Luca, G. M. R.

del Mar Sánchez-López, M.

G. L. Morales, M. del Mar Sánchez-López, and I. Moreno, “Liquid-crystal polarization state generator,” Proc. SPIE 11351, 180–190 (2020).
[Crossref]

Devlin, R. C.

Eilers, Y.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Eismann, J. S.

J. S. Eismann, M. Neugebauer, K. Mantel, and P. Banzer, “Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer,” Light Sci. Appl. 10, 223 (2021).
[Crossref]

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99, 041801 (2019).
[Crossref]

J. S. Eismann, M. Neugebauer, and P. Banzer, “Exciting a chiral dipole moment in an achiral nanostructure,” Optica 5, 954–959 (2018).
[Crossref]

Elf, J.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Elghanian, R.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref]

Enderlein, J.

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104, 198101 (2010).
[Crossref]

Evlyukhin, A. B.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photon. 2, 1423–1428 (2015).
[Crossref]

Fang, N.

P. Zhang, S. Lee, H. Yu, N. Fang, and S. Ho Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5, 11447 (2015).
[Crossref]

Gerini, G.

T. A. W. Wolterink, R. D. Buijs, G. Gerini, E. Verhagen, and A. F. Koenderink, “Calibration-based overlay sensing with minimal-footprint targets,” Appl. Phys. Lett. 119, 111104 (2021).
[Crossref]

Ghafoorian, M.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).
[Crossref]

Ginger, D. S.

J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132, 9600–9601 (2010).
[Crossref]

Golda-Cepa, M.

W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba, “Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges,” J. Nanopart. Res. 21, 186 (2019).
[Crossref]

Grier, D. G.

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[Crossref]

Griffiths, A. J. V.

A. J. V. Griffiths and T. Walther, “Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning,” J. Phys. Conf. Ser. 241, 012017 (2010).
[Crossref]

Gu, N.

S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, “Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata,” Mater. Lett. 61, 3984–3987 (2007).
[Crossref]

Guo, Z.

S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, “Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata,” Mater. Lett. 61, 3984–3987 (2007).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Gwosch, K. C.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Gynnå, A. H.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

He, S.

S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, “Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata,” Mater. Lett. 61, 3984–3987 (2007).
[Crossref]

Helgadottir, S.

Hell, S. W.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Ho Kang, S.

P. Zhang, S. Lee, H. Yu, N. Fang, and S. Ho Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5, 11447 (2015).
[Crossref]

Hoebe, R. A.

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Paperback Series (1998).

Indyka, P.

W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba, “Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges,” J. Nanopart. Res. 21, 186 (2019).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Jarosz, M.

W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba, “Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges,” J. Nanopart. Res. 21, 186 (2019).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photon. 2, 1423–1428 (2015).
[Crossref]

Koenderink, A. F.

T. A. W. Wolterink, R. D. Buijs, G. Gerini, E. Verhagen, and A. F. Koenderink, “Calibration-based overlay sensing with minimal-footprint targets,” Appl. Phys. Lett. 119, 111104 (2021).
[Crossref]

Kooi, T.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).
[Crossref]

Kotarba, A.

W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba, “Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges,” J. Nanopart. Res. 21, 186 (2019).
[Crossref]

Krenn, J.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Lee, S.

P. Zhang, S. Lee, H. Yu, N. Fang, and S. Ho Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5, 11447 (2015).
[Crossref]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Letsinger, R. L.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref]

Leuchs, G.

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99, 041801 (2019).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2014).
[Crossref]

Li, H.

H. Li and L. Rothberg, “Colorimetric detection of dna sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proc. Natl. Acad. Sci. USA 101, 14036–14039 (2004).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

Liphardt, J.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).
[Crossref]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Litjens, G.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Maddalena, P.

Maier, S. A.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. 117, 13573–13584 (2013).
[Crossref]

Manders, E. M. M.

Mantel, K.

J. S. Eismann, M. Neugebauer, K. Mantel, and P. Banzer, “Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer,” Light Sci. Appl. 10, 223 (2021).
[Crossref]

Martinelli, M.

Mirkin, C. A.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photon. 2, 1423–1428 (2015).
[Crossref]

Mock, J. J.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Morales, G. L.

G. L. Morales, M. del Mar Sánchez-López, and I. Moreno, “Liquid-crystal polarization state generator,” Proc. SPIE 11351, 180–190 (2020).
[Crossref]

Moreno, F.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. 117, 13573–13584 (2013).
[Crossref]

Moreno, I.

G. L. Morales, M. del Mar Sánchez-López, and I. Moreno, “Liquid-crystal polarization state generator,” Proc. SPIE 11351, 180–190 (2020).
[Crossref]

Mucic, R. C.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref]

Müller, C. B.

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104, 198101 (2010).
[Crossref]

Nechayev, S.

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99, 041801 (2019).
[Crossref]

Neugebauer, M.

