Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Robust method for certifying genuine high-dimensional quantum steering with multimeasurement settings

Open Access Open Access

Abstract

Genuine high-dimensional (HD) quantum steering was recently proposed for certifying HD entanglement in the one-sided device-independent setting, as quantified by the Schmidt number [Phys. Rev. Lett. 126, 200404 (2021) [CrossRef]  ]. As one of the central challenges in the steering test is the tolerated noise threshold, here we develop a more robust method for certifying genuine HD steering in noisy environments. We derive genuine HD steering criteria using multiple mutually unbiased bases, surpassing the previous restriction of only two measurement settings. Although the present multisetting criteria are not tight, we theoretically show that they are more robust to noise than the tight two-setting criteria. To test the practicality of our method under realistic conditions, we report an experimental demonstration using photonic orbital angular momentum entangled states in dimensions $d = 3,4,5$. Our work offers a more robust way to witness the entanglement dimension in practical one-sided device-independent quantum information processing.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. INTRODUCTION

Entanglement [1], quantum steering [2], and Bell nonlocality [3], the three types of quantum correlations, play a pivotal role in the development of quantum communication [4]. The above three concepts are nonequivalent, forming a hierarchy where states exhibiting steering are a strict subset of entangled states, and a strict superset of Bell nonlocal states [5]. Among these quantum correlations, steering is rather unique in its inherent asymmetry [6], providing a way to certify entanglement with the trustworthy requirement of measurement devices on only one side [79]. During the past decade, steering has attracted increasing attention for potential applications in hybrid quantum networks with both trusted and untrusted components [1016].

Complex entangled systems involving multilevel quantum particles open many interesting perspectives [17,18]. Protocols based on higher dimensions possess the advantages of larger channel capacity [1921], stronger noise resistance [2224], and enhanced security against attacks [25,26]. Remarkably, high-dimensional (HD) quantum steering has been experimentally generated recently in photonic systems encoding in various degrees of freedom [2731].

Based on the available prior information about quantum systems, the Schmidt number of HD entanglement can be quantified in different contexts [32]. Quantum steering criteria have been derived via many means, such as entropic uncertainty relations [3335] and semidefinite programming (SDP) [8,10]. However, both theoretical [7] and experimental [2730] tests of steering developed so far mostly characterize unsteerable states, thus verifying the states exhibiting steering by violating these descriptions. These methods witness only the presence of steering (certify a Schmidt number $n \gt 1$), but fail to capture its effective dimension in the one-sided device-independent (1SDI) setting. Recently, by developing the notion of genuine HD steering, Designolle et al. exploited a way to characterize the dimension of HD steering [31]. They derived a genuine HD steering inequality using pairs of mutually unbiased bases (MUBs) and experimentally demonstrated it with photons entangled in their discretized transverse position momentum. Quantum measurements based on MUBs are generally viewed as being “maximally noncommutative” and “complementary” [36].

One of the most crucial problems in quantum steering is the level of tolerated noise threshold [7,8]. Here we propose a more robust method to certify genuine HD steering in noisy environments. Considering a more complex scenario with multiple MUB measurements, we derive multisetting steering inequalities for certifying the presence of genuine HD steering. Even though the multisetting criteria are not tight, we show that they are more robust against white noise compared with the tight two-setting genuine steering criteria derived in Ref. [31]. Then, to verify this advantage under realistic conditions, we experimentally prepare the simplified isotropic states encoding in the orbital angular momentum (OAM) degree of freedom in dimensions $d = 3,4,5$ and perform projective measurements onto MUBs. The experiment results are in good agreement with theoretical expectations and show that one can demonstrate a higher genuine steering dimension using the multisetting criteria in noisy environments. Hence, this would lead to a more robust protocol for certifying the lower bound on entanglement dimensions in the 1SDI setting.

2. THEORETIC FRAMEWORK

Assuming a bipartite state ${\rho _{\textit{AB}}}$ shared by Alice and Bob, two space-like separate observers, Alice implements the measurement ${M_{a|x}}$ on her subsystem (labeled by $x = 1,\ldots, m$) and receives a result $a \in \{{1,\ldots, d} \}$, where ${M_{a|x}}$ denotes positive operators satisfying $\sum\nolimits_a {M_{a|x}} = \unicode{x1D7D9}1$ for each $x$. The unnormalized post-measurement states prepared for Bob are given by

$${\sigma _{a|x}} = {\text{Tr}}_A({M_{a|x}}{\rho _{\textit{AB}}}).$$
The set ${\{{{\sigma _{a|x}}} \}_{a,x}}$ is called an assemblage. Then, Bob performs the trusted measurements on his subsystem and confirms the members of the assemblage he holds.

If the source distributes a separable state, denoted $\rho = \sum\nolimits_i {p_i}\rho _i^A \otimes \rho _i^B$, Alice can generate only the conditional states at Bob’s side that possess the local hidden state (LHS) model [5]

$$\sigma _{_{a|x}}^{{\text{LHS}}} = \sum\limits_i {p_i}{{\text{Tr}}_A}({M_{a|x}}\rho _i^A) \otimes \rho _i^B = \sum\limits_i q(a|x,i)\rho _i^B.$$

We consider a general ($m,d$) scenario where $d$ is the dimension of the Hilbert space and each of the two observers chooses $m$ sets of measurements, each of which can result in one of $d$ outcomes. Alice may generate assemblages for Bob that could not be obtained via any lower-dimensional entanglement. In Ref. [31], the authors formalized them by the notion of genuine HD steering. An assemblage features genuine $n$-dimensional steering (with $1 \le n \le d$) when it admits the decomposition in Eq. (1) with a shared state having at most $n$-dimensional entanglement ${\rho _{\textit{AB}}} = \sum\nolimits_l {p_l}| {{\phi _l}} \rangle \langle {{\phi _l}} |$, where all ${\phi _l}$ are pure entangled states with the Schmidt number at most $n$. In particular, any one-preparable assemblage can be produced via a state with Schmidt number $n = 1$, i.e., a separable state. As $(n - 1)$-preparable assemblages form a strict subset of $n$-preparable assemblages, a nested structure naturally emerges, shown in Fig. 1. So we can see that standard steering criteria allow for characterization of only one-preparable assemblages, detect steering by violating this description, but fail to capture the effective steering dimension.

 figure: Fig. 1.

Fig. 1. Nested structure of genuine HD steering. Alice can perform well-chosen measurements to generate an assemblage ${\sigma _{a|x}}$ for Bob that could not be created using any lower-dimensional entangled state. Reference [31] formalized it by the notion of $n$-preparable assemblages that can be produced via entangled state ${\rho _{\textit{AB}}}$ with Schmidt number at most $n$. This leads to a nested structure, shown here for $n \le 4$. One-preparable assemblages feature no steering (${\text{SR}}({\sigma _{a|x}}) = 0$, thus $\delta ({\sigma _{a|x}}) = 1$). The two- and three-preparable sets contain assemblages obtained by entangled states with Schmidt numbers $n = 2$ and $n = 3$, respectively. And assemblages beyond the three-preparable set feature genuine four-dimensional steering. They can be witnessed by violating the inequality $\delta ({\sigma _{a|x}}) \le 3$ (orange dashed line), thus guaranteeing the presence of four-dimensional entanglement in the 1SDI processing.

Download Full Size | PPT Slide | PDF

A crucial problem that arises when carrying out a steering test is the level of tolerated noise threshold [7,8]. While in Ref. [31], the authors consider only a ($2,d$) scenario, here we consider a general ($m,d$) scenario and derive multisetting criteria for certifying genuine steering, which has better robustness in noisy environments. We first introduce a notion of steering robustness, measuring the general noise threshold of a state assemblage ${\sigma _{a|x}}$ before becoming unsteerable [10], under the form of SDP [8]:

$${\text{SR}}({\sigma _{a|x}}) = \mathop {{\min}}\limits_{t,{\tau _{a|x}}} \left\{{t \ge 0|\frac{{{\sigma _{a|x}} + t{\tau _{a|x}}}}{{1 + t}}\;{\text{unsteerable}}} \right\},$$
where $\{{\tau _{a|x}}\}$ is an arbitrary assemblage, and the minimization is over all assemblages ${\{{\tau _{a|x}}\} _{a,x}}$ that have the same inputs and outputs as ${\{{\sigma _{a|x}}\} _{a,x}}$. The steering robustness can be lower bounded by considering measurements on MUBs [10]. In a complex Hilbert space of dimension $d$, two orthogonal bases ${\{| {\varphi _a^x} \rangle \} _x}$ and ${\{| {\varphi _b^y}\rangle \} _y}$ (with $x,y = 1,\ldots,d$) are called MUBs if $| {\langle {\varphi _a^x|\varphi _b^y} \rangle} | = 1/\sqrt d$ [37]. We can find $d + 1$ MUBs using the standard construction when $d$ is a prime power [38]. The lower bound of steering robustness for $m$-MUB measurement is given from the amount of violation of the steering inequality [31]
$$\begin{split}{\text{SR}}({\sigma _{a|x}}) &\ge \frac{1}{\lambda}\sum\limits_{x = 1}^m \sum\limits_{a = b = 1}^d {\text{Tr}}\left[{\left({{M_{a|x}} \otimes M_{b|x}^{\text{T}}} \right){\rho _{\textit{AB}}}} \right] - 1\\ &= \frac{1}{\lambda}\sum\limits_{x = 1}^m \sum\limits_{a = b = 1}^d P({a,b|x,x} ) - 1,\end{split}$$
where $\lambda$ is dependent on the dimension $d$ and the number of MUBs $m$. The existence of operationally inequivalent sets of MUB leads to different values of $\lambda$ [39] (see Supplement 1 for more details). $P({a,b|x,x})$ denotes the joint probability that Alice obtains result $a$ and Bob obtains result $b$ when measuring in the same basis $x$.

Incompatibility robustness is a similar quantifier to describe incompatibility of quantum measurements, measuring the generelized noise threshold of measurements before becoming jointly measurable [40]:

$${\text{IR}}({M_{a|x}}) = \mathop {{\min}}\limits_{r,{N_{a|x}}} \left\{{r \ge 0|\frac{{{M_{a|x}} + r{N_{a|x}}}}{{1 + r}}\;{\text{jointly measurable}}} \right\}.$$
Using the connection between steering robustness and incompatibility robustness [41] and recent results of the upper bound of incompatibility robustness for more than two sets of measurements [42,43], we can obtain a loose upper bound of the steering robustness of any $n$-preparable assemblage ${\sigma _{a|x}}$:
$${\text{SR}}({\sigma _{a|x}}) \le {\text{IR}}({M_{a|x}}) \le \frac{m}{{1 + 2(m - 1)/(n + 1)}} - 1;$$
all detailed proofs are given in Supplement 1. As we can see, inequalities (4) and (6) relate the Schmidt number $n$ to the probability distribution of the underlying quantum state. Hence, for all $n$-preparable assemblages, the genuine steering witness ${\delta _m}({\sigma _{a|x}})$, a quantifier of the lower bound of $n$, would satisfy
$${\delta _m}({\sigma _{a|x}}) \equiv \frac{{2(m - 1)({\text{SR}}({\sigma _{a|x}}) + 1)}}{{m - {\text{SR}}({\sigma _{a|x}}) - 1}} - 1 \le n,$$
where $m \gt 2$. For the ($2,d$) scenario, the tight upper bound of steering robustness is given in Ref. [31]:
$${\text{SR}}({\sigma _{a|x}}) \le {\text{IR}}({M_{a|x}}) = \frac{{\sqrt n - 1}}{{\sqrt n + 1}}.$$
Similarly, ${\delta _2}({\sigma _{a|x}})$ has been given by [31]
$${\delta _2}({\sigma _{a|x}}) \equiv {\left[{\frac{{{\text{SR}}({\sigma _{a|x}}) + 1}}{{{\text{SR}}({\sigma _{a|x}}) - 1}}} \right]^2} \le n.$$
Violating inequalities (7) and (9) means certifying the assemblage at least $(n + 1)$-preparable and the Schmidt number of the shared state at least $n + 1$. Obviously, inequality (7) surpasses the limitation of only two measurement settings and provides extension to the multisetting context. However, since the upper bound of steering robustness is not tight for $m \gt 2$, the presented multisetting criteria are sufficient but not necessary.

Then, to evaluate the multisetting criteria, we consider $d$-dimensional isotropic states ${\rho _{{\text{iso}}}} = p| {{\Phi _d}} \rangle \langle {{\Phi _d}} | + (1 - p)\unicode{x1D7D9}/{d^2}$, where $| {{\Phi _d}} \rangle$ is the $d$-dimensional maximally entangled state (MES) and $\unicode{x1D7D9}$ denotes the identity matrix of dimension ${d^2}$. $p \in [0, 1]$ is the mixing parameter, while here we denote ${\text{NF}}$ as the fraction of white noise, that is, ${\text{NF}} = 1 - p$. Alice still performs projective measurements ${M_{a|x}}$ and the assemblage created for Bob is

$$\sigma _{a|x}^{{\text{iso}}} = pM_{a|x}^T + (1 - p)\frac{\unicode{x1D7D9}}{d}.$$
Thus, the lower bound of steering robustness for the isotropic state is given by
$${\text{SR}}(\sigma _{a|x}^{{\text{iso}}}) \ge \frac{{m[p + (1 - p)/d]}}{\lambda} - 1.$$
Combined with Eq. (7) and Eq. (9), we can obtain the lower bound of witness ${\delta _m}({\sigma _{a|x}})$ as a function of noise fraction NF for $m \ge 3$ and $m = 2$, respectively, certifying at least genuine $n= \lfloor {{\delta }_{m}}({{\sigma }_{a|x}})+1\rfloor$-dimensional steering. We theoretically show the functions of multisetting and two-setting criteria for fixed dimensions $d = 3,4,5$ in Figs. 2(a)–2(c). As we can see, with the same noise fraction NF, the values of the lower bound of witness ${\delta _m}({\sigma _{a|x}})$ obtained by multisetting criteria are larger in the gray colored regions, which gives rise to potentially higher certified genuine steering dimensions $n$. On the other hand, Fig. 2(d) shows the noise thresholds for $d$-dimensional isotropic states exhibiting genuine $n$-dimensional steering as functions of $m$, which are obtained from the intersections of the black dotted lines with the curves in Figs. 2(a)–2(c). The noise thresholds almost increase as $m$ increases, which means that the noise resistance of genuine HD steering enhances. Note that there is one point declining due to the looseness of the present multisetting criteria. Even though $\delta ({\sigma _{a|x}})$ cannot reach $d + 1$ in the loose multisetting criteria, it is still straightforward to show that multisetting criteria offer a more robust method to detect genuine HD steering in noisy environments.
 figure: Fig. 2.

Fig. 2. Assemblages have the genuine steering witness $\delta ({\sigma _{a|x}})$ as a function of the mixing parameter $p$ for different dimensions: (a) $d = 3$, (b) $d = 4$, and (c) $d = 5$. These assemblages are at least $n= \lfloor \delta ({{\sigma }_{a|x}})+1 \rfloor$-preparable. In each figure, we set the number of measurement settings from 2 to $d + 1$. The blue curves are obtained by Eq. (9) and represent the criteria using only two MUB measurements derived in Ref. [31]. The other curves are obtained by Eq. (7) and represent the criteria using more than 2 MUB measurements. The gray colored regions show the areas where the multisetting criteria feature a higher robustness. (d) Noise thresholds for $d$-dimensional isotropic states exhibiting genuine $n$-dimensional steering as functions of $m$.

Download Full Size | PPT Slide | PDF

Furthermore, during submission of the paper, we noticed that a tighter bound has been derived [44]. The improvement occurs for $m$ not too large with a fixed $n$. We also evaluate this tighter bound in the experiment.

3. EXPERIMENTAL DETAILS AND RESULTS

To test the practicability of the multisetting criteria in realistic circumstances with actual noise, we implement an experiment based on photons entangled in their OAM degree of freedom. Our experimental setup is sketched in Fig. 3. A CW 405 nm diode laser is first spatially filtered by a single-mode fiber (SMF). The output beam pumps a 5 mm long periodically poled potassium titanyl phosphate (ppKTP) crystal via a 250 mm lens L1, and generates the original OAM entangled photon pairs with orthogonal polarization at 810 nm through the type-II spontaneous parametric downconversion (SPDC) process. A dichroic mirror (DM) is used to remove the pump. Then the photons are recollimated by a 100 mm lens L2, separated by a polarization beam splitter (PBS) and manipulated by the first spatial light modulator (SLM1), where a designed animation is loaded to construct tunable isotropic states statistically [28]. Each SLM2 is displayed with computer-generated holograms (CGHs) to covert the photons carrying OAM or OAM-MUB modes to the fundamental Gaussian mode. They are effectively coupled to the SMFs by a group of coupling lenses. The SMFs are connected to single-photon avalanche detectors, whose output is subsequently fed into a coincidence circuit with a coincidence time window of 1.6 ns. The steering robustness ${\text{SR}}({\sigma _{a|x}})$ is estimated via the coincidence count numbers for MUB measurements, and then used to evaluate Eq. (7) and Eq. (9).

 figure: Fig. 3.

Fig. 3. Experimental setup. Pumper, diode laser centered at 405 nm; SMF, single-mode fiber; L1–L4, lenses; PPKTP, periodically poled potassium titanyl phosphate; DM, dichroic mirror; PBS, polarizing beam splitter; HWP, half-wave plate; SLM, spatial light modulator; filter, long-pass optical filter.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Experimental Results of the Lower Bound of Genuine Steering Witness $\delta ({\sigma _{a|x}})$ and Lower Bound of Certified Dimension $n$ with $m$ Measurement Settings in Dimensions $d$ from 3 to 5a

The original OAM entangled state produced by the SPDC process are not a MES owing to the limited spiral bandwidth [45], expressed as $| \Phi \rangle | = \sum\nolimits_{- \infty}^\infty {c_l}|{l \rangle _A}|{{- l} \rangle _B}$, where the mode amplitudes ${c_l}$ vary for the different index $l$. To tailor a MES, we use the local operation to concentrate entanglement, which is called the Procrustean method. This is done by altering the diffraction efficiencies of blazed phase gratings to equalize the amplitudes for different OAM modes. And to test within $d$-dimensional subspace, for odd $d$, we choose the modes $l$ from ${-}(d - 1)/2$ to $(d - 1)/2$ as the computational basis. For even $d$, we choose $l$ from ${-}d/2$ to $d/2$, omitting the $l = 0$ mode.

Next, we explain how to design an animation loaded on SLM1 to construct an isotropic state with a specific mixing parameter $p$. Since there is no need to implement full-state tomography, here we considered a simplified isotropic noise for the $d + 1$ sets of MUBs [28]:

$$\begin{split}&{\unicode{x1D7D9}}/{d^2} = \frac{1}{{{d^2}(d + 1)}}\\ & \quad\left(\sum\limits_{i,j = 0}^{d - 1} |{l_i}{\rangle _{A}}{{\langle {l_i}| \otimes |{l_j}\rangle}_{B}}{{\langle {l_j}| + \sum\limits_{x = 0}^{d - 1} \sum\limits_{a,b = 0}^{d - 1} |\varphi _x^a\rangle_{A}}{{\langle \varphi _x^a| \otimes |\varphi _x^b\rangle}_{B}}\langle \varphi _x^b|} \right).\end{split}$$
In this manner, we need to put ${d^2}(d + 1)$ CGHs corresponding to the isotropic part and one CGH of a regular diffraction grating representing the MES part into the random sampling pool to construct the animation. The sample probability of the isotropic part is denoted as ${p_i}$, while that of the MES part is denoted as ${p_e}$. We set the exposure time of each CGH as $t = 0.2\;\text{s}$. Thus, the ergodic time for the MES part is $dt$, while that for the isotropic part is ${d^2}t$. For a specified $p$, we know that the ratio of CGHs between the MES and isotropic noise is $pdt:(1 - p){d^2}t$, leading to ${p_e} = p/[p + (1 - p)d]$ for the CGH of a regular diffraction grating. Consequently, the sample probability of each of the other ${d^2}(d + 1)$ CGHs is given by ${p_i} = (1 - {p_e})/[{d^2}(d + 1)]$. In practice, we set the sampling number as $N = 5000$ to guarantee that each CGH in the random pool is fully sampled, and the deviation induced by the sampling randomness is completely overtaken by the measurement errors. In this way, the animations corresponding to isotropic states with tunable $p$ are constructed in the statistical sense.

In the experiment, we consider the general scenarios $(m,d)$, where $d = 3,4,5$ in the OAM subspace and $m = 2,\ldots,d + 1$. We set different noise fractions in different dimensions by altering different mixing parameters $p$ of the animation. Note that choosing $m$ MUBs from the complete set of $d + 1$ MUBs in prime power dimension, there are $C_{d + 1}^m$ possible subsets of them, which may exhibit different certified genuine steering dimensions owing to the different visibility in a practical experiment. In Table 1, we show the experimental values of the maximum lower bounds of $\delta ({\sigma _{a|x}})$ for $m \lt d + 1$, the definite bounds of $\delta ({\sigma _{a|x}})$ for $m = d + 1$, and their corresponding certified Schmidt number $n= \lfloor \delta ({{\sigma }_{a|x}})+1 \rfloor$. As we can see, the lower bounds of $\delta ({\sigma _{a|x}})$ steadily increase as the number of measurement settings $m$ increases in each case, which means potentially higher Schmidt number $n$ can be certified with more measurement settings. For instance, a Schmidt number $n = 3$ can be certified when we use $m = 4$ measurement settings in dimension $d = 3$ and noise fraction ${\text{NF}} = 0.10$. However, using $m = 2$ and 3 measurements in this case, we obtain the maximum bound of $\delta ({\sigma _{a|x}}) \ge 1.8 \pm 0.1$ and $\delta ({\sigma _{a|x}}) \ge 1.9 \pm 0.1$, respectively, which both demonstrate only genuine two-dimensional steering (Schmidt number $n = 2$). We also notice a particular case ${\delta _2} \gt {\delta _3}$ in $d = 5$ and ${\text{NF}} = 0.08$. This is still consistent with the theoretical prediction in Fig. 2(d) because of the looseness of the present multisetting criteria. Furthermore, we also tested the experimental values of the noise thresholds in Fig. 2(d) (see Supplement 1 for more details). In conclusion, it is clear from our results that by increasing measurement settings, one can detect genuine HD steering more robustly in noisy environments.

4. CONCLUSION

In summary, we have developed multisetting genuine HD steering criteria that give a dimension certificate in the 1SDI process, going beyond the previous restriction of only two settings. Although the present genuine steering witnesses for more than two measurement settings are not tight, we theoretically analyze their noise resistance via isotropic states and find that they still offer higher robustness compared with the tight two-setting criteria derived in Ref. [31]. We have carried out an experiment to demonstrate the practicality of multisetting criteria by introducing tunable isotropic noise into the OAM entanglement system. The experimental results show that a higher certified genuine steering dimension can be observed using more measurement settings. It is worthy to note that our method is an incremental step towards accurately witnessing genuine HD steering but at a cost of more measurement settings. Furthermore, the multisetting method is not limited to transverse modes, and also readily applies to other quantum platforms in different degrees of freedom. Our work offers a more robust way to witness the entanglement dimension in practical 1SDI quantum information processing.

Funding

China Postdoctoral Science Foundation (2020M673366); National Natural Science Foundation of China (11534008, 11804271, 12074307, 12174301, 91736104, 92050103); State Key Laboratory of Applied Optics.

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Supplemental document

See Supplement 1 for supporting content.

REFERENCES

1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935). [CrossRef]  

2. E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Camb. Phil. Soc. 31, 555–563 (1935). [CrossRef]  

3. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Phys. Phys. Fizika 1, 195–200 (1964). [CrossRef]  

4. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007). [CrossRef]  

5. H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007). [CrossRef]  

6. J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014). [CrossRef]  

7. R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, “Quantum steering,” Rev. Mod. Phys. 92, 015001 (2020). [CrossRef]  

8. D. Cavalcanti and P. Skrzypczyk, “Quantum steering: a review with focus on semidefinite programming,” Rep. Prog. Phys. 80, 024001 (2016). [CrossRef]  

9. M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009). [CrossRef]  

10. M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 114, 060404 (2015). [CrossRef]  

11. K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018). [CrossRef]  

12. S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N. Chen, “Natural framework for device-independent quantification of quantum steerability, measurement incompatibility, and self-testing,” Phys. Rev. Lett. 116, 240401 (2016). [CrossRef]  

13. C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012). [CrossRef]  

14. N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman, and P. K. Lam, “Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution,” Optica 3, 634–642 (2016). [CrossRef]  

15. T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 1–7 (2015). [CrossRef]  

16. Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015). [CrossRef]  

17. M. Erhard, M. Krenn, and A. Zeilinger, “Advances in high-dimensional quantum entanglement,” Nat. Rev. Phys. 2, 365–381 (2020). [CrossRef]  

18. D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-dimensional quantum communication: benefits, progress, and future challenges,” Adv. Quantum Technol. 2, 1900038 (2019). [CrossRef]  

19. S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006). [CrossRef]  

20. X.-M. Hu, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Beating the channel capacity limit for superdense coding with entangled ququarts,” Sci. Adv. 4, eaat9304 (2018). [CrossRef]  

21. N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3, e1701491 (2017). [CrossRef]  

22. S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019). [CrossRef]  

23. T. Vértesi, S. Pironio, and N. Brunner, “Closing the detection loophole in Bell experiments using qudits,” Phys. Rev. Lett. 104, 060401 (2010). [CrossRef]  

24. F. Zhu, M. Tyler, N. H. Valencia, M. Malik, and J. Leach, “Is high-dimensional photonic entanglement robust to noise?” AVS Quantum Sci. 3, 011401 (2021). [CrossRef]  

25. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002). [CrossRef]  

26. M. Huber and M. Pawłowski, “Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement,” Phys. Rev. A 88, 032309 (2013). [CrossRef]  

27. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018). [CrossRef]  

28. Q. Zeng, B. Wang, P. Li, and X. Zhang, “Experimental high-dimensional Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 120, 030401 (2018). [CrossRef]  

29. Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019). [CrossRef]  

30. C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015). [CrossRef]  

31. S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W. McCutcheon, M. Malik, and N. Brunner, “Genuine high-dimensional quantum steering,” Phys. Rev. Lett. 126, 200404 (2021). [CrossRef]  

32. N. Friis, G. Vitagliano, M. Malik, and M. Huber, “Entanglement certification from theory to experiment,” Nat. Rev. Phys. 1, 72–87 (2019). [CrossRef]  

33. P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic uncertainty relations and their applications,” Rev. Mod. Phys. 89, 015002 (2017). [CrossRef]  

34. B.-F. Xie, F. Ming, D. Wang, L. Ye, and J.-L. Chen, “Optimized entropic uncertainty relations for multiple measurements,” Phys. Rev. A 104, 062204 (2021). [CrossRef]  

35. F. Ming, D. Wang, X.-G. Fan, W.-N. Shi, L. Ye, and J.-L. Chen, “Improved tripartite uncertainty relation with quantum memory,” Phys. Rev. A 102, 012206 (2020). [CrossRef]  

36. J. Schwinger, “Unitary operator bases,” Proc. Natl. Acad. Sci. 46, 570–579 (1960). [CrossRef]  

37. I. Bengtsson, “Three ways to look at mutually unbiased bases,” in AIP Conference Proceedings (American Institute of Physics, 2007), Vol. 889, pp. 40–51.

38. W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys. 191, 363–381 (1989). [CrossRef]  

39. S. Designolle, P. Skrzypczyk, F. Fröwis, and N. Brunner, “Quantifying measurement incompatibility of mutually unbiased bases,” Phys. Rev. Lett. 122, 050402 (2019). [CrossRef]  

40. R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, “One-to-one mapping between steering and joint measurability problems,” Phys. Rev. Lett. 115, 230402 (2015). [CrossRef]  

41. D. Cavalcanti and P. Skrzypczyk, “Quantitative relations between measurement incompatibility, quantum steering, and nonlocality,” Phys. Rev. A 93, 052112 (2016). [CrossRef]  

42. T. Heinosaari, T. Miyadera, and M. Ziman, “An invitation to quantum incompatibility,” J. Phys. A 49, 123001 (2016). [CrossRef]  

43. S. Designolle, M. Farkas, and J. Kaniewski, “Incompatibility robustness of quantum measurements: a unified framework,” New J. Phys. 21, 113053 (2019). [CrossRef]  

44. S. Designolle, “Robust genuine high-dimensional steering with many measurements,” Phys. Rev. A 105, 032430 (2022). [CrossRef]  

45. J. P. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003). [CrossRef]  

References

  • View by:

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [Crossref]
  2. E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Camb. Phil. Soc. 31, 555–563 (1935).
    [Crossref]
  3. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Phys. Phys. Fizika 1, 195–200 (1964).
    [Crossref]
  4. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
    [Crossref]
  5. H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
    [Crossref]
  6. J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
    [Crossref]
  7. R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, “Quantum steering,” Rev. Mod. Phys. 92, 015001 (2020).
    [Crossref]
  8. D. Cavalcanti and P. Skrzypczyk, “Quantum steering: a review with focus on semidefinite programming,” Rep. Prog. Phys. 80, 024001 (2016).
    [Crossref]
  9. M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
    [Crossref]
  10. M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 114, 060404 (2015).
    [Crossref]
  11. K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018).
    [Crossref]
  12. S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N. Chen, “Natural framework for device-independent quantification of quantum steerability, measurement incompatibility, and self-testing,” Phys. Rev. Lett. 116, 240401 (2016).
    [Crossref]
  13. C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
    [Crossref]
  14. N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman, and P. K. Lam, “Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution,” Optica 3, 634–642 (2016).
    [Crossref]
  15. T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 1–7 (2015).
    [Crossref]
  16. Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
    [Crossref]
  17. M. Erhard, M. Krenn, and A. Zeilinger, “Advances in high-dimensional quantum entanglement,” Nat. Rev. Phys. 2, 365–381 (2020).
    [Crossref]
  18. D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-dimensional quantum communication: benefits, progress, and future challenges,” Adv. Quantum Technol. 2, 1900038 (2019).
    [Crossref]
  19. S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
    [Crossref]
  20. X.-M. Hu, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Beating the channel capacity limit for superdense coding with entangled ququarts,” Sci. Adv. 4, eaat9304 (2018).
    [Crossref]
  21. N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3, e1701491 (2017).
    [Crossref]
  22. S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
    [Crossref]
  23. T. Vértesi, S. Pironio, and N. Brunner, “Closing the detection loophole in Bell experiments using qudits,” Phys. Rev. Lett. 104, 060401 (2010).
    [Crossref]
  24. F. Zhu, M. Tyler, N. H. Valencia, M. Malik, and J. Leach, “Is high-dimensional photonic entanglement robust to noise?” AVS Quantum Sci. 3, 011401 (2021).
    [Crossref]
  25. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
    [Crossref]
  26. M. Huber and M. Pawłowski, “Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement,” Phys. Rev. A 88, 032309 (2013).
    [Crossref]
  27. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
    [Crossref]
  28. Q. Zeng, B. Wang, P. Li, and X. Zhang, “Experimental high-dimensional Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 120, 030401 (2018).
    [Crossref]
  29. Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019).
    [Crossref]
  30. C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
    [Crossref]
  31. S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W. McCutcheon, M. Malik, and N. Brunner, “Genuine high-dimensional quantum steering,” Phys. Rev. Lett. 126, 200404 (2021).
    [Crossref]
  32. N. Friis, G. Vitagliano, M. Malik, and M. Huber, “Entanglement certification from theory to experiment,” Nat. Rev. Phys. 1, 72–87 (2019).
    [Crossref]
  33. P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic uncertainty relations and their applications,” Rev. Mod. Phys. 89, 015002 (2017).
    [Crossref]
  34. B.-F. Xie, F. Ming, D. Wang, L. Ye, and J.-L. Chen, “Optimized entropic uncertainty relations for multiple measurements,” Phys. Rev. A 104, 062204 (2021).
    [Crossref]
  35. F. Ming, D. Wang, X.-G. Fan, W.-N. Shi, L. Ye, and J.-L. Chen, “Improved tripartite uncertainty relation with quantum memory,” Phys. Rev. A 102, 012206 (2020).
    [Crossref]
  36. J. Schwinger, “Unitary operator bases,” Proc. Natl. Acad. Sci. 46, 570–579 (1960).
    [Crossref]
  37. I. Bengtsson, “Three ways to look at mutually unbiased bases,” in AIP Conference Proceedings (American Institute of Physics, 2007), Vol. 889, pp. 40–51.
  38. W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys. 191, 363–381 (1989).
    [Crossref]
  39. S. Designolle, P. Skrzypczyk, F. Fröwis, and N. Brunner, “Quantifying measurement incompatibility of mutually unbiased bases,” Phys. Rev. Lett. 122, 050402 (2019).
    [Crossref]
  40. R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, “One-to-one mapping between steering and joint measurability problems,” Phys. Rev. Lett. 115, 230402 (2015).
    [Crossref]
  41. D. Cavalcanti and P. Skrzypczyk, “Quantitative relations between measurement incompatibility, quantum steering, and nonlocality,” Phys. Rev. A 93, 052112 (2016).
    [Crossref]
  42. T. Heinosaari, T. Miyadera, and M. Ziman, “An invitation to quantum incompatibility,” J. Phys. A 49, 123001 (2016).
    [Crossref]
  43. S. Designolle, M. Farkas, and J. Kaniewski, “Incompatibility robustness of quantum measurements: a unified framework,” New J. Phys. 21, 113053 (2019).
    [Crossref]
  44. S. Designolle, “Robust genuine high-dimensional steering with many measurements,” Phys. Rev. A 105, 032430 (2022).
    [Crossref]
  45. J. P. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003).
    [Crossref]

2022 (1)

S. Designolle, “Robust genuine high-dimensional steering with many measurements,” Phys. Rev. A 105, 032430 (2022).
[Crossref]

2021 (3)

F. Zhu, M. Tyler, N. H. Valencia, M. Malik, and J. Leach, “Is high-dimensional photonic entanglement robust to noise?” AVS Quantum Sci. 3, 011401 (2021).
[Crossref]

S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W. McCutcheon, M. Malik, and N. Brunner, “Genuine high-dimensional quantum steering,” Phys. Rev. Lett. 126, 200404 (2021).
[Crossref]

B.-F. Xie, F. Ming, D. Wang, L. Ye, and J.-L. Chen, “Optimized entropic uncertainty relations for multiple measurements,” Phys. Rev. A 104, 062204 (2021).
[Crossref]

2020 (3)

F. Ming, D. Wang, X.-G. Fan, W.-N. Shi, L. Ye, and J.-L. Chen, “Improved tripartite uncertainty relation with quantum memory,” Phys. Rev. A 102, 012206 (2020).
[Crossref]

R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, “Quantum steering,” Rev. Mod. Phys. 92, 015001 (2020).
[Crossref]

M. Erhard, M. Krenn, and A. Zeilinger, “Advances in high-dimensional quantum entanglement,” Nat. Rev. Phys. 2, 365–381 (2020).
[Crossref]

2019 (6)

D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-dimensional quantum communication: benefits, progress, and future challenges,” Adv. Quantum Technol. 2, 1900038 (2019).
[Crossref]

S. Designolle, P. Skrzypczyk, F. Fröwis, and N. Brunner, “Quantifying measurement incompatibility of mutually unbiased bases,” Phys. Rev. Lett. 122, 050402 (2019).
[Crossref]

N. Friis, G. Vitagliano, M. Malik, and M. Huber, “Entanglement certification from theory to experiment,” Nat. Rev. Phys. 1, 72–87 (2019).
[Crossref]

Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019).
[Crossref]

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

S. Designolle, M. Farkas, and J. Kaniewski, “Incompatibility robustness of quantum measurements: a unified framework,” New J. Phys. 21, 113053 (2019).
[Crossref]

2018 (4)

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Q. Zeng, B. Wang, P. Li, and X. Zhang, “Experimental high-dimensional Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 120, 030401 (2018).
[Crossref]

X.-M. Hu, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Beating the channel capacity limit for superdense coding with entangled ququarts,” Sci. Adv. 4, eaat9304 (2018).
[Crossref]

K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018).
[Crossref]

2017 (2)

N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3, e1701491 (2017).
[Crossref]

P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic uncertainty relations and their applications,” Rev. Mod. Phys. 89, 015002 (2017).
[Crossref]

2016 (5)

S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N. Chen, “Natural framework for device-independent quantification of quantum steerability, measurement incompatibility, and self-testing,” Phys. Rev. Lett. 116, 240401 (2016).
[Crossref]

N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman, and P. K. Lam, “Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution,” Optica 3, 634–642 (2016).
[Crossref]

D. Cavalcanti and P. Skrzypczyk, “Quantum steering: a review with focus on semidefinite programming,” Rep. Prog. Phys. 80, 024001 (2016).
[Crossref]

D. Cavalcanti and P. Skrzypczyk, “Quantitative relations between measurement incompatibility, quantum steering, and nonlocality,” Phys. Rev. A 93, 052112 (2016).
[Crossref]

T. Heinosaari, T. Miyadera, and M. Ziman, “An invitation to quantum incompatibility,” J. Phys. A 49, 123001 (2016).
[Crossref]

2015 (5)

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 1–7 (2015).
[Crossref]

Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
[Crossref]

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, “One-to-one mapping between steering and joint measurability problems,” Phys. Rev. Lett. 115, 230402 (2015).
[Crossref]

M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 114, 060404 (2015).
[Crossref]

2014 (1)

J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
[Crossref]

2013 (1)

M. Huber and M. Pawłowski, “Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement,” Phys. Rev. A 88, 032309 (2013).
[Crossref]

2012 (1)

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

2010 (1)

T. Vértesi, S. Pironio, and N. Brunner, “Closing the detection loophole in Bell experiments using qudits,” Phys. Rev. Lett. 104, 060401 (2010).
[Crossref]

2009 (1)

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

2007 (2)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref]

2006 (1)

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

2003 (1)

J. P. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003).
[Crossref]

2002 (1)

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

1989 (1)

W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys. 191, 363–381 (1989).
[Crossref]

1964 (1)

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Phys. Phys. Fizika 1, 195–200 (1964).
[Crossref]

1960 (1)

J. Schwinger, “Unitary operator bases,” Proc. Natl. Acad. Sci. 46, 570–579 (1960).
[Crossref]

1935 (2)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Camb. Phil. Soc. 31, 555–563 (1935).
[Crossref]

Acín, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Adesso, G.

Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
[Crossref]

Alexandrescu, A.

J. P. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003).
[Crossref]

Andersen, U. L.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Armstrong, S.

Assad, S. M.

Augusiak, R.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Bacco, D.

D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-dimensional quantum communication: benefits, progress, and future challenges,” Adv. Quantum Technol. 2, 1900038 (2019).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Bachor, H. A.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Bell, J. S.

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Phys. Phys. Fizika 1, 195–200 (1964).
[Crossref]

Bengtsson, I.

I. Bengtsson, “Three ways to look at mutually unbiased bases,” in AIP Conference Proceedings (American Institute of Physics, 2007), Vol. 889, pp. 40–51.

Berta, M.

P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic uncertainty relations and their applications,” Rev. Mod. Phys. 89, 015002 (2017).
[Crossref]

Bonneau, D.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Bouchard, F.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Bourennane, M.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Bowen, W. P.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Bowles, J.

J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
[Crossref]

Branciard, C.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Brandt, F.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Brunner, N.

S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W. McCutcheon, M. Malik, and N. Brunner, “Genuine high-dimensional quantum steering,” Phys. Rev. Lett. 126, 200404 (2021).
[Crossref]

S. Designolle, P. Skrzypczyk, F. Fröwis, and N. Brunner, “Quantifying measurement incompatibility of mutually unbiased bases,” Phys. Rev. Lett. 122, 050402 (2019).
[Crossref]

J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
[Crossref]

T. Vértesi, S. Pironio, and N. Brunner, “Closing the detection loophole in Bell experiments using qudits,” Phys. Rev. Lett. 104, 060401 (2010).
[Crossref]

Budroni, C.

S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N. Chen, “Natural framework for device-independent quantification of quantum steerability, measurement incompatibility, and self-testing,” Phys. Rev. Lett. 116, 240401 (2016).
[Crossref]

R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, “One-to-one mapping between steering and joint measurability problems,” Phys. Rev. Lett. 115, 230402 (2015).
[Crossref]

Bulla, L.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Cahall, C.

N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3, e1701491 (2017).
[Crossref]

Cavalcanti, D.

D. Cavalcanti and P. Skrzypczyk, “Quantum steering: a review with focus on semidefinite programming,” Rep. Prog. Phys. 80, 024001 (2016).
[Crossref]

D. Cavalcanti and P. Skrzypczyk, “Quantitative relations between measurement incompatibility, quantum steering, and nonlocality,” Phys. Rev. A 93, 052112 (2016).
[Crossref]

Cavalcanti, E. G.

Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019).
[Crossref]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Cerf, N. J.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Chen, J.-L.

B.-F. Xie, F. Ming, D. Wang, L. Ye, and J.-L. Chen, “Optimized entropic uncertainty relations for multiple measurements,” Phys. Rev. A 104, 062204 (2021).
[Crossref]

F. Ming, D. Wang, X.-G. Fan, W.-N. Shi, L. Ye, and J.-L. Chen, “Improved tripartite uncertainty relation with quantum memory,” Phys. Rev. A 102, 012206 (2020).
[Crossref]

K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018).
[Crossref]

Chen, K.

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Chen, S.-L.

S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N. Chen, “Natural framework for device-independent quantification of quantum steerability, measurement incompatibility, and self-testing,” Phys. Rev. Lett. 116, 240401 (2016).
[Crossref]

Chen, Y.-A.

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Chen, Y.-N.

S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N. Chen, “Natural framework for device-independent quantification of quantum steerability, measurement incompatibility, and self-testing,” Phys. Rev. Lett. 116, 240401 (2016).
[Crossref]

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Cheng, S.

Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019).
[Crossref]

Coles, P. J.

P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic uncertainty relations and their applications,” Rev. Mod. Phys. 89, 015002 (2017).
[Crossref]

Costa, A. C. S.

R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, “Quantum steering,” Rev. Mod. Phys. 92, 015001 (2020).
[Crossref]

Cozzolino, D.

D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-dimensional quantum communication: benefits, progress, and future challenges,” Adv. Quantum Technol. 2, 1900038 (2019).
[Crossref]

Da Lio, B.

D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-dimensional quantum communication: benefits, progress, and future challenges,” Adv. Quantum Technol. 2, 1900038 (2019).
[Crossref]

Designolle, S.

S. Designolle, “Robust genuine high-dimensional steering with many measurements,” Phys. Rev. A 105, 032430 (2022).
[Crossref]

S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W. McCutcheon, M. Malik, and N. Brunner, “Genuine high-dimensional quantum steering,” Phys. Rev. Lett. 126, 200404 (2021).
[Crossref]

S. Designolle, M. Farkas, and J. Kaniewski, “Incompatibility robustness of quantum measurements: a unified framework,” New J. Phys. 21, 113053 (2019).
[Crossref]

S. Designolle, P. Skrzypczyk, F. Fröwis, and N. Brunner, “Quantifying measurement incompatibility of mutually unbiased bases,” Phys. Rev. Lett. 122, 050402 (2019).
[Crossref]

Ding, Y.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Doherty, A. C.

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref]

Drummond, P. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Duhme, J.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 1–7 (2015).
[Crossref]

Ecker, S.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Erhard, M.

M. Erhard, M. Krenn, and A. Zeilinger, “Advances in high-dimensional quantum entanglement,” Nat. Rev. Phys. 2, 365–381 (2020).
[Crossref]

Fan, X.-G.

F. Ming, D. Wang, X.-G. Fan, W.-N. Shi, L. Ye, and J.-L. Chen, “Improved tripartite uncertainty relation with quantum memory,” Phys. Rev. A 102, 012206 (2020).
[Crossref]

Farkas, M.

S. Designolle, M. Farkas, and J. Kaniewski, “Incompatibility robustness of quantum measurements: a unified framework,” New J. Phys. 21, 113053 (2019).
[Crossref]

Fickler, R.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Fields, B. D.

W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys. 191, 363–381 (1989).
[Crossref]

Franz, T.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 1–7 (2015).
[Crossref]

Friis, N.

N. Friis, G. Vitagliano, M. Malik, and M. Huber, “Entanglement certification from theory to experiment,” Nat. Rev. Phys. 1, 72–87 (2019).
[Crossref]

Fröwis, F.

S. Designolle, P. Skrzypczyk, F. Fröwis, and N. Brunner, “Quantifying measurement incompatibility of mutually unbiased bases,” Phys. Rev. Lett. 122, 050402 (2019).
[Crossref]

Furrer, F.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 1–7 (2015).
[Crossref]

Gauthier, D. J.

N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3, e1701491 (2017).
[Crossref]

Gehring, T.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 1–7 (2015).
[Crossref]

Geng, J.

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Gong, Q.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Gröblacher, S.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

Gühne, O.

R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, “Quantum steering,” Rev. Mod. Phys. 92, 015001 (2020).
[Crossref]

R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, “One-to-one mapping between steering and joint measurability problems,” Phys. Rev. Lett. 115, 230402 (2015).
[Crossref]

Guo, G.-C.

Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019).
[Crossref]

K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018).
[Crossref]

X.-M. Hu, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Beating the channel capacity limit for superdense coding with entangled ququarts,” Sci. Adv. 4, eaat9304 (2018).
[Crossref]

Guo, Y.

Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019).
[Crossref]

X.-M. Hu, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Beating the channel capacity limit for superdense coding with entangled ququarts,” Sci. Adv. 4, eaat9304 (2018).
[Crossref]

Guryanova, Y.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Händchen, V.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 1–7 (2015).
[Crossref]

Haw, J. Y.

He, Q.

Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
[Crossref]

Heinosaari, T.

T. Heinosaari, T. Miyadera, and M. Ziman, “An invitation to quantum incompatibility,” J. Phys. A 49, 123001 (2016).
[Crossref]

Hosseini, S.

Hu, X.

Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019).
[Crossref]

Hu, X.-M.

X.-M. Hu, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Beating the channel capacity limit for superdense coding with entangled ququarts,” Sci. Adv. 4, eaat9304 (2018).
[Crossref]

Huang, E.-M.

Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019).
[Crossref]

Huang, Y.-F.

Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019).
[Crossref]

X.-M. Hu, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Beating the channel capacity limit for superdense coding with entangled ququarts,” Sci. Adv. 4, eaat9304 (2018).
[Crossref]

Huber, M.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

N. Friis, G. Vitagliano, M. Malik, and M. Huber, “Entanglement certification from theory to experiment,” Nat. Rev. Phys. 1, 72–87 (2019).
[Crossref]

M. Huber and M. Pawłowski, “Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement,” Phys. Rev. A 88, 032309 (2013).
[Crossref]

Islam, N. T.

N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3, e1701491 (2017).
[Crossref]

Janousek, J.

Jennewein, T.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

Jones, S. J.

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref]

Kaniewski, J.

S. Designolle, M. Farkas, and J. Kaniewski, “Incompatibility robustness of quantum measurements: a unified framework,” New J. Phys. 21, 113053 (2019).
[Crossref]

Karlsson, A.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Kim, J.

N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3, e1701491 (2017).
[Crossref]

Kohout, O.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Krenn, M.

M. Erhard, M. Krenn, and A. Zeilinger, “Advances in high-dimensional quantum entanglement,” Nat. Rev. Phys. 2, 365–381 (2020).
[Crossref]

Laing, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Lam, P. K.

N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman, and P. K. Lam, “Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution,” Optica 3, 634–642 (2016).
[Crossref]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Leach, J.

F. Zhu, M. Tyler, N. H. Valencia, M. Malik, and J. Leach, “Is high-dimensional photonic entanglement robust to noise?” AVS Quantum Sci. 3, 011401 (2021).
[Crossref]

Leuchs, G.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Li, C.-F.

Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019).
[Crossref]

K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018).
[Crossref]

X.-M. Hu, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Beating the channel capacity limit for superdense coding with entangled ququarts,” Sci. Adv. 4, eaat9304 (2018).
[Crossref]

Li, C.-M.

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Li, P.

Q. Zeng, B. Wang, P. Li, and X. Zhang, “Experimental high-dimensional Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 120, 030401 (2018).
[Crossref]

Liang, Y.-C.

S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N. Chen, “Natural framework for device-independent quantification of quantum steerability, measurement incompatibility, and self-testing,” Phys. Rev. Lett. 116, 240401 (2016).
[Crossref]

Lim, C. C. W.

N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3, e1701491 (2017).
[Crossref]

Liu, B.-H.

Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019).
[Crossref]

X.-M. Hu, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Beating the channel capacity limit for superdense coding with entangled ququarts,” Sci. Adv. 4, eaat9304 (2018).
[Crossref]

Malik, M.

F. Zhu, M. Tyler, N. H. Valencia, M. Malik, and J. Leach, “Is high-dimensional photonic entanglement robust to noise?” AVS Quantum Sci. 3, 011401 (2021).
[Crossref]

S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W. McCutcheon, M. Malik, and N. Brunner, “Genuine high-dimensional quantum steering,” Phys. Rev. Lett. 126, 200404 (2021).
[Crossref]

N. Friis, G. Vitagliano, M. Malik, and M. Huber, “Entanglement certification from theory to experiment,” Nat. Rev. Phys. 1, 72–87 (2019).
[Crossref]

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Mancinska, L.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

McCutcheon, W.

S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W. McCutcheon, M. Malik, and N. Brunner, “Genuine high-dimensional quantum steering,” Phys. Rev. Lett. 126, 200404 (2021).
[Crossref]

Ming, F.

B.-F. Xie, F. Ming, D. Wang, L. Ye, and J.-L. Chen, “Optimized entropic uncertainty relations for multiple measurements,” Phys. Rev. A 104, 062204 (2021).
[Crossref]

F. Ming, D. Wang, X.-G. Fan, W.-N. Shi, L. Ye, and J.-L. Chen, “Improved tripartite uncertainty relation with quantum memory,” Phys. Rev. A 102, 012206 (2020).
[Crossref]

Miyadera, T.

T. Heinosaari, T. Miyadera, and M. Ziman, “An invitation to quantum incompatibility,” J. Phys. A 49, 123001 (2016).
[Crossref]

Nguyen, H. C.

R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, “Quantum steering,” Rev. Mod. Phys. 92, 015001 (2020).
[Crossref]

O’Brien, J. L.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Oxenløwe, L. K.

D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-dimensional quantum communication: benefits, progress, and future challenges,” Adv. Quantum Technol. 2, 1900038 (2019).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Pacher, C.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 1–7 (2015).
[Crossref]

Paesani, S.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Pan, J.-W.

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Pawlowski, M.

M. Huber and M. Pawłowski, “Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement,” Phys. Rev. A 88, 032309 (2013).
[Crossref]

Pellonpää, J.-P.

R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, “One-to-one mapping between steering and joint measurability problems,” Phys. Rev. Lett. 115, 230402 (2015).
[Crossref]

Piani, M.

M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 114, 060404 (2015).
[Crossref]

Pironio, S.

T. Vértesi, S. Pironio, and N. Brunner, “Closing the detection loophole in Bell experiments using qudits,” Phys. Rev. Lett. 104, 060401 (2010).
[Crossref]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Quintino, M. T.

J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
[Crossref]

Ralph, T. C.

Reid, M. D.

Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
[Crossref]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Rosales-Zárate, L.

Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
[Crossref]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Rottwitt, K.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Salavrakos, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Santagati, R.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Scarani, V.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Schnabel, R.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 1–7 (2015).
[Crossref]

Schrödinger, E.

E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Camb. Phil. Soc. 31, 555–563 (1935).
[Crossref]

Schwinger, J.

J. Schwinger, “Unitary operator bases,” Proc. Natl. Acad. Sci. 46, 570–579 (1960).
[Crossref]

Shi, W.-N.

F. Ming, D. Wang, X.-G. Fan, W.-N. Shi, L. Ye, and J.-L. Chen, “Improved tripartite uncertainty relation with quantum memory,” Phys. Rev. A 102, 012206 (2020).
[Crossref]

Silverstone, J. W.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Skrzypczyk, P.

S. Designolle, P. Skrzypczyk, F. Fröwis, and N. Brunner, “Quantifying measurement incompatibility of mutually unbiased bases,” Phys. Rev. Lett. 122, 050402 (2019).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

D. Cavalcanti and P. Skrzypczyk, “Quantum steering: a review with focus on semidefinite programming,” Rep. Prog. Phys. 80, 024001 (2016).
[Crossref]

D. Cavalcanti and P. Skrzypczyk, “Quantitative relations between measurement incompatibility, quantum steering, and nonlocality,” Phys. Rev. A 93, 052112 (2016).
[Crossref]

Srivastav, V.

S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W. McCutcheon, M. Malik, and N. Brunner, “Genuine high-dimensional quantum steering,” Phys. Rev. Lett. 126, 200404 (2021).
[Crossref]

Steinlechner, F.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Sun, K.

K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018).
[Crossref]

Symul, T.

Thearle, O.

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

Thompson, M. G.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Tomamichel, M.

P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic uncertainty relations and their applications,” Rev. Mod. Phys. 89, 015002 (2017).
[Crossref]

Torner, L.

J. P. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003).
[Crossref]

Torres, J. P.

J. P. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003).
[Crossref]

Tura, J.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Tyler, M.

F. Zhu, M. Tyler, N. H. Valencia, M. Malik, and J. Leach, “Is high-dimensional photonic entanglement robust to noise?” AVS Quantum Sci. 3, 011401 (2021).
[Crossref]

Uola, R.

S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W. McCutcheon, M. Malik, and N. Brunner, “Genuine high-dimensional quantum steering,” Phys. Rev. Lett. 126, 200404 (2021).
[Crossref]

R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, “Quantum steering,” Rev. Mod. Phys. 92, 015001 (2020).
[Crossref]

R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, “One-to-one mapping between steering and joint measurability problems,” Phys. Rev. Lett. 115, 230402 (2015).
[Crossref]

Ursin, R.

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Valencia, N. H.

F. Zhu, M. Tyler, N. H. Valencia, M. Malik, and J. Leach, “Is high-dimensional photonic entanglement robust to noise?” AVS Quantum Sci. 3, 011401 (2021).
[Crossref]

S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W. McCutcheon, M. Malik, and N. Brunner, “Genuine high-dimensional quantum steering,” Phys. Rev. Lett. 126, 200404 (2021).
[Crossref]

Vaziri, A.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

Vértesi, T.

J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
[Crossref]

T. Vértesi, S. Pironio, and N. Brunner, “Closing the detection loophole in Bell experiments using qudits,” Phys. Rev. Lett. 104, 060401 (2010).
[Crossref]

Vitagliano, G.

N. Friis, G. Vitagliano, M. Malik, and M. Huber, “Entanglement certification from theory to experiment,” Nat. Rev. Phys. 1, 72–87 (2019).
[Crossref]

Walborn, S. P.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Walk, N.

Wang, B.

Q. Zeng, B. Wang, P. Li, and X. Zhang, “Experimental high-dimensional Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 120, 030401 (2018).
[Crossref]

Wang, D.

B.-F. Xie, F. Ming, D. Wang, L. Ye, and J.-L. Chen, “Optimized entropic uncertainty relations for multiple measurements,” Phys. Rev. A 104, 062204 (2021).
[Crossref]

F. Ming, D. Wang, X.-G. Fan, W.-N. Shi, L. Ye, and J.-L. Chen, “Improved tripartite uncertainty relation with quantum memory,” Phys. Rev. A 102, 012206 (2020).
[Crossref]

Wang, J.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Watrous, J.

M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 114, 060404 (2015).
[Crossref]

Wehner, S.

P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic uncertainty relations and their applications,” Rev. Mod. Phys. 89, 015002 (2017).
[Crossref]

Weihs, G.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

Werner, R. F.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 1–7 (2015).
[Crossref]

Wiseman, H. M.

N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman, and P. K. Lam, “Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution,” Optica 3, 634–642 (2016).
[Crossref]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref]

Wootters, W. K.

W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys. 191, 363–381 (1989).
[Crossref]

Wu, Y.-C.

K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018).
[Crossref]

Xiao, Y.

K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018).
[Crossref]

Xie, B.-F.

B.-F. Xie, F. Ming, D. Wang, L. Ye, and J.-L. Chen, “Optimized entropic uncertainty relations for multiple measurements,” Phys. Rev. A 104, 062204 (2021).
[Crossref]

Xu, J.-S.

K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018).
[Crossref]

Xu, X.-Y.

K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018).
[Crossref]

Ye, L.

B.-F. Xie, F. Ming, D. Wang, L. Ye, and J.-L. Chen, “Optimized entropic uncertainty relations for multiple measurements,” Phys. Rev. A 104, 062204 (2021).
[Crossref]

F. Ming, D. Wang, X.-G. Fan, W.-N. Shi, L. Ye, and J.-L. Chen, “Improved tripartite uncertainty relation with quantum memory,” Phys. Rev. A 102, 012206 (2020).
[Crossref]

Ye, X.-J.

K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018).
[Crossref]

Zeilinger, A.

M. Erhard, M. Krenn, and A. Zeilinger, “Advances in high-dimensional quantum entanglement,” Nat. Rev. Phys. 2, 365–381 (2020).
[Crossref]

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

Zeng, Q.

Q. Zeng, B. Wang, P. Li, and X. Zhang, “Experimental high-dimensional Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 120, 030401 (2018).
[Crossref]

Zhang, Q.

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Zhang, X.

Q. Zeng, B. Wang, P. Li, and X. Zhang, “Experimental high-dimensional Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 120, 030401 (2018).
[Crossref]

Zhu, F.

F. Zhu, M. Tyler, N. H. Valencia, M. Malik, and J. Leach, “Is high-dimensional photonic entanglement robust to noise?” AVS Quantum Sci. 3, 011401 (2021).
[Crossref]

Ziman, M.

T. Heinosaari, T. Miyadera, and M. Ziman, “An invitation to quantum incompatibility,” J. Phys. A 49, 123001 (2016).
[Crossref]

Adv. Quantum Technol. (1)

D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-dimensional quantum communication: benefits, progress, and future challenges,” Adv. Quantum Technol. 2, 1900038 (2019).
[Crossref]

Ann. Phys. (1)

W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys. 191, 363–381 (1989).
[Crossref]

AVS Quantum Sci. (1)

F. Zhu, M. Tyler, N. H. Valencia, M. Malik, and J. Leach, “Is high-dimensional photonic entanglement robust to noise?” AVS Quantum Sci. 3, 011401 (2021).
[Crossref]

J. Phys. A (1)

T. Heinosaari, T. Miyadera, and M. Ziman, “An invitation to quantum incompatibility,” J. Phys. A 49, 123001 (2016).
[Crossref]

Math. Proc. Camb. Phil. Soc. (1)

E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Camb. Phil. Soc. 31, 555–563 (1935).
[Crossref]

Nat. Commun. (1)

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 1–7 (2015).
[Crossref]

Nat. Photonics (1)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

Nat. Rev. Phys. (2)

M. Erhard, M. Krenn, and A. Zeilinger, “Advances in high-dimensional quantum entanglement,” Nat. Rev. Phys. 2, 365–381 (2020).
[Crossref]

N. Friis, G. Vitagliano, M. Malik, and M. Huber, “Entanglement certification from theory to experiment,” Nat. Rev. Phys. 1, 72–87 (2019).
[Crossref]

New J. Phys. (2)

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

S. Designolle, M. Farkas, and J. Kaniewski, “Incompatibility robustness of quantum measurements: a unified framework,” New J. Phys. 21, 113053 (2019).
[Crossref]

npj Quantum Inf. (1)

K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C. Wu, J.-S. Xu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination,” npj Quantum Inf. 4, 1–7 (2018).
[Crossref]

Optica (1)

Phys. Phys. Fizika (1)

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Phys. Phys. Fizika 1, 195–200 (1964).
[Crossref]

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Phys. Rev. A (7)

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

M. Huber and M. Pawłowski, “Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement,” Phys. Rev. A 88, 032309 (2013).
[Crossref]

S. Designolle, “Robust genuine high-dimensional steering with many measurements,” Phys. Rev. A 105, 032430 (2022).
[Crossref]

J. P. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003).
[Crossref]

D. Cavalcanti and P. Skrzypczyk, “Quantitative relations between measurement incompatibility, quantum steering, and nonlocality,” Phys. Rev. A 93, 052112 (2016).
[Crossref]

B.-F. Xie, F. Ming, D. Wang, L. Ye, and J.-L. Chen, “Optimized entropic uncertainty relations for multiple measurements,” Phys. Rev. A 104, 062204 (2021).
[Crossref]

F. Ming, D. Wang, X.-G. Fan, W.-N. Shi, L. Ye, and J.-L. Chen, “Improved tripartite uncertainty relation with quantum memory,” Phys. Rev. A 102, 012206 (2020).
[Crossref]

Phys. Rev. Lett. (13)

T. Vértesi, S. Pironio, and N. Brunner, “Closing the detection loophole in Bell experiments using qudits,” Phys. Rev. Lett. 104, 060401 (2010).
[Crossref]

S. Designolle, P. Skrzypczyk, F. Fröwis, and N. Brunner, “Quantifying measurement incompatibility of mutually unbiased bases,” Phys. Rev. Lett. 122, 050402 (2019).
[Crossref]

R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, “One-to-one mapping between steering and joint measurability problems,” Phys. Rev. Lett. 115, 230402 (2015).
[Crossref]

Q. Zeng, B. Wang, P. Li, and X. Zhang, “Experimental high-dimensional Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 120, 030401 (2018).
[Crossref]

Y. Guo, S. Cheng, X. Hu, B.-H. Liu, E.-M. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo, and E. G. Cavalcanti, “Experimental measurement-device-independent quantum steering and randomness generation beyond qubits,” Phys. Rev. Lett. 123, 170402 (2019).
[Crossref]

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W. McCutcheon, M. Malik, and N. Brunner, “Genuine high-dimensional quantum steering,” Phys. Rev. Lett. 126, 200404 (2021).
[Crossref]

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
[Crossref]

M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 114, 060404 (2015).
[Crossref]

S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N. Chen, “Natural framework for device-independent quantification of quantum steerability, measurement incompatibility, and self-testing,” Phys. Rev. Lett. 116, 240401 (2016).
[Crossref]

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref]

J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
[Crossref]

Phys. Rev. X (1)

S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and M. Huber, “Overcoming noise in entanglement distribution,” Phys. Rev. X 9, 041042 (2019).
[Crossref]

Proc. Natl. Acad. Sci. (1)

J. Schwinger, “Unitary operator bases,” Proc. Natl. Acad. Sci. 46, 570–579 (1960).
[Crossref]

Rep. Prog. Phys. (1)

D. Cavalcanti and P. Skrzypczyk, “Quantum steering: a review with focus on semidefinite programming,” Rep. Prog. Phys. 80, 024001 (2016).
[Crossref]

Rev. Mod. Phys. (3)

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, “Quantum steering,” Rev. Mod. Phys. 92, 015001 (2020).
[Crossref]

P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic uncertainty relations and their applications,” Rev. Mod. Phys. 89, 015002 (2017).
[Crossref]

Sci. Adv. (2)

X.-M. Hu, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Beating the channel capacity limit for superdense coding with entangled ququarts,” Sci. Adv. 4, eaat9304 (2018).
[Crossref]

N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3, e1701491 (2017).
[Crossref]

Science (1)

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Other (1)

I. Bengtsson, “Three ways to look at mutually unbiased bases,” in AIP Conference Proceedings (American Institute of Physics, 2007), Vol. 889, pp. 40–51.

Supplementary Material (1)

NameDescription
Supplement 1       Supplementary Information

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Nested structure of genuine HD steering. Alice can perform well-chosen measurements to generate an assemblage ${\sigma _{a|x}}$ for Bob that could not be created using any lower-dimensional entangled state. Reference [31] formalized it by the notion of $n$-preparable assemblages that can be produced via entangled state ${\rho _{\textit{AB}}}$ with Schmidt number at most $n$. This leads to a nested structure, shown here for $n \le 4$. One-preparable assemblages feature no steering (${\text{SR}}({\sigma _{a|x}}) = 0$, thus $\delta ({\sigma _{a|x}}) = 1$). The two- and three-preparable sets contain assemblages obtained by entangled states with Schmidt numbers $n = 2$ and $n = 3$, respectively. And assemblages beyond the three-preparable set feature genuine four-dimensional steering. They can be witnessed by violating the inequality $\delta ({\sigma _{a|x}}) \le 3$ (orange dashed line), thus guaranteeing the presence of four-dimensional entanglement in the 1SDI processing.
Fig. 2.
Fig. 2. Assemblages have the genuine steering witness $\delta ({\sigma _{a|x}})$ as a function of the mixing parameter $p$ for different dimensions: (a) $d = 3$, (b) $d = 4$, and (c) $d = 5$. These assemblages are at least $n= \lfloor \delta ({{\sigma }_{a|x}})+1 \rfloor$-preparable. In each figure, we set the number of measurement settings from 2 to $d + 1$. The blue curves are obtained by Eq. (9) and represent the criteria using only two MUB measurements derived in Ref. [31]. The other curves are obtained by Eq. (7) and represent the criteria using more than 2 MUB measurements. The gray colored regions show the areas where the multisetting criteria feature a higher robustness. (d) Noise thresholds for $d$-dimensional isotropic states exhibiting genuine $n$-dimensional steering as functions of $m$.
Fig. 3.
Fig. 3. Experimental setup. Pumper, diode laser centered at 405 nm; SMF, single-mode fiber; L1–L4, lenses; PPKTP, periodically poled potassium titanyl phosphate; DM, dichroic mirror; PBS, polarizing beam splitter; HWP, half-wave plate; SLM, spatial light modulator; filter, long-pass optical filter.

Tables (1)

Tables Icon

Table 1. Experimental Results of the Lower Bound of Genuine Steering Witness δ ( σ a | x ) and Lower Bound of Certified Dimension n with m Measurement Settings in Dimensions d from 3 to 5a

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

σ a | x = Tr A ( M a | x ρ AB ) .
σ a | x LHS = i p i Tr A ( M a | x ρ i A ) ρ i B = i q ( a | x , i ) ρ i B .
SR ( σ a | x ) = min t , τ a | x { t 0 | σ a | x + t τ a | x 1 + t unsteerable } ,
SR ( σ a | x ) 1 λ x = 1 m a = b = 1 d Tr [ ( M a | x M b | x T ) ρ AB ] 1 = 1 λ x = 1 m a = b = 1 d P ( a , b | x , x ) 1 ,
IR ( M a | x ) = min r , N a | x { r 0 | M a | x + r N a | x 1 + r jointly measurable } .
SR ( σ a | x ) IR ( M a | x ) m 1 + 2 ( m 1 ) / ( n + 1 ) 1 ;
δ m ( σ a | x ) 2 ( m 1 ) ( SR ( σ a | x ) + 1 ) m SR ( σ a | x ) 1 1 n ,
SR ( σ a | x ) IR ( M a | x ) = n 1 n + 1 .
δ 2 ( σ a | x ) [ SR ( σ a | x ) + 1 SR ( σ a | x ) 1 ] 2 n .
σ a | x iso = p M a | x T + ( 1 p ) 𝟙 d .
SR ( σ a | x iso ) m [ p + ( 1 p ) / d ] λ 1.
𝟙 / d 2 = 1 d 2 ( d + 1 ) ( i , j = 0 d 1 | l i A l i | | l j B l j | + x = 0 d 1 a , b = 0 d 1 | φ x a A φ x a | | φ x b B φ x b | ) .
Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved