A. Mohapatra, T. Jackson, and C. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref]
L. A. Downes, A. R. MacKellar, D. J. Whiting, C. Bourgenot, C. S. Adams, and K. J. Weatherill, “Full-field terahertz imaging at kilohertz frame rates using atomic vapor,” Phys. Rev. X 10, 011027 (2020).
[Crossref]
C. S. Adams, J. D. Pritchard, and J. P. Shaffer, “Rydberg atom quantum technologies,” J. Phys. B 53, 012002 (2019).
[Crossref]
D. J. Reed, N. Šibalić, D. J. Whiting, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Low-drift Zeeman shifted atomic frequency reference,” OSA Contin. 1, 4–12 (2018).
[Crossref]
C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]
N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, “ARC: an open-source library for calculating properties of alkali Rydberg atoms,” Comput. Phys. Commun. 220, 319–331 (2017).
[Crossref]
C. Carr, M. Tanasittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, and K. J. Weatherill, “Three-photon electromagnetically induced transparency using Rydberg states,” Opt. Lett. 37, 3858–3860 (2012).
[Crossref]
C. Carr, C. S. Adams, and K. J. Weatherill, “Polarization spectroscopy of an excited state transition,” Opt. Lett. 37, 118–120 (2012).
[Crossref]
M. Tanasittikosol, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, R. M. Potvliege, and C. S. Adams, “Microwave dressing of Rydberg dark states,” J. Phys. B 44, 184020 (2011).
[Crossref]
H. Iida, M. Kinoshita, and K. Amemiya, “Accurate measurement of absolute terahertz power using broadband calorimeter,” J. Infrared Millim. Terahertz Waves 39, 409–421 (2018).
[Crossref]
H. Iida, M. Kinoshita, K. Amemiya, and Y. Shimada, “Calorimetric measurement of absolute terahertz power at the sub-microwatt level,” Opt. Lett. 39, 1609–1612 (2014).
[Crossref]
D. A. Anderson, R. E. Sapiro, and G. Raithel, “Rydberg atoms for radio-frequency communications and sensing: atomic receivers for pulsed RF field and phase detection,” IEEE Aerosp. Electron. Syst. Mag. 35(4), 48–56 (2020).
[Crossref]
C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]
C. L. Holloway, J. A. Gordon, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]
C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]
R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Invest. Dermatol. 120, 72–78 (2003).
[Crossref]
X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photon. 6, 830–837 (2019).
[Crossref]
L. Hao, Y. Jiao, Y. Xue, X. Han, S. Bai, J. Zhao, and G. Raithel, “Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms,” New J. Phys. 20, 073024 (2018).
[Crossref]
I. S. Gregory, W. Tribe, C. Baker, B. Cole, M. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[Crossref]
M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]
J. A. Russer, C. Jirauschek, G. P. Szakmany, M. Schmidt, A. O. Orlov, G. H. Bernstein, W. Porod, P. Lugli, and P. Russer, “High-speed antenna-coupled terahertz thermocouple detectors and mixers,” IEEE Trans. Microw. Theory Tech. 63, 4236–4246 (2015).
[Crossref]
J. Lehman, M. Dowell, N. B. Popovic, K. Betz, and E. Grossman, “Laser power-meter comparison at far-infrared wavelengths and terahertz frequencies,” Metrologia 49, 583–587 (2012).
[Crossref]
E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]
A. Svetlitza, M. Slavenko, T. Blank, I. Brouk, S. Stolyarova, and Y. Nemirovsky, “Thz measurements and calibration based on a blackbody source,” IEEE Trans. Terahertz Sci. Technol. 4, 347–359 (2014).
[Crossref]
B. Globisch, R. J. Dietz, T. Göbel, M. Schell, W. Bohmeyer, R. Müller, and A. Steiger, “Absolute terahertz power measurement of a time-domain spectroscopy system,” Opt. Lett. 40, 3544–3547 (2015).
[Crossref]
R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]
R. Müller, W. Bohmeyer, K. Lange, and A. Steiger, “THz metrological traceability and suitable detectors,” in CLEO: Science and Innovations (Optical Society of America, 2012), paper CTu3B-8.
T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, “InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging,” IEEE Sens. J. 13, 89–99 (2012).
[Crossref]
L. A. Downes, A. R. MacKellar, D. J. Whiting, C. Bourgenot, C. S. Adams, and K. J. Weatherill, “Full-field terahertz imaging at kilohertz frame rates using atomic vapor,” Phys. Rev. X 10, 011027 (2020).
[Crossref]
A. Svetlitza, M. Slavenko, T. Blank, I. Brouk, S. Stolyarova, and Y. Nemirovsky, “Thz measurements and calibration based on a blackbody source,” IEEE Trans. Terahertz Sci. Technol. 4, 347–359 (2014).
[Crossref]
X. Pan, Y. Cai, X. Zeng, S. Zheng, J. Li, and S. Xu, “A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio,” Opt. Commun. 391, 135–140 (2017).
[Crossref]
N. Wang, S. Cakmakyapan, Y.-J. Lin, H. Javadi, and M. Jarrahi, “Room-temperature heterodyne terahertz detection with quantum-level sensitivity,” Nat. Astron. 3, 977–982 (2019).
[Crossref]
C. Carr, C. S. Adams, and K. J. Weatherill, “Polarization spectroscopy of an excited state transition,” Opt. Lett. 37, 118–120 (2012).
[Crossref]
C. Carr, M. Tanasittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, and K. J. Weatherill, “Three-photon electromagnetically induced transparency using Rydberg states,” Opt. Lett. 37, 3858–3860 (2012).
[Crossref]
X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photon. 6, 830–837 (2019).
[Crossref]
X. Chen, H. Liu, Q. Li, H. Chen, R. Peng, S. Chu, and B. Cheng, “Terahertz detectors arrays based on orderly aligned InN nanowires,” Sci. Rep. 5, 13199 (2015).
[Crossref]
H. Qin, J. Sun, Z. He, X. Li, X. Li, S. Liang, C. Yu, Z. Feng, X. Tu, B. Jin, J. Chen, and P. Wu, “Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling,” Carbon 121, 235–241 (2017).
[Crossref]
X. Chen, H. Liu, Q. Li, H. Chen, R. Peng, S. Chu, and B. Cheng, “Terahertz detectors arrays based on orderly aligned InN nanowires,” Sci. Rep. 5, 13199 (2015).
[Crossref]
X. Chen, H. Liu, Q. Li, H. Chen, R. Peng, S. Chu, and B. Cheng, “Terahertz detectors arrays based on orderly aligned InN nanowires,” Sci. Rep. 5, 13199 (2015).
[Crossref]
A. Chopinaud and J. D. Pritchard, “Optimal state choice for Rydberg-atom microwave sensors,” Phys. Rev. Appl. 16, 024008 (2021).
[Crossref]
C. Wu, W. Zhou, N. Yao, X. Xu, Y. Qu, Z. Zhang, J. Wu, L. Jiang, Z. Huang, and J. Chu, “Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector,” Appl. Phys. Express 12, 052013 (2019).
[Crossref]
X. Chen, H. Liu, Q. Li, H. Chen, R. Peng, S. Chu, and B. Cheng, “Terahertz detectors arrays based on orderly aligned InN nanowires,” Sci. Rep. 5, 13199 (2015).
[Crossref]
M. C. Kemp, P. Taday, B. E. Cole, J. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]
S. Preu, M. Mittendorff, S. Winnerl, O. Cojocari, and A. Penirschke, “THz autocorrelators for ps pulse characterization based on Schottky diodes and rectifying field-effect transistors,” IEEE Trans. Terahertz Sci. Technol. 5, 922–929 (2015).
[Crossref]
I. S. Gregory, W. Tribe, C. Baker, B. Cole, M. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[Crossref]
M. C. Kemp, P. Taday, B. E. Cole, J. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]
R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Invest. Dermatol. 120, 72–78 (2003).
[Crossref]
D. Coquillat, J. Marczewski, P. Kopyt, N. Dyakonova, B. Giffard, and W. Knap, “Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction,” Opt. Express 24, 272–281 (2016).
[Crossref]
Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. B. Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, and T. Otsuji, “Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics,” Appl. Phys. Lett. 104, 251114 (2014).
[Crossref]
T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, “InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging,” IEEE Sens. J. 13, 89–99 (2012).
[Crossref]
M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]
X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photon. 6, 830–837 (2019).
[Crossref]
C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]
B. Gutschwager, C. Monte, H. Delsim-Hashemi, O. Grimm, and J. Hollandt, “Calculable blackbody radiation as a source for the determination of the spectral responsivity of THz detectors,” Metrologia 46, S165–S169 (2009).
[Crossref]
A. Steiger, R. Müller, A. R. Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz laser power measurement comparison,” IEEE Trans. Terahertz Sci. Technol. 6, 664–669 (2016).
[Crossref]
Y. Deng, Q. Sun, J. Yu, Y. Lin, and J. Wang, “Broadband high-absorbance coating for terahertz radiometry,” Opt. Express 21, 5737–5742 (2013).
[Crossref]
M. Naftaly, N. Vieweg, and A. Deninger, “Industrial applications of terahertz sensing: state of play,” Sensors 19, 4203 (2019).
[Crossref]
D. R. Denison, M. E. Knotts, M. E. McConney, and V. V. Tsukruk, “Experimental characterization of mm-wave detection by a micro-array of Golay cells,” Proc. SPIE 7309, 73090J (2009).
[Crossref]
A. Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle, “Terahertz technology and its applications,” Drug Invent. Today 5(2), 157–163 (2013).
[Crossref]
S. S. Dhillon, M. S. Vitiello, and E. H. Linfield et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D. 50, 043001 (2019).
[Crossref]
R. Dickhoff, C. Jastrow, A. Steiger, R. Müller, T. Kleine-Ostmann, and T. Schrader, “Characterization of THz beams,” in CLEO: Science and Innovations (Optical Society of America, 2011), paper JThB116.
C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]
J. Lehman, M. Dowell, N. B. Popovic, K. Betz, and E. Grossman, “Laser power-meter comparison at far-infrared wavelengths and terahertz frequencies,” Metrologia 49, 583–587 (2012).
[Crossref]
M. G. White, M. L. Dowell, and J. H. Lehman, “Traceable terahertz power metrology at NIST,” in 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2014), p. 1.
L. A. Downes, A. R. MacKellar, D. J. Whiting, C. Bourgenot, C. S. Adams, and K. J. Weatherill, “Full-field terahertz imaging at kilohertz frame rates using atomic vapor,” Phys. Rev. X 10, 011027 (2020).
[Crossref]
X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photon. 6, 830–837 (2019).
[Crossref]
Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. B. Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, and T. Otsuji, “Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics,” Appl. Phys. Lett. 104, 251114 (2014).
[Crossref]
A. Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle, “Terahertz technology and its applications,” Drug Invent. Today 5(2), 157–163 (2013).
[Crossref]
M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]
X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, “Carbon nanotube terahertz detector,” Nano Lett. 14, 3953–3958 (2014).
[Crossref]
I. S. Gregory, W. Tribe, C. Baker, B. Cole, M. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[Crossref]
H. Fan, S. Kumar, H. Kübler, and J. Shaffer, “Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell,” J. Phys. B 49, 104004 (2016).
[Crossref]
H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]
L. Hao, Y. Xue, J. Fan, Y. Jiao, J. Zhao, and S. Jia, “Nonlinearity of microwave electric field coupled Rydberg electromagnetically induced transparency and Autler-Townes splitting,” Appl. Sci. 9, 1720 (2019).
[Crossref]
T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, “InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging,” IEEE Sens. J. 13, 89–99 (2012).
[Crossref]
J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).
[Crossref]
H. Qin, J. Sun, Z. He, X. Li, X. Li, S. Liang, C. Yu, Z. Feng, X. Tu, B. Jin, J. Chen, and P. Wu, “Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling,” Carbon 121, 235–241 (2017).
[Crossref]
S. Seliverstov, S. Maslennikov, S. Ryabchun, M. Finkel, T. Klapwijk, N. Kaurova, Y. Vachtomin, K. Smirnov, B. Voronov, and G. Goltsman, “Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer,” IEEE Trans. Appl. Supercond. 25, 1–4 (2014).
[Crossref]
M. C. Kemp, P. Taday, B. E. Cole, J. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]
X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, “Carbon nanotube terahertz detector,” Nano Lett. 14, 3953–3958 (2014).
[Crossref]
X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, “Carbon nanotube terahertz detector,” Nano Lett. 14, 3953–3958 (2014).
[Crossref]
M. Tanasittikosol, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, R. M. Potvliege, and C. S. Adams, “Microwave dressing of Rydberg dark states,” J. Phys. B 44, 184020 (2011).
[Crossref]
M. Sakhno, A. Golenkov, and F. Sizov, “Uncooled detector challenges: millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors,” J. Appl. Phys. 114, 164503 (2013).
[Crossref]
A. Shurakov, Y. Lobanov, and G. Goltsman, “Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications,” Supercond. Sci. Technol. 29, 023001 (2015).
[Crossref]
S. Seliverstov, S. Maslennikov, S. Ryabchun, M. Finkel, T. Klapwijk, N. Kaurova, Y. Vachtomin, K. Smirnov, B. Voronov, and G. Goltsman, “Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer,” IEEE Trans. Appl. Supercond. 25, 1–4 (2014).
[Crossref]
C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]
C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]
C. L. Holloway, J. A. Gordon, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]
W. Li, Z. Liang, J. Wang, J. Gou, and Y. Jiang, “A direct method of thermal time constant measurement for lithium tantalate based terahertz pryroelectric detectors,” J. Mater. Sci. Mater. Electron. 27, 9996–10002 (2016).
[Crossref]
I. S. Gregory, W. Tribe, C. Baker, B. Cole, M. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[Crossref]
B. Gutschwager, C. Monte, H. Delsim-Hashemi, O. Grimm, and J. Hollandt, “Calculable blackbody radiation as a source for the determination of the spectral responsivity of THz detectors,” Metrologia 46, S165–S169 (2009).
[Crossref]
J. Lehman, M. Dowell, N. B. Popovic, K. Betz, and E. Grossman, “Laser power-meter comparison at far-infrared wavelengths and terahertz frequencies,” Metrologia 49, 583–587 (2012).
[Crossref]
S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77, 4104–4106 (2000).
[Crossref]
R. Müller, B. Gutschwager, J. Hollandt, M. Kehrt, C. Monte, R. Müller, and A. Steiger, “Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz,” J. Infrared Millim. Terahertz Waves 36, 654–661 (2015).
[Crossref]
A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18, 21804–21814 (2010).
[Crossref]
B. Gutschwager, C. Monte, H. Delsim-Hashemi, O. Grimm, and J. Hollandt, “Calculable blackbody radiation as a source for the determination of the spectral responsivity of THz detectors,” Metrologia 46, S165–S169 (2009).
[Crossref]
S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21, 25874–25882 (2013).
[Crossref]
L. Hao, Y. Jiao, Y. Xue, X. Han, S. Bai, J. Zhao, and G. Raithel, “Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms,” New J. Phys. 20, 073024 (2018).
[Crossref]
L. Hao, Y. Xue, J. Fan, Y. Jiao, J. Zhao, and S. Jia, “Nonlinearity of microwave electric field coupled Rydberg electromagnetically induced transparency and Autler-Townes splitting,” Appl. Sci. 9, 1720 (2019).
[Crossref]
L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9, 9354–9363 (2019).
[Crossref]
L. Hao, Y. Jiao, Y. Xue, X. Han, S. Bai, J. Zhao, and G. Raithel, “Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms,” New J. Phys. 20, 073024 (2018).
[Crossref]
X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, “Carbon nanotube terahertz detector,” Nano Lett. 14, 3953–3958 (2014).
[Crossref]
X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, “Carbon nanotube terahertz detector,” Nano Lett. 14, 3953–3958 (2014).
[Crossref]
H. Qin, J. Sun, Z. He, X. Li, X. Li, S. Liang, C. Yu, Z. Feng, X. Tu, B. Jin, J. Chen, and P. Wu, “Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling,” Carbon 121, 235–241 (2017).
[Crossref]
R. Müller, B. Gutschwager, J. Hollandt, M. Kehrt, C. Monte, R. Müller, and A. Steiger, “Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz,” J. Infrared Millim. Terahertz Waves 36, 654–661 (2015).
[Crossref]
A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18, 21804–21814 (2010).
[Crossref]
B. Gutschwager, C. Monte, H. Delsim-Hashemi, O. Grimm, and J. Hollandt, “Calculable blackbody radiation as a source for the determination of the spectral responsivity of THz detectors,” Metrologia 46, S165–S169 (2009).
[Crossref]
A. K. Robinson, N. Prajapati, D. Senic, M. T. Simons, and C. L. Holloway, “Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor,” Appl. Phys. Lett. 118, 114001 (2021).
[Crossref]
C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]
C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]
C. L. Holloway, J. A. Gordon, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]
M. Jing, Y. Hu, J. Ma, H. Zhang, L. Zhang, L. Xiao, and S. Jia, “Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy,” Nat. Phys. 16, 911–915 (2020).
[Crossref]
C. Wu, W. Zhou, N. Yao, X. Xu, Y. Qu, Z. Zhang, J. Wu, L. Jiang, Z. Huang, and J. Chu, “Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector,” Appl. Phys. Express 12, 052013 (2019).
[Crossref]
L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]
H. Iida, M. Kinoshita, and K. Amemiya, “Accurate measurement of absolute terahertz power using broadband calorimeter,” J. Infrared Millim. Terahertz Waves 39, 409–421 (2018).
[Crossref]
H. Iida, M. Kinoshita, K. Amemiya, and Y. Shimada, “Calorimetric measurement of absolute terahertz power at the sub-microwatt level,” Opt. Lett. 39, 1609–1612 (2014).
[Crossref]
T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, “InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging,” IEEE Sens. J. 13, 89–99 (2012).
[Crossref]
A. Mohapatra, T. Jackson, and C. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref]
N. Wang, S. Cakmakyapan, Y.-J. Lin, H. Javadi, and M. Jarrahi, “Room-temperature heterodyne terahertz detection with quantum-level sensitivity,” Nat. Astron. 3, 977–982 (2019).
[Crossref]
R. Dickhoff, C. Jastrow, A. Steiger, R. Müller, T. Kleine-Ostmann, and T. Schrader, “Characterization of THz beams,” in CLEO: Science and Innovations (Optical Society of America, 2011), paper JThB116.
N. Wang, S. Cakmakyapan, Y.-J. Lin, H. Javadi, and M. Jarrahi, “Room-temperature heterodyne terahertz detection with quantum-level sensitivity,” Nat. Astron. 3, 977–982 (2019).
[Crossref]
C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]
M. Jing, Y. Hu, J. Ma, H. Zhang, L. Zhang, L. Xiao, and S. Jia, “Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy,” Nat. Phys. 16, 911–915 (2020).
[Crossref]
L. Hao, Y. Xue, J. Fan, Y. Jiao, J. Zhao, and S. Jia, “Nonlinearity of microwave electric field coupled Rydberg electromagnetically induced transparency and Autler-Townes splitting,” Appl. Sci. 9, 1720 (2019).
[Crossref]
C. Wu, W. Zhou, N. Yao, X. Xu, Y. Qu, Z. Zhang, J. Wu, L. Jiang, Z. Huang, and J. Chu, “Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector,” Appl. Phys. Express 12, 052013 (2019).
[Crossref]
X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, “Carbon nanotube terahertz detector,” Nano Lett. 14, 3953–3958 (2014).
[Crossref]
W. Li, Z. Liang, J. Wang, J. Gou, and Y. Jiang, “A direct method of thermal time constant measurement for lithium tantalate based terahertz pryroelectric detectors,” J. Mater. Sci. Mater. Electron. 27, 9996–10002 (2016).
[Crossref]
L. Hao, Y. Xue, J. Fan, Y. Jiao, J. Zhao, and S. Jia, “Nonlinearity of microwave electric field coupled Rydberg electromagnetically induced transparency and Autler-Townes splitting,” Appl. Sci. 9, 1720 (2019).
[Crossref]
L. Hao, Y. Jiao, Y. Xue, X. Han, S. Bai, J. Zhao, and G. Raithel, “Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms,” New J. Phys. 20, 073024 (2018).
[Crossref]
L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9, 9354–9363 (2019).
[Crossref]
H. Qin, J. Sun, Z. He, X. Li, X. Li, S. Liang, C. Yu, Z. Feng, X. Tu, B. Jin, J. Chen, and P. Wu, “Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling,” Carbon 121, 235–241 (2017).
[Crossref]
M. Jing, Y. Hu, J. Ma, H. Zhang, L. Zhang, L. Xiao, and S. Jia, “Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy,” Nat. Phys. 16, 911–915 (2020).
[Crossref]
L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9, 9354–9363 (2019).
[Crossref]
J. A. Russer, C. Jirauschek, G. P. Szakmany, M. Schmidt, A. O. Orlov, G. H. Bernstein, W. Porod, P. Lugli, and P. Russer, “High-speed antenna-coupled terahertz thermocouple detectors and mixers,” IEEE Trans. Microw. Theory Tech. 63, 4236–4246 (2015).
[Crossref]
H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]
S. Seliverstov, S. Maslennikov, S. Ryabchun, M. Finkel, T. Klapwijk, N. Kaurova, Y. Vachtomin, K. Smirnov, B. Voronov, and G. Goltsman, “Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer,” IEEE Trans. Appl. Supercond. 25, 1–4 (2014).
[Crossref]
X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, “Carbon nanotube terahertz detector,” Nano Lett. 14, 3953–3958 (2014).
[Crossref]
R. Müller, B. Gutschwager, J. Hollandt, M. Kehrt, C. Monte, R. Müller, and A. Steiger, “Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz,” J. Infrared Millim. Terahertz Waves 36, 654–661 (2015).
[Crossref]
R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]
A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21, 14466–14473 (2013).
[Crossref]
A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18, 21804–21814 (2010).
[Crossref]
M. C. Kemp, P. Taday, B. E. Cole, J. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]
S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21, 25874–25882 (2013).
[Crossref]
S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21, 25874–25882 (2013).
[Crossref]
H. Iida, M. Kinoshita, and K. Amemiya, “Accurate measurement of absolute terahertz power using broadband calorimeter,” J. Infrared Millim. Terahertz Waves 39, 409–421 (2018).
[Crossref]
H. Iida, M. Kinoshita, K. Amemiya, and Y. Shimada, “Calorimetric measurement of absolute terahertz power at the sub-microwatt level,” Opt. Lett. 39, 1609–1612 (2014).
[Crossref]
S. Seliverstov, S. Maslennikov, S. Ryabchun, M. Finkel, T. Klapwijk, N. Kaurova, Y. Vachtomin, K. Smirnov, B. Voronov, and G. Goltsman, “Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer,” IEEE Trans. Appl. Supercond. 25, 1–4 (2014).
[Crossref]
T. Kleine-Ostmann, “THz metrology,” in 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2013), pp. 1–4.
R. Dickhoff, C. Jastrow, A. Steiger, R. Müller, T. Kleine-Ostmann, and T. Schrader, “Characterization of THz beams,” in CLEO: Science and Innovations (Optical Society of America, 2011), paper JThB116.
D. Coquillat, J. Marczewski, P. Kopyt, N. Dyakonova, B. Giffard, and W. Knap, “Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction,” Opt. Express 24, 272–281 (2016).
[Crossref]
Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. B. Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, and T. Otsuji, “Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics,” Appl. Phys. Lett. 104, 251114 (2014).
[Crossref]
M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]
T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, “InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging,” IEEE Sens. J. 13, 89–99 (2012).
[Crossref]
D. R. Denison, M. E. Knotts, M. E. McConney, and V. V. Tsukruk, “Experimental characterization of mm-wave detection by a micro-array of Golay cells,” Proc. SPIE 7309, 73090J (2009).
[Crossref]
S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21, 25874–25882 (2013).
[Crossref]
Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. B. Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, and T. Otsuji, “Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics,” Appl. Phys. Lett. 104, 251114 (2014).
[Crossref]
D. J. Reed, N. Šibalić, D. J. Whiting, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Low-drift Zeeman shifted atomic frequency reference,” OSA Contin. 1, 4–12 (2018).
[Crossref]
C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]
X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, “Carbon nanotube terahertz detector,” Nano Lett. 14, 3953–3958 (2014).
[Crossref]
S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77, 4104–4106 (2000).
[Crossref]
H. Fan, S. Kumar, H. Kübler, and J. Shaffer, “Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell,” J. Phys. B 49, 104004 (2016).
[Crossref]
H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]
J. Sedlacek, A. Schwettmann, H. Kübler, and J. Shaffer, “Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell,” Phys. Rev. Lett. 111, 063001 (2013).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
H. Fan, S. Kumar, H. Kübler, and J. Shaffer, “Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell,” J. Phys. B 49, 104004 (2016).
[Crossref]
H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]
Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. B. Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, and T. Otsuji, “Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics,” Appl. Phys. Lett. 104, 251114 (2014).
[Crossref]
R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]
R. Müller, W. Bohmeyer, K. Lange, and A. Steiger, “THz metrological traceability and suitable detectors,” in CLEO: Science and Innovations (Optical Society of America, 2012), paper CTu3B-8.
S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21, 25874–25882 (2013).
[Crossref]
Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009), Vol. 170.
A. Steiger, R. Müller, A. R. Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz laser power measurement comparison,” IEEE Trans. Terahertz Sci. Technol. 6, 664–669 (2016).
[Crossref]
J. Lehman, M. Dowell, N. B. Popovic, K. Betz, and E. Grossman, “Laser power-meter comparison at far-infrared wavelengths and terahertz frequencies,” Metrologia 49, 583–587 (2012).
[Crossref]
J. H. Lehman, B. Lee, and E. N. Grossman, “Far infrared thermal detectors for laser radiometry using a carbon nanotube array,” Appl. Opt. 50, 4099–4104 (2011).
[Crossref]
M. G. White, M. L. Dowell, and J. H. Lehman, “Traceable terahertz power metrology at NIST,” in 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2014), p. 1.
X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, “Carbon nanotube terahertz detector,” Nano Lett. 14, 3953–3958 (2014).
[Crossref]
R. Lewis, “A review of terahertz detectors,” J. Phys. D 52, 433001 (2019).
[Crossref]
X. Pan, Y. Cai, X. Zeng, S. Zheng, J. Li, and S. Xu, “A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio,” Opt. Commun. 391, 135–140 (2017).
[Crossref]
X. Chen, H. Liu, Q. Li, H. Chen, R. Peng, S. Chu, and B. Cheng, “Terahertz detectors arrays based on orderly aligned InN nanowires,” Sci. Rep. 5, 13199 (2015).
[Crossref]
S. Li, J. Yuan, and L. Wang, “Improvement of microwave electric field measurement sensitivity via multi-carrier modulation in Rydberg atoms,” Appl. Sci. 10, 8110 (2020).
[Crossref]
W. Li, Z. Liang, J. Wang, J. Gou, and Y. Jiang, “A direct method of thermal time constant measurement for lithium tantalate based terahertz pryroelectric detectors,” J. Mater. Sci. Mater. Electron. 27, 9996–10002 (2016).
[Crossref]
H. Qin, J. Sun, Z. He, X. Li, X. Li, S. Liang, C. Yu, Z. Feng, X. Tu, B. Jin, J. Chen, and P. Wu, “Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling,” Carbon 121, 235–241 (2017).
[Crossref]
H. Qin, J. Sun, Z. He, X. Li, X. Li, S. Liang, C. Yu, Z. Feng, X. Tu, B. Jin, J. Chen, and P. Wu, “Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling,” Carbon 121, 235–241 (2017).
[Crossref]
H. Qin, J. Sun, Z. He, X. Li, X. Li, S. Liang, C. Yu, Z. Feng, X. Tu, B. Jin, J. Chen, and P. Wu, “Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling,” Carbon 121, 235–241 (2017).
[Crossref]
W. Li, Z. Liang, J. Wang, J. Gou, and Y. Jiang, “A direct method of thermal time constant measurement for lithium tantalate based terahertz pryroelectric detectors,” J. Mater. Sci. Mater. Electron. 27, 9996–10002 (2016).
[Crossref]
N. Wang, S. Cakmakyapan, Y.-J. Lin, H. Javadi, and M. Jarrahi, “Room-temperature heterodyne terahertz detection with quantum-level sensitivity,” Nat. Astron. 3, 977–982 (2019).
[Crossref]
S. S. Dhillon, M. S. Vitiello, and E. H. Linfield et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D. 50, 043001 (2019).
[Crossref]
R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Invest. Dermatol. 120, 72–78 (2003).
[Crossref]
X. Chen, H. Liu, Q. Li, H. Chen, R. Peng, S. Chu, and B. Cheng, “Terahertz detectors arrays based on orderly aligned InN nanowires,” Sci. Rep. 5, 13199 (2015).
[Crossref]
K. Liu, J. Xu, and X.-C. Zhang, “GaSe crystals for broadband terahertz wave detection,” Appl. Phys. Lett. 85, 863–865 (2004).
[Crossref]
X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, “Carbon nanotube terahertz detector,” Nano Lett. 14, 3953–3958 (2014).
[Crossref]
A. Shurakov, Y. Lobanov, and G. Goltsman, “Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications,” Supercond. Sci. Technol. 29, 023001 (2015).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
J. A. Russer, C. Jirauschek, G. P. Szakmany, M. Schmidt, A. O. Orlov, G. H. Bernstein, W. Porod, P. Lugli, and P. Russer, “High-speed antenna-coupled terahertz thermocouple detectors and mixers,” IEEE Trans. Microw. Theory Tech. 63, 4236–4246 (2015).
[Crossref]
M. Jing, Y. Hu, J. Ma, H. Zhang, L. Zhang, L. Xiao, and S. Jia, “Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy,” Nat. Phys. 16, 911–915 (2020).
[Crossref]
S. A. Maas, Nonlinear Microwave and RF Circuits (Artech House, 2003).
L. A. Downes, A. R. MacKellar, D. J. Whiting, C. Bourgenot, C. S. Adams, and K. J. Weatherill, “Full-field terahertz imaging at kilohertz frame rates using atomic vapor,” Phys. Rev. X 10, 011027 (2020).
[Crossref]
S. Seliverstov, S. Maslennikov, S. Ryabchun, M. Finkel, T. Klapwijk, N. Kaurova, Y. Vachtomin, K. Smirnov, B. Voronov, and G. Goltsman, “Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer,” IEEE Trans. Appl. Supercond. 25, 1–4 (2014).
[Crossref]
M. Tanasittikosol, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, R. M. Potvliege, and C. S. Adams, “Microwave dressing of Rydberg dark states,” J. Phys. B 44, 184020 (2011).
[Crossref]
D. R. Denison, M. E. Knotts, M. E. McConney, and V. V. Tsukruk, “Experimental characterization of mm-wave detection by a micro-array of Golay cells,” Proc. SPIE 7309, 73090J (2009).
[Crossref]
L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]
L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9, 9354–9363 (2019).
[Crossref]
Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. B. Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, and T. Otsuji, “Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics,” Appl. Phys. Lett. 104, 251114 (2014).
[Crossref]
T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, “InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging,” IEEE Sens. J. 13, 89–99 (2012).
[Crossref]
C. L. Holloway, J. A. Gordon, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]
C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]
T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, “InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging,” IEEE Sens. J. 13, 89–99 (2012).
[Crossref]
I. S. Gregory, W. Tribe, C. Baker, B. Cole, M. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[Crossref]
S. Preu, M. Mittendorff, S. Winnerl, O. Cojocari, and A. Penirschke, “THz autocorrelators for ps pulse characterization based on Schottky diodes and rectifying field-effect transistors,” IEEE Trans. Terahertz Sci. Technol. 5, 922–929 (2015).
[Crossref]
J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).
[Crossref]
A. Mohapatra, T. Jackson, and C. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref]
M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]
R. Müller, B. Gutschwager, J. Hollandt, M. Kehrt, C. Monte, R. Müller, and A. Steiger, “Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz,” J. Infrared Millim. Terahertz Waves 36, 654–661 (2015).
[Crossref]
R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]
A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21, 14466–14473 (2013).
[Crossref]
A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18, 21804–21814 (2010).
[Crossref]
B. Gutschwager, C. Monte, H. Delsim-Hashemi, O. Grimm, and J. Hollandt, “Calculable blackbody radiation as a source for the determination of the spectral responsivity of THz detectors,” Metrologia 46, S165–S169 (2009).
[Crossref]
A. Steiger, R. Müller, A. R. Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz laser power measurement comparison,” IEEE Trans. Terahertz Sci. Technol. 6, 664–669 (2016).
[Crossref]
B. Globisch, R. J. Dietz, T. Göbel, M. Schell, W. Bohmeyer, R. Müller, and A. Steiger, “Absolute terahertz power measurement of a time-domain spectroscopy system,” Opt. Lett. 40, 3544–3547 (2015).
[Crossref]
R. Müller, B. Gutschwager, J. Hollandt, M. Kehrt, C. Monte, R. Müller, and A. Steiger, “Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz,” J. Infrared Millim. Terahertz Waves 36, 654–661 (2015).
[Crossref]
R. Müller, B. Gutschwager, J. Hollandt, M. Kehrt, C. Monte, R. Müller, and A. Steiger, “Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz,” J. Infrared Millim. Terahertz Waves 36, 654–661 (2015).
[Crossref]
R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]
A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21, 14466–14473 (2013).
[Crossref]
A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18, 21804–21814 (2010).
[Crossref]
L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]
R. Dickhoff, C. Jastrow, A. Steiger, R. Müller, T. Kleine-Ostmann, and T. Schrader, “Characterization of THz beams,” in CLEO: Science and Innovations (Optical Society of America, 2011), paper JThB116.
R. Müller, W. Bohmeyer, K. Lange, and A. Steiger, “THz metrological traceability and suitable detectors,” in CLEO: Science and Innovations (Optical Society of America, 2012), paper CTu3B-8.
M. Naftaly, N. Vieweg, and A. Deninger, “Industrial applications of terahertz sensing: state of play,” Sensors 19, 4203 (2019).
[Crossref]
A. Svetlitza, M. Slavenko, T. Blank, I. Brouk, S. Stolyarova, and Y. Nemirovsky, “Thz measurements and calibration based on a blackbody source,” IEEE Trans. Terahertz Sci. Technol. 4, 347–359 (2014).
[Crossref]
A. Steiger, R. Müller, A. R. Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz laser power measurement comparison,” IEEE Trans. Terahertz Sci. Technol. 6, 664–669 (2016).
[Crossref]
J. A. Russer, C. Jirauschek, G. P. Szakmany, M. Schmidt, A. O. Orlov, G. H. Bernstein, W. Porod, P. Lugli, and P. Russer, “High-speed antenna-coupled terahertz thermocouple detectors and mixers,” IEEE Trans. Microw. Theory Tech. 63, 4236–4246 (2015).
[Crossref]
Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. B. Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, and T. Otsuji, “Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics,” Appl. Phys. Lett. 104, 251114 (2014).
[Crossref]
T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, “InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging,” IEEE Sens. J. 13, 89–99 (2012).
[Crossref]
X. Pan, Y. Cai, X. Zeng, S. Zheng, J. Li, and S. Xu, “A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio,” Opt. Commun. 391, 135–140 (2017).
[Crossref]
S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21, 25874–25882 (2013).
[Crossref]
S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21, 25874–25882 (2013).
[Crossref]
A. Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle, “Terahertz technology and its applications,” Drug Invent. Today 5(2), 157–163 (2013).
[Crossref]
X. Chen, H. Liu, Q. Li, H. Chen, R. Peng, S. Chu, and B. Cheng, “Terahertz detectors arrays based on orderly aligned InN nanowires,” Sci. Rep. 5, 13199 (2015).
[Crossref]
S. Preu, M. Mittendorff, S. Winnerl, O. Cojocari, and A. Penirschke, “THz autocorrelators for ps pulse characterization based on Schottky diodes and rectifying field-effect transistors,” IEEE Trans. Terahertz Sci. Technol. 5, 922–929 (2015).
[Crossref]
I. S. Gregory, W. Tribe, C. Baker, B. Cole, M. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[Crossref]
R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Invest. Dermatol. 120, 72–78 (2003).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]
T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, “InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging,” IEEE Sens. J. 13, 89–99 (2012).
[Crossref]
Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. B. Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, and T. Otsuji, “Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics,” Appl. Phys. Lett. 104, 251114 (2014).
[Crossref]
J. Lehman, M. Dowell, N. B. Popovic, K. Betz, and E. Grossman, “Laser power-meter comparison at far-infrared wavelengths and terahertz frequencies,” Metrologia 49, 583–587 (2012).
[Crossref]
Z. Popovic and E. N. Grossman, “THz metrology and instrumentation,” IEEE Trans. Terahertz Sci. Technol. 1, 133–144 (2011).
[Crossref]
J. A. Russer, C. Jirauschek, G. P. Szakmany, M. Schmidt, A. O. Orlov, G. H. Bernstein, W. Porod, P. Lugli, and P. Russer, “High-speed antenna-coupled terahertz thermocouple detectors and mixers,” IEEE Trans. Microw. Theory Tech. 63, 4236–4246 (2015).
[Crossref]
M. Tanasittikosol, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, R. M. Potvliege, and C. S. Adams, “Microwave dressing of Rydberg dark states,” J. Phys. B 44, 184020 (2011).
[Crossref]
A. K. Robinson, N. Prajapati, D. Senic, M. T. Simons, and C. L. Holloway, “Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor,” Appl. Phys. Lett. 118, 114001 (2021).
[Crossref]
S. Preu, M. Mittendorff, S. Winnerl, O. Cojocari, and A. Penirschke, “THz autocorrelators for ps pulse characterization based on Schottky diodes and rectifying field-effect transistors,” IEEE Trans. Terahertz Sci. Technol. 5, 922–929 (2015).
[Crossref]
A. Chopinaud and J. D. Pritchard, “Optimal state choice for Rydberg-atom microwave sensors,” Phys. Rev. Appl. 16, 024008 (2021).
[Crossref]
C. S. Adams, J. D. Pritchard, and J. P. Shaffer, “Rydberg atom quantum technologies,” J. Phys. B 53, 012002 (2019).
[Crossref]
N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, “ARC: an open-source library for calculating properties of alkali Rydberg atoms,” Comput. Phys. Commun. 220, 319–331 (2017).
[Crossref]
M. Tanasittikosol, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, R. M. Potvliege, and C. S. Adams, “Microwave dressing of Rydberg dark states,” J. Phys. B 44, 184020 (2011).
[Crossref]
R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Invest. Dermatol. 120, 72–78 (2003).
[Crossref]
H. Qin, J. Sun, Z. He, X. Li, X. Li, S. Liang, C. Yu, Z. Feng, X. Tu, B. Jin, J. Chen, and P. Wu, “Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling,” Carbon 121, 235–241 (2017).
[Crossref]
C. Wu, W. Zhou, N. Yao, X. Xu, Y. Qu, Z. Zhang, J. Wu, L. Jiang, Z. Huang, and J. Chu, “Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector,” Appl. Phys. Express 12, 052013 (2019).
[Crossref]
D. A. Anderson, R. E. Sapiro, and G. Raithel, “Rydberg atoms for radio-frequency communications and sensing: atomic receivers for pulsed RF field and phase detection,” IEEE Aerosp. Electron. Syst. Mag. 35(4), 48–56 (2020).
[Crossref]
L. Hao, Y. Jiao, Y. Xue, X. Han, S. Bai, J. Zhao, and G. Raithel, “Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms,” New J. Phys. 20, 073024 (2018).
[Crossref]
C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]
C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]
C. L. Holloway, J. A. Gordon, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]
D. J. Reed, N. Šibalić, D. J. Whiting, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Low-drift Zeeman shifted atomic frequency reference,” OSA Contin. 1, 4–12 (2018).
[Crossref]
L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]
A. K. Robinson, N. Prajapati, D. Senic, M. T. Simons, and C. L. Holloway, “Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor,” Appl. Phys. Lett. 118, 114001 (2021).
[Crossref]
A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-electron. Rev. 19, 346–404 (2011).
[Crossref]
J. A. Russer, C. Jirauschek, G. P. Szakmany, M. Schmidt, A. O. Orlov, G. H. Bernstein, W. Porod, P. Lugli, and P. Russer, “High-speed antenna-coupled terahertz thermocouple detectors and mixers,” IEEE Trans. Microw. Theory Tech. 63, 4236–4246 (2015).
[Crossref]
J. A. Russer, C. Jirauschek, G. P. Szakmany, M. Schmidt, A. O. Orlov, G. H. Bernstein, W. Porod, P. Lugli, and P. Russer, “High-speed antenna-coupled terahertz thermocouple detectors and mixers,” IEEE Trans. Microw. Theory Tech. 63, 4236–4246 (2015).
[Crossref]
S. Seliverstov, S. Maslennikov, S. Ryabchun, M. Finkel, T. Klapwijk, N. Kaurova, Y. Vachtomin, K. Smirnov, B. Voronov, and G. Goltsman, “Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer,” IEEE Trans. Appl. Supercond. 25, 1–4 (2014).
[Crossref]
M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]
S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77, 4104–4106 (2000).
[Crossref]
M. Sakhno, A. Golenkov, and F. Sizov, “Uncooled detector challenges: millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors,” J. Appl. Phys. 114, 164503 (2013).
[Crossref]
D. A. Anderson, R. E. Sapiro, and G. Raithel, “Rydberg atoms for radio-frequency communications and sensing: atomic receivers for pulsed RF field and phase detection,” IEEE Aerosp. Electron. Syst. Mag. 35(4), 48–56 (2020).
[Crossref]
Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. B. Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, and T. Otsuji, “Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics,” Appl. Phys. Lett. 104, 251114 (2014).
[Crossref]
X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photon. 6, 830–837 (2019).
[Crossref]
J. A. Russer, C. Jirauschek, G. P. Szakmany, M. Schmidt, A. O. Orlov, G. H. Bernstein, W. Porod, P. Lugli, and P. Russer, “High-speed antenna-coupled terahertz thermocouple detectors and mixers,” IEEE Trans. Microw. Theory Tech. 63, 4236–4246 (2015).
[Crossref]
R. Dickhoff, C. Jastrow, A. Steiger, R. Müller, T. Kleine-Ostmann, and T. Schrader, “Characterization of THz beams,” in CLEO: Science and Innovations (Optical Society of America, 2011), paper JThB116.
C. L. Holloway, J. A. Gordon, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]
C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]
J. Sedlacek, A. Schwettmann, H. Kübler, and J. Shaffer, “Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell,” Phys. Rev. Lett. 111, 063001 (2013).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]
J. Sedlacek, A. Schwettmann, H. Kübler, and J. Shaffer, “Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell,” Phys. Rev. Lett. 111, 063001 (2013).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
S. Seliverstov, S. Maslennikov, S. Ryabchun, M. Finkel, T. Klapwijk, N. Kaurova, Y. Vachtomin, K. Smirnov, B. Voronov, and G. Goltsman, “Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer,” IEEE Trans. Appl. Supercond. 25, 1–4 (2014).
[Crossref]
A. K. Robinson, N. Prajapati, D. Senic, M. T. Simons, and C. L. Holloway, “Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor,” Appl. Phys. Lett. 118, 114001 (2021).
[Crossref]
H. Fan, S. Kumar, H. Kübler, and J. Shaffer, “Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell,” J. Phys. B 49, 104004 (2016).
[Crossref]
J. Sedlacek, A. Schwettmann, H. Kübler, and J. Shaffer, “Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell,” Phys. Rev. Lett. 111, 063001 (2013).
[Crossref]
J. P. Shaffer, “Atom-based electromagnetic field sensing (Conference Presentation),” Proc. SPIE 11296, 112960Q (2020).
[Crossref]
C. S. Adams, J. D. Pritchard, and J. P. Shaffer, “Rydberg atom quantum technologies,” J. Phys. B 53, 012002 (2019).
[Crossref]
H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21, 25874–25882 (2013).
[Crossref]
A. Shurakov, Y. Lobanov, and G. Goltsman, “Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications,” Supercond. Sci. Technol. 29, 023001 (2015).
[Crossref]
D. J. Reed, N. Šibalić, D. J. Whiting, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Low-drift Zeeman shifted atomic frequency reference,” OSA Contin. 1, 4–12 (2018).
[Crossref]
N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, “ARC: an open-source library for calculating properties of alkali Rydberg atoms,” Comput. Phys. Commun. 220, 319–331 (2017).
[Crossref]
C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]
A. K. Robinson, N. Prajapati, D. Senic, M. T. Simons, and C. L. Holloway, “Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor,” Appl. Phys. Lett. 118, 114001 (2021).
[Crossref]
C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]
M. Sakhno, A. Golenkov, and F. Sizov, “Uncooled detector challenges: millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors,” J. Appl. Phys. 114, 164503 (2013).
[Crossref]
A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-electron. Rev. 19, 346–404 (2011).
[Crossref]
A. Svetlitza, M. Slavenko, T. Blank, I. Brouk, S. Stolyarova, and Y. Nemirovsky, “Thz measurements and calibration based on a blackbody source,” IEEE Trans. Terahertz Sci. Technol. 4, 347–359 (2014).
[Crossref]
S. Seliverstov, S. Maslennikov, S. Ryabchun, M. Finkel, T. Klapwijk, N. Kaurova, Y. Vachtomin, K. Smirnov, B. Voronov, and G. Goltsman, “Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer,” IEEE Trans. Appl. Supercond. 25, 1–4 (2014).
[Crossref]
A. Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle, “Terahertz technology and its applications,” Drug Invent. Today 5(2), 157–163 (2013).
[Crossref]
M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]
I. S. Gregory, W. Tribe, C. Baker, B. Cole, M. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[Crossref]
A. Steiger, R. Müller, A. R. Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz laser power measurement comparison,” IEEE Trans. Terahertz Sci. Technol. 6, 664–669 (2016).
[Crossref]
B. Globisch, R. J. Dietz, T. Göbel, M. Schell, W. Bohmeyer, R. Müller, and A. Steiger, “Absolute terahertz power measurement of a time-domain spectroscopy system,” Opt. Lett. 40, 3544–3547 (2015).
[Crossref]
R. Müller, B. Gutschwager, J. Hollandt, M. Kehrt, C. Monte, R. Müller, and A. Steiger, “Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz,” J. Infrared Millim. Terahertz Waves 36, 654–661 (2015).
[Crossref]
R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]
A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21, 14466–14473 (2013).
[Crossref]
A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18, 21804–21814 (2010).
[Crossref]
L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]
R. Dickhoff, C. Jastrow, A. Steiger, R. Müller, T. Kleine-Ostmann, and T. Schrader, “Characterization of THz beams,” in CLEO: Science and Innovations (Optical Society of America, 2011), paper JThB116.
R. Müller, W. Bohmeyer, K. Lange, and A. Steiger, “THz metrological traceability and suitable detectors,” in CLEO: Science and Innovations (Optical Society of America, 2012), paper CTu3B-8.
A. Svetlitza, M. Slavenko, T. Blank, I. Brouk, S. Stolyarova, and Y. Nemirovsky, “Thz measurements and calibration based on a blackbody source,” IEEE Trans. Terahertz Sci. Technol. 4, 347–359 (2014).
[Crossref]
Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. B. Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, and T. Otsuji, “Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics,” Appl. Phys. Lett. 104, 251114 (2014).
[Crossref]
H. Qin, J. Sun, Z. He, X. Li, X. Li, S. Liang, C. Yu, Z. Feng, X. Tu, B. Jin, J. Chen, and P. Wu, “Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling,” Carbon 121, 235–241 (2017).
[Crossref]
A. Steiger, R. Müller, A. R. Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz laser power measurement comparison,” IEEE Trans. Terahertz Sci. Technol. 6, 664–669 (2016).
[Crossref]
Y. Deng, Q. Sun, J. Yu, Y. Lin, and J. Wang, “Broadband high-absorbance coating for terahertz radiometry,” Opt. Express 21, 5737–5742 (2013).
[Crossref]
A. Svetlitza, M. Slavenko, T. Blank, I. Brouk, S. Stolyarova, and Y. Nemirovsky, “Thz measurements and calibration based on a blackbody source,” IEEE Trans. Terahertz Sci. Technol. 4, 347–359 (2014).
[Crossref]
J. A. Russer, C. Jirauschek, G. P. Szakmany, M. Schmidt, A. O. Orlov, G. H. Bernstein, W. Porod, P. Lugli, and P. Russer, “High-speed antenna-coupled terahertz thermocouple detectors and mixers,” IEEE Trans. Microw. Theory Tech. 63, 4236–4246 (2015).
[Crossref]
M. C. Kemp, P. Taday, B. E. Cole, J. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]
X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, “Carbon nanotube terahertz detector,” Nano Lett. 14, 3953–3958 (2014).
[Crossref]
C. Carr, M. Tanasittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, and K. J. Weatherill, “Three-photon electromagnetically induced transparency using Rydberg states,” Opt. Lett. 37, 3858–3860 (2012).
[Crossref]
M. Tanasittikosol, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, R. M. Potvliege, and C. S. Adams, “Microwave dressing of Rydberg dark states,” J. Phys. B 44, 184020 (2011).
[Crossref]
A. Shugurov, S. Bodrov, E. Mashkovich, H. Kitahara, N. Abramovsky, M. Tani, and M. Bakunov, “Noncollinear electro-optic sampling detection of terahertz pulses in a LiNbO3 crystal while avoiding the effect of intrinsic birefringence,” Opt. Express 30, 3741–3748 (2022).
[Crossref]
S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77, 4104–4106 (2000).
[Crossref]
T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, “InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging,” IEEE Sens. J. 13, 89–99 (2012).
[Crossref]
M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]
C. L. Holloway, J. A. Gordon, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]
C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]
Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. B. Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, and T. Otsuji, “Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics,” Appl. Phys. Lett. 104, 251114 (2014).
[Crossref]
M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]
M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]
I. S. Gregory, W. Tribe, C. Baker, B. Cole, M. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[Crossref]
M. C. Kemp, P. Taday, B. E. Cole, J. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]
D. R. Denison, M. E. Knotts, M. E. McConney, and V. V. Tsukruk, “Experimental characterization of mm-wave detection by a micro-array of Golay cells,” Proc. SPIE 7309, 73090J (2009).
[Crossref]
H. Qin, J. Sun, Z. He, X. Li, X. Li, S. Liang, C. Yu, Z. Feng, X. Tu, B. Jin, J. Chen, and P. Wu, “Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling,” Carbon 121, 235–241 (2017).
[Crossref]
S. Seliverstov, S. Maslennikov, S. Ryabchun, M. Finkel, T. Klapwijk, N. Kaurova, Y. Vachtomin, K. Smirnov, B. Voronov, and G. Goltsman, “Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer,” IEEE Trans. Appl. Supercond. 25, 1–4 (2014).
[Crossref]
M. Naftaly, N. Vieweg, and A. Deninger, “Industrial applications of terahertz sensing: state of play,” Sensors 19, 4203 (2019).
[Crossref]
M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]
S. S. Dhillon, M. S. Vitiello, and E. H. Linfield et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D. 50, 043001 (2019).
[Crossref]
M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]
S. Seliverstov, S. Maslennikov, S. Ryabchun, M. Finkel, T. Klapwijk, N. Kaurova, Y. Vachtomin, K. Smirnov, B. Voronov, and G. Goltsman, “Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer,” IEEE Trans. Appl. Supercond. 25, 1–4 (2014).
[Crossref]
C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]
M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]
R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Invest. Dermatol. 120, 72–78 (2003).
[Crossref]
W. Li, Z. Liang, J. Wang, J. Gou, and Y. Jiang, “A direct method of thermal time constant measurement for lithium tantalate based terahertz pryroelectric detectors,” J. Mater. Sci. Mater. Electron. 27, 9996–10002 (2016).
[Crossref]
Y. Deng, Q. Sun, J. Yu, Y. Lin, and J. Wang, “Broadband high-absorbance coating for terahertz radiometry,” Opt. Express 21, 5737–5742 (2013).
[Crossref]
S. Li, J. Yuan, and L. Wang, “Improvement of microwave electric field measurement sensitivity via multi-carrier modulation in Rydberg atoms,” Appl. Sci. 10, 8110 (2020).
[Crossref]
N. Wang, S. Cakmakyapan, Y.-J. Lin, H. Javadi, and M. Jarrahi, “Room-temperature heterodyne terahertz detection with quantum-level sensitivity,” Nat. Astron. 3, 977–982 (2019).
[Crossref]
X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photon. 6, 830–837 (2019).
[Crossref]
T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, “InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging,” IEEE Sens. J. 13, 89–99 (2012).
[Crossref]
T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, “InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging,” IEEE Sens. J. 13, 89–99 (2012).
[Crossref]
L. A. Downes, A. R. MacKellar, D. J. Whiting, C. Bourgenot, C. S. Adams, and K. J. Weatherill, “Full-field terahertz imaging at kilohertz frame rates using atomic vapor,” Phys. Rev. X 10, 011027 (2020).
[Crossref]
D. J. Reed, N. Šibalić, D. J. Whiting, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Low-drift Zeeman shifted atomic frequency reference,” OSA Contin. 1, 4–12 (2018).
[Crossref]
C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]
N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, “ARC: an open-source library for calculating properties of alkali Rydberg atoms,” Comput. Phys. Commun. 220, 319–331 (2017).
[Crossref]
C. Carr, M. Tanasittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, and K. J. Weatherill, “Three-photon electromagnetically induced transparency using Rydberg states,” Opt. Lett. 37, 3858–3860 (2012).
[Crossref]
C. Carr, C. S. Adams, and K. J. Weatherill, “Polarization spectroscopy of an excited state transition,” Opt. Lett. 37, 118–120 (2012).
[Crossref]
M. Tanasittikosol, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, R. M. Potvliege, and C. S. Adams, “Microwave dressing of Rydberg dark states,” J. Phys. B 44, 184020 (2011).
[Crossref]
L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9, 9354–9363 (2019).
[Crossref]
L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9, 9354–9363 (2019).
[Crossref]
L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]
A. Steiger, R. Müller, A. R. Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz laser power measurement comparison,” IEEE Trans. Terahertz Sci. Technol. 6, 664–669 (2016).
[Crossref]
M. G. White, M. L. Dowell, and J. H. Lehman, “Traceable terahertz power metrology at NIST,” in 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2014), p. 1.
L. A. Downes, A. R. MacKellar, D. J. Whiting, C. Bourgenot, C. S. Adams, and K. J. Weatherill, “Full-field terahertz imaging at kilohertz frame rates using atomic vapor,” Phys. Rev. X 10, 011027 (2020).
[Crossref]
D. J. Reed, N. Šibalić, D. J. Whiting, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Low-drift Zeeman shifted atomic frequency reference,” OSA Contin. 1, 4–12 (2018).
[Crossref]
S. Preu, M. Mittendorff, S. Winnerl, O. Cojocari, and A. Penirschke, “THz autocorrelators for ps pulse characterization based on Schottky diodes and rectifying field-effect transistors,” IEEE Trans. Terahertz Sci. Technol. 5, 922–929 (2015).
[Crossref]
R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Invest. Dermatol. 120, 72–78 (2003).
[Crossref]
C. Wu, W. Zhou, N. Yao, X. Xu, Y. Qu, Z. Zhang, J. Wu, L. Jiang, Z. Huang, and J. Chu, “Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector,” Appl. Phys. Express 12, 052013 (2019).
[Crossref]
C. Wu, W. Zhou, N. Yao, X. Xu, Y. Qu, Z. Zhang, J. Wu, L. Jiang, Z. Huang, and J. Chu, “Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector,” Appl. Phys. Express 12, 052013 (2019).
[Crossref]
H. Qin, J. Sun, Z. He, X. Li, X. Li, S. Liang, C. Yu, Z. Feng, X. Tu, B. Jin, J. Chen, and P. Wu, “Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling,” Carbon 121, 235–241 (2017).
[Crossref]
M. Jing, Y. Hu, J. Ma, H. Zhang, L. Zhang, L. Xiao, and S. Jia, “Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy,” Nat. Phys. 16, 911–915 (2020).
[Crossref]
K. Liu, J. Xu, and X.-C. Zhang, “GaSe crystals for broadband terahertz wave detection,” Appl. Phys. Lett. 85, 863–865 (2004).
[Crossref]
X. Pan, Y. Cai, X. Zeng, S. Zheng, J. Li, and S. Xu, “A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio,” Opt. Commun. 391, 135–140 (2017).
[Crossref]
C. Wu, W. Zhou, N. Yao, X. Xu, Y. Qu, Z. Zhang, J. Wu, L. Jiang, Z. Huang, and J. Chu, “Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector,” Appl. Phys. Express 12, 052013 (2019).
[Crossref]
L. Hao, Y. Xue, J. Fan, Y. Jiao, J. Zhao, and S. Jia, “Nonlinearity of microwave electric field coupled Rydberg electromagnetically induced transparency and Autler-Townes splitting,” Appl. Sci. 9, 1720 (2019).
[Crossref]
L. Hao, Y. Jiao, Y. Xue, X. Han, S. Bai, J. Zhao, and G. Raithel, “Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms,” New J. Phys. 20, 073024 (2018).
[Crossref]
L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9, 9354–9363 (2019).
[Crossref]
L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9, 9354–9363 (2019).
[Crossref]
C. Wu, W. Zhou, N. Yao, X. Xu, Y. Qu, Z. Zhang, J. Wu, L. Jiang, Z. Huang, and J. Chu, “Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector,” Appl. Phys. Express 12, 052013 (2019).
[Crossref]
S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21, 25874–25882 (2013).
[Crossref]
H. Qin, J. Sun, Z. He, X. Li, X. Li, S. Liang, C. Yu, Z. Feng, X. Tu, B. Jin, J. Chen, and P. Wu, “Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling,” Carbon 121, 235–241 (2017).
[Crossref]
L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9, 9354–9363 (2019).
[Crossref]
S. Li, J. Yuan, and L. Wang, “Improvement of microwave electric field measurement sensitivity via multi-carrier modulation in Rydberg atoms,” Appl. Sci. 10, 8110 (2020).
[Crossref]
X. Pan, Y. Cai, X. Zeng, S. Zheng, J. Li, and S. Xu, “A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio,” Opt. Commun. 391, 135–140 (2017).
[Crossref]
M. Jing, Y. Hu, J. Ma, H. Zhang, L. Zhang, L. Xiao, and S. Jia, “Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy,” Nat. Phys. 16, 911–915 (2020).
[Crossref]
X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photon. 6, 830–837 (2019).
[Crossref]
M. Jing, Y. Hu, J. Ma, H. Zhang, L. Zhang, L. Xiao, and S. Jia, “Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy,” Nat. Phys. 16, 911–915 (2020).
[Crossref]
X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, “Carbon nanotube terahertz detector,” Nano Lett. 14, 3953–3958 (2014).
[Crossref]
X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photon. 6, 830–837 (2019).
[Crossref]
K. Liu, J. Xu, and X.-C. Zhang, “GaSe crystals for broadband terahertz wave detection,” Appl. Phys. Lett. 85, 863–865 (2004).
[Crossref]
C. Wu, W. Zhou, N. Yao, X. Xu, Y. Qu, Z. Zhang, J. Wu, L. Jiang, Z. Huang, and J. Chu, “Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector,” Appl. Phys. Express 12, 052013 (2019).
[Crossref]
L. Hao, Y. Xue, J. Fan, Y. Jiao, J. Zhao, and S. Jia, “Nonlinearity of microwave electric field coupled Rydberg electromagnetically induced transparency and Autler-Townes splitting,” Appl. Sci. 9, 1720 (2019).
[Crossref]
L. Hao, Y. Jiao, Y. Xue, X. Han, S. Bai, J. Zhao, and G. Raithel, “Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms,” New J. Phys. 20, 073024 (2018).
[Crossref]
X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photon. 6, 830–837 (2019).
[Crossref]
X. Pan, Y. Cai, X. Zeng, S. Zheng, J. Li, and S. Xu, “A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio,” Opt. Commun. 391, 135–140 (2017).
[Crossref]
C. Wu, W. Zhou, N. Yao, X. Xu, Y. Qu, Z. Zhang, J. Wu, L. Jiang, Z. Huang, and J. Chu, “Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector,” Appl. Phys. Express 12, 052013 (2019).
[Crossref]