J. S. Eismann, M. Neugebauer, K. Mantel, and P. Banzer, “Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer,” Light Sci. Appl. 10, 223 (2021).
[Crossref]

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99, 041801 (2019).
[Crossref]

J. S. Eismann, M. Neugebauer, and P. Banzer, “Exciting a chiral dipole moment in an achiral nanostructure,” Optica 5, 954–959 (2018).
[Crossref]

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

Novotny, L.

L. Novotny, Principles of Nano-optics, 2nd ed. (Cambridge University, 2012).

Ochonska, D.

W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba, “Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges,” J. Nanopart. Res. 21, 186 (2019).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Orlov, S.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2014).
[Crossref]

Oscurato, S. L.

Pajerski, W.

W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba, “Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges,” J. Nanopart. Res. 21, 186 (2019).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Peschel, U.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2014).
[Crossref]

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refractive Surg. 17, S573–S577 (2001).
[Crossref]

Poyli, M. A.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. 117, 13573–13584 (2013).
[Crossref]

Puntes, V.

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Reinhard, B. M.

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J. Phys. Chem. C 115, 24437–24453 (2011).
[Crossref]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
[Crossref]

Rothberg, L.

H. Li and L. Rothberg, “Colorimetric detection of dna sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proc. Natl. Acad. Sci. USA 101, 14036–14039 (2004).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Sáenz, J. J.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. 117, 13573–13584 (2013).
[Crossref]

Sánchez, C. I.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).
[Crossref]

Schmidt, M. K.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. 117, 13573–13584 (2013).
[Crossref]

Schultz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Setio, A. A. A.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).
[Crossref]

Shack, R.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refractive Surg. 17, S573–S577 (2001).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Sheppard, C.

C. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
[Crossref]

Siu, M.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).
[Crossref]

Smith, D. R.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Sojka, Z.

W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba, “Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges,” J. Nanopart. Res. 21, 186 (2019).
[Crossref]

Sönnichsen, C.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Stallinga, S.

Stefani, F. D.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Storhoff, J. J.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref]

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Timmermans, W.

van der Laak, J. A.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

van Ginneken, B.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).
[Crossref]

Verhagen, E.

T. A. W. Wolterink, R. D. Buijs, G. Gerini, E. Verhagen, and A. F. Koenderink, “Calibration-based overlay sensing with minimal-footprint targets,” Appl. Phys. Lett. 119, 111104 (2021).
[Crossref]

Volpe, G.

Walther, T.

A. J. V. Griffiths and T. Walther, “Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning,” J. Phys. Conf. Ser. 241, 012017 (2010).
[Crossref]

Wang, J.

S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, “Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata,” Mater. Lett. 61, 3984–3987 (2007).
[Crossref]

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Westphal, V.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Wichmann, J.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
[Crossref]

Wolterink, T. A. W.

T. A. W. Wolterink, R. D. Buijs, G. Gerini, E. Verhagen, and A. F. Koenderink, “Calibration-based overlay sensing with minimal-footprint targets,” Appl. Phys. Lett. 119, 111104 (2021).
[Crossref]

Wozniak, P.

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99, 041801 (2019).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

Yan, B.

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J. Phys. Chem. C 115, 24437–24453 (2011).
[Crossref]

Yu, H.

P. Zhang, S. Lee, H. Yu, N. Fang, and S. Ho Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5, 11447 (2015).
[Crossref]

Zeelenberg, C. H. C.

Zhang, P.

P. Zhang, S. Lee, H. Yu, N. Fang, and S. Ho Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5, 11447 (2015).
[Crossref]

Zhang, S.

S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, “Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata,” Mater. Lett. 61, 3984–3987 (2007).
[Crossref]

Zhang, X.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Zhang, Y.

S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, “Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata,” Mater. Lett. 61, 3984–3987 (2007).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

ACS Photon. (1)

A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photon. 2, 1423–1428 (2015).
[Crossref]

Appl. Phys. Lett. (1)

T. A. W. Wolterink, R. D. Buijs, G. Gerini, E. Verhagen, and A. F. Koenderink, “Calibration-based overlay sensing with minimal-footprint targets,” Appl. Phys. Lett. 119, 111104 (2021).
[Crossref]

Biomed. Opt. Express (1)

Chem. Rev. (1)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132, 9600–9601 (2010).
[Crossref]

J. Colloid Interface Sci. (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[Crossref]

J. Lightwave Technol. (1)

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

J. Nanopart. Res. (1)

W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba, “Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges,” J. Nanopart. Res. 21, 186 (2019).
[Crossref]

J. Phys. Chem. (1)

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. 117, 13573–13584 (2013).
[Crossref]

J. Phys. Chem. C (1)

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J. Phys. Chem. C 115, 24437–24453 (2011).
[Crossref]

J. Phys. Conf. Ser. (1)

A. J. V. Griffiths and T. Walther, “Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning,” J. Phys. Conf. Ser. 241, 012017 (2010).
[Crossref]

J. Refractive Surg. (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refractive Surg. 17, S573–S577 (2001).
[Crossref]

Langmuir (1)

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref]

Laser Photon. Rev. (1)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

Light Sci. Appl. (1)

J. S. Eismann, M. Neugebauer, K. Mantel, and P. Banzer, “Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer,” Light Sci. Appl. 10, 223 (2021).
[Crossref]

Mater. Lett. (1)

S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, “Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata,” Mater. Lett. 61, 3984–3987 (2007).
[Crossref]

Med. Image Anal. (1)

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).
[Crossref]

Nano Lett. (2)

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).
[Crossref]

Nat. Biotechnol. (1)

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Nat. Photonics (1)

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2014).
[Crossref]

Opt. Acta (1)

C. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
[Crossref]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (2)

Phys. Rev. A (1)

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99, 041801 (2019).
[Crossref]

Phys. Rev. Lett. (1)

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104, 198101 (2010).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

H. Li and L. Rothberg, “Colorimetric detection of dna sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proc. Natl. Acad. Sci. USA 101, 14036–14039 (2004).
[Crossref]

Proc. R. Soc. London A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
[Crossref]

Proc. SPIE (1)

G. L. Morales, M. del Mar Sánchez-López, and I. Moreno, “Liquid-crystal polarization state generator,” Proc. SPIE 11351, 180–190 (2020).
[Crossref]

Sci. Rep. (1)

P. Zhang, S. Lee, H. Yu, N. Fang, and S. Ho Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5, 11447 (2015).
[Crossref]

Science (4)

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
[Crossref]

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355, 606–612 (2017).
[Crossref]

Other (6)

T. Bauer, “Probe-based nano-interferometric reconstruction of tightly focused vectorial light fields,” Doctoral thesis (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017).

L. Novotny, Principles of Nano-optics, 2nd ed. (Cambridge University, 2012).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Paperback Series (1998).

“Super-Pixels: redefining the way we sense the world,” 2021, https://cordis.europa.eu/project/id/829116 .

J. S. Eismann and P. Banzer, “Laser scan and polarization resolved Fourier-plane measurements of nanoparticle clusters,” Zenodo, 2022, https://doi.org/10.5281/zenodo.6226189.

Supplementary Material (3)

NameDescription
Dataset 1       Experimental raw data
Supplement 1       Supplemental document
Visualization 1       Particle model iterations for one specific evaluation of a particle ensemble. Left side: The current particle model is shown on top of the measured dark-field image. Static particles are drawn in white, whereas presently optimized particles are blue

Data availability

The unprocessed measured data underlying the results presented in this manuscript is openly available from Dataset 1, Ref. [46].

46. J. S. Eismann and P. Banzer, “Laser scan and polarization resolved Fourier-plane measurements of nanoparticle clusters,” Zenodo, 2022, https://doi.org/10.5281/zenodo.6226189.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Schematic illustration of the experimental setup. An incoming Gaussian laser beam at a wavelength of $532\,\,{\rm{nm}}$ is circularly polarized by a linear polarizer and a quarter-wave plate. Two confocally aligned microscope objectives (MOs) are used to illuminate the sample and subsequently collect the transmitted light. The sample, carrying the ensembles of nanoparticles, is positioned in the joint focal plane of the MOs. For precise control of the sample position, the sample holder is attached to a 3D piezo stage (not shown). Two liquid crystal cells and a linear polarizer form the polarization analysis unit that can measure arbitrary polarization states. A single lens is used to image the Fourier plane of the MOs onto a conventional CMOS camera.
Fig. 2.
Fig. 2. (a) Exemplary measured Fourier-plane image of ${{\rm{MO}}_2}$. The numerical aperture (NA) of both microscope objectives is indicated in the image by a circle. In the annular region between ${{\rm{NA}}_1}$ and ${{\rm{NA}}_2}$ only the light scattered by the nanostructures is present. (b) Large area laser scan (integrating across the full angular spectrum). The image shows many smaller clusters of nanoparticles. All measurements shown in this paper were performed within this field. (c) Small area dark-field laser scan (integrating the circular region between ${{\rm{NA}}_1}$ and ${{\rm{NA}}_2}$). The starting configuration for the theoretical particle arrangement entering the optimization algorithm is indicated by white circles (positions and diameters). (d) Measured and fitted Stokes parameters for a single position after completion of the optimization algorithm.
Fig. 3.
Fig. 3. Results. High-resolution laser-scan images (integrating across the full angular spectrum) and below their corresponding scanning electron microscope (SEM) images. The experimental results, retrieved from the optical measurements, are shown as red circles on the SEM images. In all images, the scale bar corresponds to $532\,\,{\rm{nm}}$.
Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved