Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Deep learning in nano-photonics: inverse design and beyond

Open Access Open Access

Abstract

Deep learning in the context of nano-photonics is mostly discussed in terms of its potential for inverse design of photonic devices or nano-structures. Many of the recent works on machine-learning inverse design are highly specific, and the drawbacks of the respective approaches are often not immediately clear. In this review we want therefore to provide a critical review on the capabilities of deep learning for inverse design and the progress which has been made so far. We classify the different deep-learning-based inverse design approaches at a higher level as well as by the context of their respective applications and critically discuss their strengths and weaknesses. While a significant part of the community’s attention lies on nano-photonic inverse design, deep learning has evolved as a tool for a large variety of applications. The second part of the review will focus therefore on machine learning research in nano-photonics “beyond inverse design.” This spans from physics-informed neural networks for tremendous acceleration of photonics simulations, over sparse data reconstruction, imaging and “knowledge discovery” to experimental applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Full Article  |  PDF Article
More Like This
At the intersection of optics and deep learning: statistical inference, computing, and inverse design

Deniz Mengu, Md Sadman Sakib Rahman, Yi Luo, Jingxi Li, Onur Kulce, and Aydogan Ozcan
Adv. Opt. Photon. 14(2) 209-290 (2022)

Real-time deep learning design tool for far-field radiation profile

Jinran Qie, Erfan Khoram, Dianjing Liu, Ming Zhou, and Li Gao
Photon. Res. 9(4) B104-B108 (2021)

References

  • View by:

  1. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref]
  2. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
    [Crossref]
  3. C. Girard, “Near fields in nanostructures,” Rep. Prog. Phys. 68, 1883–1933 (2005).
    [Crossref]
  4. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [Crossref]
  5. G. C. des Francs, J. Barthes, A. Bouhelier, J. C. Weeber, A. Dereux, A. Cuche, and C. Girard, “Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources,” J. Opt. 18, 094005 (2016).
    [Crossref]
  6. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
    [Crossref]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref]
  8. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
    [Crossref]
  9. N. M. Estakhri, B. Edwards, and N. Engheta, “Inverse-designed metastructures that solve equations,” Science 363, 1333–1338 (2019).
    [Crossref]
  10. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3, 1460–1465 (2016).
    [Crossref]
  11. F. Zangeneh-Nejad, D. L. Sounas, A. Alù, and R. Fleury, “Analogue computing with metamaterials,” Nat. Rev. Mater. 6, 207–225 (2021).
    [Crossref]
  12. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
    [Crossref]
  13. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [Crossref]
  14. E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
    [Crossref]
  15. B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges,” Laser Photonics Rev. 9, 577–603 (2015).
    [Crossref]
  16. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).
    [Crossref]
  17. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).
  18. S. Chan and E. L. Siegel, “Will machine learning end the viability of radiology as a thriving medical specialty?” Br. J. Radiol. 92, 20180416 (2018).
    [Crossref]
  19. A. S. Lundervold and A. Lundervold, “An overview of deep learning in medical imaging focusing on MRI,” Z. Med. Phys. 29, 102–127 (2019).
    [Crossref]
  20. D. A. Cirovic, “Feed-forward artificial neural networks: applications to spectroscopy,” TRAC Trends Anal. Chem. 16, 148–155 (1997).
    [Crossref]
  21. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.
  22. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-ResNet and the impact of residual connections on learning,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2016), pp. 4278–4284.
  23. X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).
    [Crossref]
  24. T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan, “Wave physics as an analog recurrent neural network,” Sci. Adv. 5, eaay6946 (2019).
    [Crossref]
  25. D. Mengu, Y. Rivenson, and A. Ozcan, “Scale-, shift- and rotation-invariant diffractive optical networks,” ACS Photon. 8, 324–334 (2021).
    [Crossref]
  26. R. S. Hegde, “Deep learning: a new tool for photonic nanostructure design,” Nanoscale Adv. 2, 1007–1023 (2020).
    [Crossref]
  27. W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, “Deep learning for the design of photonic structures,” Nat. Photonics 15, 77–90 (2020).
    [Crossref]
  28. S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9, 1041–1057 (2020).
    [Crossref]
  29. J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” arXiv:2007.00084 (2020).
  30. L. Huang, L. Xu, and A. E. Miroshnichenko, “Deep learning enabled nanophotonics,” in Advances in Deep Learning (InTech, 2020).
    [Crossref]
  31. M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, and P. Genevet, “Numerical optimization methods for metasurfaces,” Laser Photonics Rev. 14, 1900445 (2020).
    [Crossref]
  32. S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
    [Crossref]
  33. G. M. Sacha and P. Varona, “Artificial intelligence in nanotechnology,” Nanotechnology 24, 452002 (2013).
    [Crossref]
  34. K. Yao, R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8, 339–366 (2019).
    [Crossref]
  35. J. Zhou, B. Huang, Z. Yan, and J.-C. G. Bünzli, “Emerging role of machine learning in light-matter interaction,” Light Sci. Appl. 8, 1 (2019).
    [Crossref]
  36. D. Piccinotti, K. F. MacDonald, S. Gregory, I. Youngs, and N. I. Zheludev, “Artificial intelligence for photonics and photonic materials,” Rep. Prog. Phys. 84, 012401 (2020).
    [Crossref]
  37. J. Moughames, X. Porte, M. Thiel, G. Ulliac, L. Larger, M. Jacquot, M. Kadic, and D. Brunner, “Three-dimensional waveguide interconnects for scalable integration of photonic neural networks,” Optica 7, 640–646 (2020).
    [Crossref]
  38. X. Porte, A. Skalli, N. Haghighi, S. Reitzenstein, J. A. Lott, and D. Brunner, “A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser,” arXiv:2012.11153 (2020).
  39. L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces,” ACS Nano 8, 6390–6399 (2014).
    [Crossref]
  40. M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
    [Crossref]
  41. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5, 308–321 (2011).
    [Crossref]
  42. S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9, 1842–1863 (2019).
    [Crossref]
  43. F. Meng, X. Huang, and B. Jia, “Bi-directional evolutionary optimization for photonic band gap structures,” J. Comput. Phys. 302, 393–404 (2015).
    [Crossref]
  44. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79, 12–49 (1988).
    [Crossref]
  45. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
    [Crossref]
  46. P. R. Wiecha, P. R. Wiecha, C. Majorel, C. Girard, A. Cuche, V. Paillard, O. L. Muskens, and A. Arbouet, “Design of plasmonic directional antennas via evolutionary optimization,” Opt. Express 27, 29069–29081 (2019).
    [Crossref]
  47. P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12, 163–169 (2017).
    [Crossref]
  48. D. Z. Zhu, E. B. Whiting, S. D. Campbell, D. B. Burckel, and D. H. Werner, “Optimal high efficiency 3D plasmonic metasurface elements revealed by lazy ants,” ACS Photonics 6, 2741–2748 (2019).
    [Crossref]
  49. Y. Augenstein and C. Rockstuhl, “Inverse design of nanophotonic devices with structural integrity,” ACS Photonics 7, 2190–2196 (2020).
    [Crossref]
  50. R. Selle, G. Vogt, T. Brixner, G. Gerber, R. Metzler, and W. Kinzel, “Modeling of light-matter interactions with neural networks,” Phys. Rev. A 76, 023810 (2007).
    [Crossref]
  51. R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. B 41, 074019 (2008).
    [Crossref]
  52. I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via deep learning,” Light Sci. Appl. 7, 60 (2018).
    [Crossref]
  53. S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
    [Crossref]
  54. M. V. Zhelyeznyakov, S. L. Brunton, and A. Majumdar, “Deep learning to accelerate Maxwell’s equations for inverse design of dielectric metasurfaces,” arXiv:2008.10632 (2020).
  55. Y. Li, Y. Wang, S. Qi, Q. Ren, L. Kang, S. D. Campbell, P. L. Werner, and D. H. Werner, “Predicting scattering from complex nano-structures via deep learning,” IEEE Access 8, 139983 (2020).
    [Crossref]
  56. S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11, 24264–24268 (2019).
    [Crossref]
  57. A.-P. Blanchard-Dionne and O. J. F. Martin, “Teaching optics to a machine learning network,” Opt. Lett. 45, 2922–2925 (2020).
    [Crossref]
  58. P. R. Wiecha and O. L. Muskens, “Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures,” Nano Lett. 20, 329–338 (2020).
    [Crossref]
  59. Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, “Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data,” J. Comput. Phys. 394, 56–81 (2019).
    [Crossref]
  60. T. Chugh, C. Sun, H. Wang, and Y. Jin, “Surrogate-assisted evolutionary optimization of large problems,” in High-Performance Simulation-Based Optimization, T. Bartz-Beielstein, B. Filipič, P. Korošec, and E.-G. Talbi, eds. (Springer, 2020), pp. 165–187.
  61. S. D. Campbell, D. Z. Zhu, E. B. Whiting, J. Nagar, D. H. Werner, and P. L. Werner, “Advanced multi-objective and surrogate-assisted optimization of topologically diverse metasurface architectures,” Proc. SPIE 10719, 107190U (2018).
    [Crossref]
  62. V. Kalt, A. K. González-Alcalde, S. Es-Saidi, R. Salas-Montiel, S. Blaize, and D. Macías, “Metamodeling of high-contrast-index gratings for color reproduction,” J. Opt. Soc. Am. A 36, 79–88 (2019).
    [Crossref]
  63. A. K. González-Alcalde, R. Salas-Montiel, V. Kalt, S. Blaize, and D. Macías, “Engineering colors in all-dielectric metasurfaces: metamodeling approach,” Opt. Lett. 45, 89–92 (2020).
    [Crossref]
  64. R. Pestourie, Y. Mroueh, T. V. Nguyen, P. Das, and S. G. Johnson, “Active learning of deep surrogates for PDEs: application to metasurface design,” arXiv:2008.12649 (2020).
  65. R. S. Hegde, “Photonics inverse design: pairing deep neural networks with evolutionary algorithms,” IEEE J. Sel. Top. Quantum Electron. 26, 7700908 (2020).
    [Crossref]
  66. Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine learning assisted global optimization of photonic devices,” Nanophotonics 10, 371–383 (2020).
    [Crossref]
  67. J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep neural networks,” IEEE Trans. Evol. Comput. 23, 828–841 (2019).
    [Crossref]
  68. J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13, 8872–8878 (2019).
    [Crossref]
  69. R. Trivedi, L. Su, J. Lu, M. F. Schubert, and J. Vuckovic, “Data-driven acceleration of photonic simulations,” Sci. Rep. 9, 19728 (2019).
    [Crossref]
  70. D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5, 1365–1369 (2018).
    [Crossref]
  71. W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12, 6326–6334 (2018).
    [Crossref]
  72. L. Gao, X. Li, D. Liu, L. Wang, and Z. Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. 31, 1905467 (2019).
    [Crossref]
  73. S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design with a generative adversarial network,” arXiv:1908.04851 (2020).
  74. Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18, 6570–6576 (2018).
    [Crossref]
  75. S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8, 1255–1261 (2019).
    [Crossref]
  76. A. Mall, A. Patil, D. Tamboli, A. Sethi, and A. Kumar, “Fast design of plasmonic metasurfaces enabled by deep learning,” J. Phys. D 53, 49LT01 (2020).
    [Crossref]
  77. Z. Liu, L. Raju, D. Zhu, and W. Cai, “A hybrid strategy for the discovery and design of photonic structures,” IEEE J. Emerging Sel. Top. Circuits Syst. 10, 126–135 (2020).
    [Crossref]
  78. W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
    [Crossref]
  79. X. Shi, T. Qiu, J. Wang, X. Zhao, and S. Qu, “Metasurface inverse design using machine learning approaches,” J. Phys. D 53, 275105 (2020).
    [Crossref]
  80. W. Ma and Y. Liu, “A data-efficient self-supervised deep learning model for design and characterization of nanophotonic structures,” Sci. China Phys. Mech. Astron. 63, 284212 (2020).
    [Crossref]
  81. D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” Found. Trends Mach. Learn. 12, 307–392 (2019).
    [Crossref]
  82. T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22, 2337–2342 (2020).
    [Crossref]
  83. H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. (2020).
  84. H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. 2, 025013 (2021).
    [Crossref]
  85. E. Ashalley, K. Acheampong, L. V. Besteiro, L. V. Besteiro, P. Yu, A. Neogi, A. O. Govorov, A. O. Govorov, and Z. M. Wang, “Multitask deep-learning-based design of chiral plasmonic metamaterials,” Photon. Res. 8, 1213–1225 (2020).
    [Crossref]
  86. J. Trisno, H. Wang, H. T. Wang, R. J. H. Ng, S. D. Rezaei, and J. K. W. Yang, “Applying machine learning to the optics of dielectric nano-blobs,” Adv. Photonics Res. 1, 2000068 (2020).
    [Crossref]
  87. J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4, eaar4206 (2018).
    [Crossref]
  88. A. Sheverdin, F. Monticone, and C. Valagiannopoulos, “Photonic inverse design with neural networks: the case of invisibility in the visible,” Phys. Rev. Appl. 14, 024054 (2020).
    [Crossref]
  89. A.-P. Blanchard-Dionne and O. J. F. Martin, “Successive training of a generative adversarial network for the design of an optical cloak,” OSA Contin. 4, 87–95 (2021).
    [Crossref]
  90. Y. Chen, L. Lu, G. E. Karniadakis, and L. D. Negro, “Physics-informed neural networks for inverse problems in nano-optics and metamaterials,” Opt Express 28, 11618–11633 (2020).
    [Crossref]
  91. I. Sajedian, H. Lee, and J. Rho, “Double-deep Q-learning to increase the efficiency of metasurface holograms,” Sci. Rep. 9, 10899 (2019).
    [Crossref]
  92. A. D. Phan, C. V. Nguyen, P. T. Linh, T. V. Huynh, V. D. Lam, A.-T. Le, and K. Wakabayashi, “Deep learning for the inverse design of mid-infrared graphene plasmons,” Crystals 10, 125 (2020).
    [Crossref]
  93. C. Yeung, J.-M. Tsai, B. King, B. Pham, J. Liang, D. Ho, M. W. Knight, and A. P. Raman, “Designing multiplexed supercell metasurfaces with tandem neural networks,” Nanophotonics 10, 1133–1143 (2021).
    [Crossref]
  94. T. Asano and S. Noda, “Iterative optimization of photonic crystal nanocavity designs by using deep neural networks,” Nanophotonics 8, 2243–2256 (2019).
    [Crossref]
  95. F. Wen, J. Jiang, and J. A. Fan, “Robust freeform metasurface design based on progressively growing generative networks,” ACS Photonics 7, 2098–2104 (2020).
    [Crossref]
  96. S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and L. You, “Massive computational acceleration by using neural networks to emulate mechanism-based biological models,” Nat. Commun. 10, 4354 (2019).
    [Crossref]
  97. J. Jiang and J. A. Fan, “Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks,” Nanophotonics 10, 361–369 (2020).
    [Crossref]
  98. J. Jiang and J. A. Fan, “Global optimization of dielectric metasurfaces using a physics-driven neural network,” Nano Lett. 19, 5366–5372 (2019).
    [Crossref]
  99. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, 2001), Vol. 16.
  100. R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7, 2703–2712 (2020).
    [Crossref]
  101. B. Hu, B. Wu, D. Tan, J. Xu, J. Xu, Y. Chen, and Y. Chen, “Robust inverse-design of scattering spectrum in core-shell structure using modified denoising autoencoder neural network,” Opt. Express 27, 36276–36285 (2019).
    [Crossref]
  102. Z. Fang and J. Zhan, “Deep physical informed neural networks for metamaterial design,” IEEE Access 8, 24506–24513 (2020).
    [Crossref]
  103. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” arXiv:1505.04597 (2015).
  104. N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5, 960–966 (2018).
    [Crossref]
  105. H. Kabir, Y. Wang, M. Yu, and Q.-J. Zhang, “Neural network inverse modeling and applications to microwave filter design,” IEEE Trans. Microwave Theory Tech. 56, 867–879 (2008).
    [Crossref]
  106. C. Zhang, J. Jin, W. Na, Q.-J. Zhang, and M. Yu, “Multivalued neural network inverse modeling and applications to microwave filters,” IEEE Trans. Microwave Theory Tech. 66, 3781–3797 (2018).
    [Crossref]
  107. Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
    [Crossref]
  108. J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neural networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds. (Curran Associates, 2012), Vol. 25, pp. 341–349.
  109. H. Gao, L. Sun, and J.-X. Wang, “PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain,” J. Comput. Phys. 428, 110079 (2020).
    [Crossref]
  110. Z. Liu, Z. Liu, Z. Zhu, and W. Cai, “Topological encoding method for data-driven photonics inverse design,” Opt. Express 28, 4825–4835 (2020).
    [Crossref]
  111. C. C. Nadell, B. Huang, J. M. Malof, and W. J. Padilla, “Deep learning for accelerated all-dielectric metasurface design,” Opt. Express 27, 27523–27535 (2019).
    [Crossref]
  112. Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljačić, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6, 1168–1174 (2019).
    [Crossref]
  113. M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, and G. Genty, “Machine learning analysis of extreme events in optical fibre modulation instability,” Nat. Commun. 9, 4923 (2018).
    [Crossref]
  114. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys. 378, 686–707 (2019).
    [Crossref]
  115. M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations,” Science 367, 1026–1030 (2020).
    [Crossref]
  116. B. Moseley, A. Markham, and T. Nissen-Meyer, “Solving the wave equation with physics-informed deep learning,” arXiv:2006.11894 (2020).
  117. Y. Kiarashinejad, S. Abdollahramezani, M. Zandehshahvar, O. Hemmatyar, and A. Adibi, “Deep learning reveals underlying physics of light–matter interactions in nanophotonic devices,” Adv. Theor. Simul. 2, 1900088 (2019).
    [Crossref]
  118. Y. Kiarashinejad, S. Abdollahramezani, and A. Adibi, “Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures,” arXiv:1902.03865 (2019).
  119. C. Yeung, J.-M. Tsai, B. King, Y. Kawagoe, D. Ho, M. Knight, and A. P. Raman, “Elucidating the behavior of nanophotonic structures through explainable machine learning algorithms,” ACS Photonics 7, 2309–2318 (2020).
    [Crossref]
  120. R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner, “Discovering physical concepts with neural networks,” Phys. Rev. Lett. 124, 010508 (2020).
    [Crossref]
  121. Y. Kiarashinejad, M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar, R. Pourabolghasem, and A. Adibi, “Knowledge discovery in nanophotonics using geometric deep learning,” Adv. Intell. Syst. 2, 1900132 (2020).
    [Crossref]
  122. S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
    [Crossref]
  123. C. Yeung, J.-M. Tsai, Y. Kawagoe, B. King, D. Ho, and A. P. Raman, “Elucidating the design and behavior of nanophotonic structures through explainable convolutional neural networks,” arXiv:2003.06075 (2020).
  124. M. Elzouka, C. Yang, A. Albert, S. Lubner, and R. S. Prasher, “Interpretable inverse design of particle spectral emissivity using machine learning,” arXiv:2002.04223 (2020).
  125. B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).
  126. M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
    [Crossref]
  127. S. Shao, S. Shao, K. Mallery, K. Mallery, S. S. Kumar, S. S. Kumar, J. Hong, and J. Hong, “Machine learning holography for 3D particle field imaging,” Opt. Express 28, 2987–2999 (2020).
    [Crossref]
  128. P. Zhang, S. Liu, A. Chaurasia, D. Ma, M. J. Mlodzianoski, E. Culurciello, and F. Huang, “Analyzing complex single-molecule emission patterns with deep learning,” Nat. Methods 15, 913–916 (2018).
    [Crossref]
  129. A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D. Biamonte, and S. Kulik, “Experimental neural network enhanced quantum tomography,” npj Quantum Inf. 6, 20 (2020).
    [Crossref]
  130. P. R. Wiecha, A. Lecestre, N. Mallet, and G. Larrieu, “Pushing the limits of optical information storage using deep learning,” Nat. Nanotechnol. 14, 237–244 (2019).
    [Crossref]
  131. Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
    [Crossref]
  132. A. Yevick, M. Hannel, and D. G. Grier, “Machine-learning approach to holographic particle characterization,” Opt. Express 22, 26884–26890 (2014).
    [Crossref]
  133. B. Midtvedt, E. Olsén, F. Eklund, F. Höök, C. B. Adiels, G. Volpe, and D. Midtvedt, “Holographic characterisation of subwavelength particles enhanced by deep learning,” arXiv:2006.11154 (2020).
  134. A. Argun, T. Thalheim, S. Bo, F. Cichos, and G. Volpe, “Enhanced force-field calibration via machine learning,” Appl. Phys. Rev. 7, 041404 (2020).
    [Crossref]
  135. M. D. Hannel, A. Abdulali, M. O’Brien, and D. G. Grier, “Machine-learning techniques for fast and accurate feature localization in holograms of colloidal particles,” Opt. Express 26, 15221–15231 (2018).
    [Crossref]
  136. J. M. Newby, A. M. Schaefer, P. T. Lee, M. G. Forest, and S. K. Lai, “Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D,” Proc. Natl. Acad. Sci. USA 115, 9026–9031 (2018).
    [Crossref]
  137. S. Helgadottir, A. Argun, and G. Volpe, “Digital video microscopy enhanced by deep learning,” Optica 6, 506–513 (2019).
    [Crossref]
  138. I. C. D. Lenton, G. Volpe, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Machine learning reveals complex behaviours in optically trapped particles,” Mach. Learn. Sci. Technol. 1, 045009 (2020).
    [Crossref]
  139. Y. Rivenson, Y. Zhang, H. Günaydn, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).
    [Crossref]
  140. Y. Nishizaki, R. Horisaki, K. Kitaguchi, M. Saito, and J. Tanida, “Analysis of non-iterative phase retrieval based on machine learning,” Opt. Rev. 27, 136–141 (2020).
    [Crossref]
  141. K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).
    [Crossref]
  142. G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in imaging,” IEEE J. Sel. Areas Inform. Theor. 1, 39–56 (2020).
    [Crossref]
  143. G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
    [Crossref]
  144. Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).
    [Crossref]
  145. E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-STORM: super-resolution single-molecule microscopy by deep learning,” Optica 5, 458–464 (2018).
    [Crossref]
  146. W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, “Deep learning massively accelerates super-resolution localization microscopy,” Nat. Biotechnol. 36, 460–468 (2018).
    [Crossref]
  147. E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
    [Crossref]
  148. T. Pu, J.-Y. Ou, V. Savinov, G. Yuan, N. Papasimakis, and N. Zheludev, “Unlabeled far-field deeply subwavelength topological microscopy (DSTM),” Adv. Sci. 8, 2002886 (2020).
    [Crossref]
  149. T. Pu, J. Y. Ou, N. Papasimakis, and N. I. Zheludev, “Label-free deeply subwavelength optical microscopy,” Appl. Phys. Lett. 116, 131105 (2020).
    [Crossref]
  150. D. Bouchet, J. Seifert, and A. P. Mosk, “Optimizing illumination for precise multi-parameter estimations in coherent diffractive imaging,” Opt. Lett. 46, 254–257 (2021).
    [Crossref]
  151. A. Ghosh, D. J. Roth, L. H. Nicholls, W. P. Wardley, A. V. Zayats, and V. A. Podolskiy, “Machine learning—based diffractive imaging with subwavelength resolution,” arXiv:2005.03595 (2020).
  152. U. Kürüm, P. R. Wiecha, R. French, and O. L. Muskens, “Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array,” Opt. Express 27, 20965–20979 (2019).
    [Crossref]
  153. R. Horisaki, R. Takagi, and J. Tanida, “Learning-based imaging through scattering media,” Opt. Express 24, 13738–13743 (2016).
    [Crossref]
  154. L. Yunzhe, X. Yujia, and T. Lei, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” Optica 5, 1181–11819 (2018).
    [Crossref]
  155. B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light Sci. Appl. 7, 69 (2018).
    [Crossref]
  156. G. D. Bruce, L. O’Donnell, M. Chen, M. Facchin, and K. Dholakia, “Femtometer-resolved simultaneous measurement of multiple laser wavelengths in a speckle wavemeter,” Opt. Lett. 45, 1926–1929 (2020).
    [Crossref]
  157. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
    [Crossref]
  158. R. French, S. Gigan, and O. L. Muskens, “Snapshot fiber spectral imaging using speckle correlations and compressive sensing,” Opt. Express 26, 32302–32316 (2018).
    [Crossref]
  159. H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, and L. Waller, “Deep learning for single-shot autofocus microscopy,” Optica 6, 794–797 (2019).
    [Crossref]
  160. C. L. Cortes, S. Adhikari, X. Ma, and S. K. Gray, “Accelerating quantum optics experiments with statistical learning,” Appl. Phys. Lett. 116, 184003 (2020).
    [Crossref]
  161. Z. A. Kudyshev, S. I. Bogdanov, T. Isacsson, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Rapid classification of quantum sources enabled by machine learning,” Adv. Quantum Technol. 3, 2000067 (2020).
    [Crossref]
  162. C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A. Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-Loaiza, “Identification of light sources using machine learning,” Appl. Phys. Rev. 7, 021404 (2020).
    [Crossref]
  163. Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
    [Crossref]
  164. X. Li, J. Dong, B. Li, Y. Zhang, Y. Zhang, A. Veeraraghavan, and X. Ji, “Fast confocal microscopy imaging based on deep learning,” in IEEE International Conference on Computational Photography (ICCP) (2020), pp. 1–12.
  165. J. M. Ede and R. Beanland, “Partial scanning transmission electron microscopy with deep learning,” Sci. Rep. 10, 8332 (2020).
    [Crossref]
  166. S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
    [Crossref]
  167. J. N. Kutz and S. L. Brunton, “Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics,” Nanophotonics 4, 459–471 (2015).
    [Crossref]
  168. T. Baumeister, S. L. Brunton, and J. N. Kutz, “Deep learning and model predictive control for self-tuning mode-locked lasers,” J. Opt. Soc. Am. B 35, 617–626 (2018).
    [Crossref]
  169. A. Youssry, R. J. Chapman, A. Peruzzo, C. Ferrie, and M. Tomamichel, “Modeling and control of a reconfigurable photonic circuit using deep learning,” Quantum Sci. Technol. 5, 025001 (2020).
    [Crossref]
  170. B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick, “Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase,” Nano Lett. 14, 933–938 (2014).
    [Crossref]
  171. “Google says sorry for racist auto-tag in photo app,” https://www.theguardian.com/technology/2015/jul/01/google-sorry-racist-auto-tag-photo-app (2015).
  172. M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemp. Phys. 56, 172–185 (2015).
    [Crossref]
  173. M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
    [Crossref]
  174. A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel, “Active learning machine learns to create new quantum experiments,” Proc. Natl. Acad. Sci. USA 115, 1221–1226 (2018).
    [Crossref]
  175. M. Krenn, M. Erhard, and A. Zeilinger, “Computer-inspired quantum experiments,” Nat. Rev. Phys. 2, 649–661 (2020).
    [Crossref]

2021 (6)

F. Zangeneh-Nejad, D. L. Sounas, A. Alù, and R. Fleury, “Analogue computing with metamaterials,” Nat. Rev. Mater. 6, 207–225 (2021).
[Crossref]

D. Mengu, Y. Rivenson, and A. Ozcan, “Scale-, shift- and rotation-invariant diffractive optical networks,” ACS Photon. 8, 324–334 (2021).
[Crossref]

H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. 2, 025013 (2021).
[Crossref]

A.-P. Blanchard-Dionne and O. J. F. Martin, “Successive training of a generative adversarial network for the design of an optical cloak,” OSA Contin. 4, 87–95 (2021).
[Crossref]

C. Yeung, J.-M. Tsai, B. King, B. Pham, J. Liang, D. Ho, M. W. Knight, and A. P. Raman, “Designing multiplexed supercell metasurfaces with tandem neural networks,” Nanophotonics 10, 1133–1143 (2021).
[Crossref]

D. Bouchet, J. Seifert, and A. P. Mosk, “Optimizing illumination for precise multi-parameter estimations in coherent diffractive imaging,” Opt. Lett. 46, 254–257 (2021).
[Crossref]

2020 (52)

E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
[Crossref]

T. Pu, J.-Y. Ou, V. Savinov, G. Yuan, N. Papasimakis, and N. Zheludev, “Unlabeled far-field deeply subwavelength topological microscopy (DSTM),” Adv. Sci. 8, 2002886 (2020).
[Crossref]

T. Pu, J. Y. Ou, N. Papasimakis, and N. I. Zheludev, “Label-free deeply subwavelength optical microscopy,” Appl. Phys. Lett. 116, 131105 (2020).
[Crossref]

G. D. Bruce, L. O’Donnell, M. Chen, M. Facchin, and K. Dholakia, “Femtometer-resolved simultaneous measurement of multiple laser wavelengths in a speckle wavemeter,” Opt. Lett. 45, 1926–1929 (2020).
[Crossref]

C. L. Cortes, S. Adhikari, X. Ma, and S. K. Gray, “Accelerating quantum optics experiments with statistical learning,” Appl. Phys. Lett. 116, 184003 (2020).
[Crossref]

Z. A. Kudyshev, S. I. Bogdanov, T. Isacsson, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Rapid classification of quantum sources enabled by machine learning,” Adv. Quantum Technol. 3, 2000067 (2020).
[Crossref]

C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A. Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-Loaiza, “Identification of light sources using machine learning,” Appl. Phys. Rev. 7, 021404 (2020).
[Crossref]

J. M. Ede and R. Beanland, “Partial scanning transmission electron microscopy with deep learning,” Sci. Rep. 10, 8332 (2020).
[Crossref]

A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D. Biamonte, and S. Kulik, “Experimental neural network enhanced quantum tomography,” npj Quantum Inf. 6, 20 (2020).
[Crossref]

A. Argun, T. Thalheim, S. Bo, F. Cichos, and G. Volpe, “Enhanced force-field calibration via machine learning,” Appl. Phys. Rev. 7, 041404 (2020).
[Crossref]

I. C. D. Lenton, G. Volpe, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Machine learning reveals complex behaviours in optically trapped particles,” Mach. Learn. Sci. Technol. 1, 045009 (2020).
[Crossref]

Y. Nishizaki, R. Horisaki, K. Kitaguchi, M. Saito, and J. Tanida, “Analysis of non-iterative phase retrieval based on machine learning,” Opt. Rev. 27, 136–141 (2020).
[Crossref]

G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in imaging,” IEEE J. Sel. Areas Inform. Theor. 1, 39–56 (2020).
[Crossref]

F. Wen, J. Jiang, and J. A. Fan, “Robust freeform metasurface design based on progressively growing generative networks,” ACS Photonics 7, 2098–2104 (2020).
[Crossref]

J. Jiang and J. A. Fan, “Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks,” Nanophotonics 10, 361–369 (2020).
[Crossref]

R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7, 2703–2712 (2020).
[Crossref]

Y. Chen, L. Lu, G. E. Karniadakis, and L. D. Negro, “Physics-informed neural networks for inverse problems in nano-optics and metamaterials,” Opt Express 28, 11618–11633 (2020).
[Crossref]

T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22, 2337–2342 (2020).
[Crossref]

A. Sheverdin, F. Monticone, and C. Valagiannopoulos, “Photonic inverse design with neural networks: the case of invisibility in the visible,” Phys. Rev. Appl. 14, 024054 (2020).
[Crossref]

E. Ashalley, K. Acheampong, L. V. Besteiro, L. V. Besteiro, P. Yu, A. Neogi, A. O. Govorov, A. O. Govorov, and Z. M. Wang, “Multitask deep-learning-based design of chiral plasmonic metamaterials,” Photon. Res. 8, 1213–1225 (2020).
[Crossref]

J. Trisno, H. Wang, H. T. Wang, R. J. H. Ng, S. D. Rezaei, and J. K. W. Yang, “Applying machine learning to the optics of dielectric nano-blobs,” Adv. Photonics Res. 1, 2000068 (2020).
[Crossref]

Z. Fang and J. Zhan, “Deep physical informed neural networks for metamaterial design,” IEEE Access 8, 24506–24513 (2020).
[Crossref]

A. D. Phan, C. V. Nguyen, P. T. Linh, T. V. Huynh, V. D. Lam, A.-T. Le, and K. Wakabayashi, “Deep learning for the inverse design of mid-infrared graphene plasmons,” Crystals 10, 125 (2020).
[Crossref]

Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
[Crossref]

H. Gao, L. Sun, and J.-X. Wang, “PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain,” J. Comput. Phys. 428, 110079 (2020).
[Crossref]

Z. Liu, Z. Liu, Z. Zhu, and W. Cai, “Topological encoding method for data-driven photonics inverse design,” Opt. Express 28, 4825–4835 (2020).
[Crossref]

C. Yeung, J.-M. Tsai, B. King, Y. Kawagoe, D. Ho, M. Knight, and A. P. Raman, “Elucidating the behavior of nanophotonic structures through explainable machine learning algorithms,” ACS Photonics 7, 2309–2318 (2020).
[Crossref]

R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner, “Discovering physical concepts with neural networks,” Phys. Rev. Lett. 124, 010508 (2020).
[Crossref]

Y. Kiarashinejad, M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar, R. Pourabolghasem, and A. Adibi, “Knowledge discovery in nanophotonics using geometric deep learning,” Adv. Intell. Syst. 2, 1900132 (2020).
[Crossref]

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations,” Science 367, 1026–1030 (2020).
[Crossref]

S. Shao, S. Shao, K. Mallery, K. Mallery, S. S. Kumar, S. S. Kumar, J. Hong, and J. Hong, “Machine learning holography for 3D particle field imaging,” Opt. Express 28, 2987–2999 (2020).
[Crossref]

R. S. Hegde, “Deep learning: a new tool for photonic nanostructure design,” Nanoscale Adv. 2, 1007–1023 (2020).
[Crossref]

W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, “Deep learning for the design of photonic structures,” Nat. Photonics 15, 77–90 (2020).
[Crossref]

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9, 1041–1057 (2020).
[Crossref]

M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, and P. Genevet, “Numerical optimization methods for metasurfaces,” Laser Photonics Rev. 14, 1900445 (2020).
[Crossref]

D. Piccinotti, K. F. MacDonald, S. Gregory, I. Youngs, and N. I. Zheludev, “Artificial intelligence for photonics and photonic materials,” Rep. Prog. Phys. 84, 012401 (2020).
[Crossref]

J. Moughames, X. Porte, M. Thiel, G. Ulliac, L. Larger, M. Jacquot, M. Kadic, and D. Brunner, “Three-dimensional waveguide interconnects for scalable integration of photonic neural networks,” Optica 7, 640–646 (2020).
[Crossref]

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

Y. Augenstein and C. Rockstuhl, “Inverse design of nanophotonic devices with structural integrity,” ACS Photonics 7, 2190–2196 (2020).
[Crossref]

Y. Li, Y. Wang, S. Qi, Q. Ren, L. Kang, S. D. Campbell, P. L. Werner, and D. H. Werner, “Predicting scattering from complex nano-structures via deep learning,” IEEE Access 8, 139983 (2020).
[Crossref]

A.-P. Blanchard-Dionne and O. J. F. Martin, “Teaching optics to a machine learning network,” Opt. Lett. 45, 2922–2925 (2020).
[Crossref]

P. R. Wiecha and O. L. Muskens, “Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures,” Nano Lett. 20, 329–338 (2020).
[Crossref]

A. K. González-Alcalde, R. Salas-Montiel, V. Kalt, S. Blaize, and D. Macías, “Engineering colors in all-dielectric metasurfaces: metamodeling approach,” Opt. Lett. 45, 89–92 (2020).
[Crossref]

R. S. Hegde, “Photonics inverse design: pairing deep neural networks with evolutionary algorithms,” IEEE J. Sel. Top. Quantum Electron. 26, 7700908 (2020).
[Crossref]

Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine learning assisted global optimization of photonic devices,” Nanophotonics 10, 371–383 (2020).
[Crossref]

A. Mall, A. Patil, D. Tamboli, A. Sethi, and A. Kumar, “Fast design of plasmonic metasurfaces enabled by deep learning,” J. Phys. D 53, 49LT01 (2020).
[Crossref]

Z. Liu, L. Raju, D. Zhu, and W. Cai, “A hybrid strategy for the discovery and design of photonic structures,” IEEE J. Emerging Sel. Top. Circuits Syst. 10, 126–135 (2020).
[Crossref]

X. Shi, T. Qiu, J. Wang, X. Zhao, and S. Qu, “Metasurface inverse design using machine learning approaches,” J. Phys. D 53, 275105 (2020).
[Crossref]

W. Ma and Y. Liu, “A data-efficient self-supervised deep learning model for design and characterization of nanophotonic structures,” Sci. China Phys. Mech. Astron. 63, 284212 (2020).
[Crossref]

A. Youssry, R. J. Chapman, A. Peruzzo, C. Ferrie, and M. Tomamichel, “Modeling and control of a reconfigurable photonic circuit using deep learning,” Quantum Sci. Technol. 5, 025001 (2020).
[Crossref]

M. Krenn, M. Erhard, and A. Zeilinger, “Computer-inspired quantum experiments,” Nat. Rev. Phys. 2, 649–661 (2020).
[Crossref]

2019 (33)

D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” Found. Trends Mach. Learn. 12, 307–392 (2019).
[Crossref]

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

L. Gao, X. Li, D. Liu, L. Wang, and Z. Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. 31, 1905467 (2019).
[Crossref]

V. Kalt, A. K. González-Alcalde, S. Es-Saidi, R. Salas-Montiel, S. Blaize, and D. Macías, “Metamodeling of high-contrast-index gratings for color reproduction,” J. Opt. Soc. Am. A 36, 79–88 (2019).
[Crossref]

S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8, 1255–1261 (2019).
[Crossref]

J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep neural networks,” IEEE Trans. Evol. Comput. 23, 828–841 (2019).
[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13, 8872–8878 (2019).
[Crossref]

R. Trivedi, L. Su, J. Lu, M. F. Schubert, and J. Vuckovic, “Data-driven acceleration of photonic simulations,” Sci. Rep. 9, 19728 (2019).
[Crossref]

Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, “Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data,” J. Comput. Phys. 394, 56–81 (2019).
[Crossref]

S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11, 24264–24268 (2019).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

D. Z. Zhu, E. B. Whiting, S. D. Campbell, D. B. Burckel, and D. H. Werner, “Optimal high efficiency 3D plasmonic metasurface elements revealed by lazy ants,” ACS Photonics 6, 2741–2748 (2019).
[Crossref]

T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan, “Wave physics as an analog recurrent neural network,” Sci. Adv. 5, eaay6946 (2019).
[Crossref]

P. R. Wiecha, P. R. Wiecha, C. Majorel, C. Girard, A. Cuche, V. Paillard, O. L. Muskens, and A. Arbouet, “Design of plasmonic directional antennas via evolutionary optimization,” Opt. Express 27, 29069–29081 (2019).
[Crossref]

N. M. Estakhri, B. Edwards, and N. Engheta, “Inverse-designed metastructures that solve equations,” Science 363, 1333–1338 (2019).
[Crossref]

K. Yao, R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8, 339–366 (2019).
[Crossref]

J. Zhou, B. Huang, Z. Yan, and J.-C. G. Bünzli, “Emerging role of machine learning in light-matter interaction,” Light Sci. Appl. 8, 1 (2019).
[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9, 1842–1863 (2019).
[Crossref]

A. S. Lundervold and A. Lundervold, “An overview of deep learning in medical imaging focusing on MRI,” Z. Med. Phys. 29, 102–127 (2019).
[Crossref]

Y. Kiarashinejad, S. Abdollahramezani, M. Zandehshahvar, O. Hemmatyar, and A. Adibi, “Deep learning reveals underlying physics of light–matter interactions in nanophotonic devices,” Adv. Theor. Simul. 2, 1900088 (2019).
[Crossref]

C. C. Nadell, B. Huang, J. M. Malof, and W. J. Padilla, “Deep learning for accelerated all-dielectric metasurface design,” Opt. Express 27, 27523–27535 (2019).
[Crossref]

Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljačić, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6, 1168–1174 (2019).
[Crossref]

I. Sajedian, H. Lee, and J. Rho, “Double-deep Q-learning to increase the efficiency of metasurface holograms,” Sci. Rep. 9, 10899 (2019).
[Crossref]

B. Hu, B. Wu, D. Tan, J. Xu, J. Xu, Y. Chen, and Y. Chen, “Robust inverse-design of scattering spectrum in core-shell structure using modified denoising autoencoder neural network,” Opt. Express 27, 36276–36285 (2019).
[Crossref]

J. Jiang and J. A. Fan, “Global optimization of dielectric metasurfaces using a physics-driven neural network,” Nano Lett. 19, 5366–5372 (2019).
[Crossref]

S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and L. You, “Massive computational acceleration by using neural networks to emulate mechanism-based biological models,” Nat. Commun. 10, 4354 (2019).
[Crossref]

T. Asano and S. Noda, “Iterative optimization of photonic crystal nanocavity designs by using deep neural networks,” Nanophotonics 8, 2243–2256 (2019).
[Crossref]

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys. 378, 686–707 (2019).
[Crossref]

S. Helgadottir, A. Argun, and G. Volpe, “Digital video microscopy enhanced by deep learning,” Optica 6, 506–513 (2019).
[Crossref]

P. R. Wiecha, A. Lecestre, N. Mallet, and G. Larrieu, “Pushing the limits of optical information storage using deep learning,” Nat. Nanotechnol. 14, 237–244 (2019).
[Crossref]

H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, and L. Waller, “Deep learning for single-shot autofocus microscopy,” Optica 6, 794–797 (2019).
[Crossref]

U. Kürüm, P. R. Wiecha, R. French, and O. L. Muskens, “Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array,” Opt. Express 27, 20965–20979 (2019).
[Crossref]

2018 (24)

L. Yunzhe, X. Yujia, and T. Lei, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” Optica 5, 1181–11819 (2018).
[Crossref]

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light Sci. Appl. 7, 69 (2018).
[Crossref]

R. French, S. Gigan, and O. L. Muskens, “Snapshot fiber spectral imaging using speckle correlations and compressive sensing,” Opt. Express 26, 32302–32316 (2018).
[Crossref]

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

M. D. Hannel, A. Abdulali, M. O’Brien, and D. G. Grier, “Machine-learning techniques for fast and accurate feature localization in holograms of colloidal particles,” Opt. Express 26, 15221–15231 (2018).
[Crossref]

J. M. Newby, A. M. Schaefer, P. T. Lee, M. G. Forest, and S. K. Lai, “Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D,” Proc. Natl. Acad. Sci. USA 115, 9026–9031 (2018).
[Crossref]

E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-STORM: super-resolution single-molecule microscopy by deep learning,” Optica 5, 458–464 (2018).
[Crossref]

W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, “Deep learning massively accelerates super-resolution localization microscopy,” Nat. Biotechnol. 36, 460–468 (2018).
[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydn, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).
[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4, eaar4206 (2018).
[Crossref]

M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, and G. Genty, “Machine learning analysis of extreme events in optical fibre modulation instability,” Nat. Commun. 9, 4923 (2018).
[Crossref]

C. Zhang, J. Jin, W. Na, Q.-J. Zhang, and M. Yu, “Multivalued neural network inverse modeling and applications to microwave filters,” IEEE Trans. Microwave Theory Tech. 66, 3781–3797 (2018).
[Crossref]

N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5, 960–966 (2018).
[Crossref]

P. Zhang, S. Liu, A. Chaurasia, D. Ma, M. J. Mlodzianoski, E. Culurciello, and F. Huang, “Analyzing complex single-molecule emission patterns with deep learning,” Nat. Methods 15, 913–916 (2018).
[Crossref]

S. Chan and E. L. Siegel, “Will machine learning end the viability of radiology as a thriving medical specialty?” Br. J. Radiol. 92, 20180416 (2018).
[Crossref]

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).
[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via deep learning,” Light Sci. Appl. 7, 60 (2018).
[Crossref]

S. D. Campbell, D. Z. Zhu, E. B. Whiting, J. Nagar, D. H. Werner, and P. L. Werner, “Advanced multi-objective and surrogate-assisted optimization of topologically diverse metasurface architectures,” Proc. SPIE 10719, 107190U (2018).
[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5, 1365–1369 (2018).
[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12, 6326–6334 (2018).
[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18, 6570–6576 (2018).
[Crossref]

A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel, “Active learning machine learns to create new quantum experiments,” Proc. Natl. Acad. Sci. USA 115, 1221–1226 (2018).
[Crossref]

T. Baumeister, S. L. Brunton, and J. N. Kutz, “Deep learning and model predictive control for self-tuning mode-locked lasers,” J. Opt. Soc. Am. B 35, 617–626 (2018).
[Crossref]

2017 (6)

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12, 163–169 (2017).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
[Crossref]

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).
[Crossref]

Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).
[Crossref]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
[Crossref]

2016 (5)

R. Horisaki, R. Takagi, and J. Tanida, “Learning-based imaging through scattering media,” Opt. Express 24, 13738–13743 (2016).
[Crossref]

G. C. des Francs, J. Barthes, A. Bouhelier, J. C. Weeber, A. Dereux, A. Cuche, and C. Girard, “Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources,” J. Opt. 18, 094005 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3, 1460–1465 (2016).
[Crossref]

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

2015 (6)

M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemp. Phys. 56, 172–185 (2015).
[Crossref]

J. N. Kutz and S. L. Brunton, “Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics,” Nanophotonics 4, 459–471 (2015).
[Crossref]

B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges,” Laser Photonics Rev. 9, 577–603 (2015).
[Crossref]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref]

F. Meng, X. Huang, and B. Jia, “Bi-directional evolutionary optimization for photonic band gap structures,” J. Comput. Phys. 302, 393–404 (2015).
[Crossref]

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

2014 (4)

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces,” ACS Nano 8, 6390–6399 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

A. Yevick, M. Hannel, and D. G. Grier, “Machine-learning approach to holographic particle characterization,” Opt. Express 22, 26884–26890 (2014).
[Crossref]

B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick, “Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase,” Nano Lett. 14, 933–938 (2014).
[Crossref]

2013 (1)

G. M. Sacha and P. Varona, “Artificial intelligence in nanotechnology,” Nanotechnology 24, 452002 (2013).
[Crossref]

2012 (2)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[Crossref]

2011 (1)

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5, 308–321 (2011).
[Crossref]

2010 (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

2008 (2)

H. Kabir, Y. Wang, M. Yu, and Q.-J. Zhang, “Neural network inverse modeling and applications to microwave filter design,” IEEE Trans. Microwave Theory Tech. 56, 867–879 (2008).
[Crossref]

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. B 41, 074019 (2008).
[Crossref]

2007 (1)

R. Selle, G. Vogt, T. Brixner, G. Gerber, R. Metzler, and W. Kinzel, “Modeling of light-matter interactions with neural networks,” Phys. Rev. A 76, 023810 (2007).
[Crossref]

2005 (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

C. Girard, “Near fields in nanostructures,” Rep. Prog. Phys. 68, 1883–1933 (2005).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

1997 (1)

D. A. Cirovic, “Feed-forward artificial neural networks: applications to spectroscopy,” TRAC Trends Anal. Chem. 16, 148–155 (1997).
[Crossref]

1988 (1)

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79, 12–49 (1988).
[Crossref]

1986 (1)

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

1972 (1)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
[Crossref]

Abdollahramezani, S.

Y. Kiarashinejad, M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar, R. Pourabolghasem, and A. Adibi, “Knowledge discovery in nanophotonics using geometric deep learning,” Adv. Intell. Syst. 2, 1900132 (2020).
[Crossref]

Y. Kiarashinejad, S. Abdollahramezani, M. Zandehshahvar, O. Hemmatyar, and A. Adibi, “Deep learning reveals underlying physics of light–matter interactions in nanophotonic devices,” Adv. Theor. Simul. 2, 1900088 (2019).
[Crossref]

Y. Kiarashinejad, S. Abdollahramezani, and A. Adibi, “Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures,” arXiv:1902.03865 (2019).

Abdulali, A.

Acheampong, K.

Adhikari, S.

C. L. Cortes, S. Adhikari, X. Ma, and S. K. Gray, “Accelerating quantum optics experiments with statistical learning,” Appl. Phys. Lett. 116, 184003 (2020).
[Crossref]

Adibi, A.

Y. Kiarashinejad, M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar, R. Pourabolghasem, and A. Adibi, “Knowledge discovery in nanophotonics using geometric deep learning,” Adv. Intell. Syst. 2, 1900132 (2020).
[Crossref]

Y. Kiarashinejad, S. Abdollahramezani, M. Zandehshahvar, O. Hemmatyar, and A. Adibi, “Deep learning reveals underlying physics of light–matter interactions in nanophotonic devices,” Adv. Theor. Simul. 2, 1900088 (2019).
[Crossref]

Y. Kiarashinejad, S. Abdollahramezani, and A. Adibi, “Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures,” arXiv:1902.03865 (2019).

Adiels, C. B.

B. Midtvedt, E. Olsén, F. Eklund, F. Höök, C. B. Adiels, G. Volpe, and D. Midtvedt, “Holographic characterisation of subwavelength particles enhanced by deep learning,” arXiv:2006.11154 (2020).

Agarwal, A. M.

Agarwal, S.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Aieta, F.

Alalouf, O.

E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
[Crossref]

Albert, A.

M. Elzouka, C. Yang, A. Albert, S. Lubner, and R. S. Prasher, “Interpretable inverse design of particle spectral emissivity using machine learning,” arXiv:2002.04223 (2020).

Alemi, A.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-ResNet and the impact of residual connections on learning,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2016), pp. 4278–4284.

Alù, A.

F. Zangeneh-Nejad, D. L. Sounas, A. Alù, and R. Fleury, “Analogue computing with metamaterials,” Nat. Rev. Mater. 6, 207–225 (2021).
[Crossref]

Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
[Crossref]

Amodei, D.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

An, S.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design with a generative adversarial network,” arXiv:1908.04851 (2020).

Arbouet, A.

P. R. Wiecha, P. R. Wiecha, C. Majorel, C. Girard, A. Cuche, V. Paillard, O. L. Muskens, and A. Arbouet, “Design of plasmonic directional antennas via evolutionary optimization,” Opt. Express 27, 29069–29081 (2019).
[Crossref]

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12, 163–169 (2017).
[Crossref]

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces,” ACS Nano 8, 6390–6399 (2014).
[Crossref]

Argun, A.

A. Argun, T. Thalheim, S. Bo, F. Cichos, and G. Volpe, “Enhanced force-field calibration via machine learning,” Appl. Phys. Rev. 7, 041404 (2020).
[Crossref]

S. Helgadottir, A. Argun, and G. Volpe, “Digital video microscopy enhanced by deep learning,” Optica 6, 506–513 (2019).
[Crossref]

Arieli, U.

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via deep learning,” Light Sci. Appl. 7, 60 (2018).
[Crossref]

Aristov, A.

W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, “Deep learning massively accelerates super-resolution localization microscopy,” Nat. Biotechnol. 36, 460–468 (2018).
[Crossref]

Asano, T.

T. Asano and S. Noda, “Iterative optimization of photonic crystal nanocavity designs by using deep neural networks,” Nanophotonics 8, 2243–2256 (2019).
[Crossref]

Ash, E. A.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
[Crossref]

Ashalley, E.

Askell, A.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Augenstein, Y.

Y. Augenstein and C. Rockstuhl, “Inverse design of nanophotonic devices with structural integrity,” ACS Photonics 7, 2190–2196 (2020).
[Crossref]

Babakhani, A.

Badloe, T.

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9, 1041–1057 (2020).
[Crossref]

T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22, 2337–2342 (2020).
[Crossref]

Baraniuk, R. G.

G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in imaging,” IEEE J. Sel. Areas Inform. Theor. 1, 39–56 (2020).
[Crossref]

Barbastathis, G.

Barthes, J.

G. C. des Francs, J. Barthes, A. Bouhelier, J. C. Weeber, A. Dereux, A. Cuche, and C. Girard, “Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources,” J. Opt. 18, 094005 (2016).
[Crossref]

Baselli, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Baumeister, T.

Baumert, T.

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. B 41, 074019 (2008).
[Crossref]

Bayer, T.

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. B 41, 074019 (2008).
[Crossref]

Beanland, R.

J. M. Ede and R. Beanland, “Partial scanning transmission electron microscopy with deep learning,” Sci. Rep. 10, 8332 (2020).
[Crossref]

Bengio, Y.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref]

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).

Berner, C.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Besteiro, L. V.

Betzig, E.

Bhusal, N.

C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A. Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-Loaiza, “Identification of light sources using machine learning,” Appl. Phys. Rev. 7, 021404 (2020).
[Crossref]

Biagioni, P.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Biamonte, J. D.

A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D. Biamonte, and S. Kulik, “Experimental neural network enhanced quantum tomography,” npj Quantum Inf. 6, 20 (2020).
[Crossref]

Bianchi, F.

A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D. Biamonte, and S. Kulik, “Experimental neural network enhanced quantum tomography,” npj Quantum Inf. 6, 20 (2020).
[Crossref]

Bie, Y.-Q.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Billet, C.

M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, and G. Genty, “Machine learning analysis of extreme events in optical fibre modulation instability,” Nat. Commun. 9, 4923 (2018).
[Crossref]

Black, L.-J.

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces,” ACS Nano 8, 6390–6399 (2014).
[Crossref]

Blaize, S.

Blanchard-Dionne, A.-P.

A.-P. Blanchard-Dionne and O. J. F. Martin, “Successive training of a generative adversarial network for the design of an optical cloak,” OSA Contin. 4, 87–95 (2021).
[Crossref]

A.-P. Blanchard-Dionne and O. J. F. Martin, “Teaching optics to a machine learning network,” Opt. Lett. 45, 2922–2925 (2020).
[Crossref]

Bo, S.

A. Argun, T. Thalheim, S. Bo, F. Cichos, and G. Volpe, “Enhanced force-field calibration via machine learning,” Appl. Phys. Rev. 7, 041404 (2020).
[Crossref]

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Bogdanov, S. I.

Z. A. Kudyshev, S. I. Bogdanov, T. Isacsson, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Rapid classification of quantum sources enabled by machine learning,” Adv. Quantum Technol. 3, 2000067 (2020).
[Crossref]

Boltasseva, A.

Z. A. Kudyshev, S. I. Bogdanov, T. Isacsson, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Rapid classification of quantum sources enabled by machine learning,” Adv. Quantum Technol. 3, 2000067 (2020).
[Crossref]

W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, “Deep learning for the design of photonic structures,” Nat. Photonics 15, 77–90 (2020).
[Crossref]

Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine learning assisted global optimization of photonic devices,” Nanophotonics 10, 371–383 (2020).
[Crossref]

Borhani, N.

Bouchet, D.

Bouhelier, A.

G. C. des Francs, J. Barthes, A. Bouhelier, J. C. Weeber, A. Dereux, A. Cuche, and C. Girard, “Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources,” J. Opt. 18, 094005 (2016).
[Crossref]

Bravo-Abad, J.

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9, 1041–1057 (2020).
[Crossref]

Briegel, H. J.

A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel, “Active learning machine learns to create new quantum experiments,” Proc. Natl. Acad. Sci. USA 115, 1221–1226 (2018).
[Crossref]

Brixner, T.

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. B 41, 074019 (2008).
[Crossref]

R. Selle, G. Vogt, T. Brixner, G. Gerber, R. Metzler, and W. Kinzel, “Modeling of light-matter interactions with neural networks,” Phys. Rev. A 76, 023810 (2007).
[Crossref]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

Brown, T. B.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Brox, T.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” arXiv:1505.04597 (2015).

Bruce, G. D.

Brunner, D.

J. Moughames, X. Porte, M. Thiel, G. Ulliac, L. Larger, M. Jacquot, M. Kadic, and D. Brunner, “Three-dimensional waveguide interconnects for scalable integration of photonic neural networks,” Optica 7, 640–646 (2020).
[Crossref]

X. Porte, A. Skalli, N. Haghighi, S. Reitzenstein, J. A. Lott, and D. Brunner, “A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser,” arXiv:2012.11153 (2020).

Brunton, S. L.

T. Baumeister, S. L. Brunton, and J. N. Kutz, “Deep learning and model predictive control for self-tuning mode-locked lasers,” J. Opt. Soc. Am. B 35, 617–626 (2018).
[Crossref]

J. N. Kutz and S. L. Brunton, “Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics,” Nanophotonics 4, 459–471 (2015).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

M. V. Zhelyeznyakov, S. L. Brunton, and A. Majumdar, “Deep learning to accelerate Maxwell’s equations for inverse design of dielectric metasurfaces,” arXiv:2008.10632 (2020).

Bünzli, J.-C. G.

J. Zhou, B. Huang, Z. Yan, and J.-C. G. Bünzli, “Emerging role of machine learning in light-matter interaction,” Light Sci. Appl. 8, 1 (2019).
[Crossref]

Burckel, D. B.

D. Z. Zhu, E. B. Whiting, S. D. Campbell, D. B. Burckel, and D. H. Werner, “Optimal high efficiency 3D plasmonic metasurface elements revealed by lazy ants,” ACS Photonics 6, 2741–2748 (2019).
[Crossref]

Butet, J.

B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges,” Laser Photonics Rev. 9, 577–603 (2015).
[Crossref]

Cai, W.

W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, “Deep learning for the design of photonic structures,” Nat. Photonics 15, 77–90 (2020).
[Crossref]

Z. Liu, Z. Liu, Z. Zhu, and W. Cai, “Topological encoding method for data-driven photonics inverse design,” Opt. Express 28, 4825–4835 (2020).
[Crossref]

Z. Liu, L. Raju, D. Zhu, and W. Cai, “A hybrid strategy for the discovery and design of photonic structures,” IEEE J. Emerging Sel. Top. Circuits Syst. 10, 126–135 (2020).
[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18, 6570–6576 (2018).
[Crossref]

Campbell, S. D.

Y. Li, Y. Wang, S. Qi, Q. Ren, L. Kang, S. D. Campbell, P. L. Werner, and D. H. Werner, “Predicting scattering from complex nano-structures via deep learning,” IEEE Access 8, 139983 (2020).
[Crossref]

D. Z. Zhu, E. B. Whiting, S. D. Campbell, D. B. Burckel, and D. H. Werner, “Optimal high efficiency 3D plasmonic metasurface elements revealed by lazy ants,” ACS Photonics 6, 2741–2748 (2019).
[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9, 1842–1863 (2019).
[Crossref]

S. D. Campbell, D. Z. Zhu, E. B. Whiting, J. Nagar, D. H. Werner, and P. L. Werner, “Advanced multi-objective and surrogate-assisted optimization of topologically diverse metasurface architectures,” Proc. SPIE 10719, 107190U (2018).
[Crossref]

Cancilla, J. C.

B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick, “Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase,” Nano Lett. 14, 933–938 (2014).
[Crossref]

Cano-Renteria, F.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4, eaar4206 (2018).
[Crossref]

Cao, Y.

S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and L. You, “Massive computational acceleration by using neural networks to emulate mechanism-based biological models,” Nat. Commun. 10, 4354 (2019).
[Crossref]

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Capasso, F.

Celebrano, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Cerullo, G.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Ceylan Koydemir, H.

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

Chan, S.

S. Chan and E. L. Siegel, “Will machine learning end the viability of radiology as a thriving medical specialty?” Br. J. Radiol. 92, 20180416 (2018).
[Crossref]

Chapman, R. J.

A. Youssry, R. J. Chapman, A. Peruzzo, C. Ferrie, and M. Tomamichel, “Modeling and control of a reconfigurable photonic circuit using deep learning,” Quantum Sci. Technol. 5, 025001 (2020).
[Crossref]

Chaurasia, A.

P. Zhang, S. Liu, A. Chaurasia, D. Ma, M. J. Mlodzianoski, E. Culurciello, and F. Huang, “Analyzing complex single-molecule emission patterns with deep learning,” Nat. Methods 15, 913–916 (2018).
[Crossref]

Chen, E.

J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neural networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds. (Curran Associates, 2012), Vol. 25, pp. 341–349.

Chen, M.

G. D. Bruce, L. O’Donnell, M. Chen, M. Facchin, and K. Dholakia, “Femtometer-resolved simultaneous measurement of multiple laser wavelengths in a speckle wavemeter,” Opt. Lett. 45, 1926–1929 (2020).
[Crossref]

J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” arXiv:2007.00084 (2020).

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Chen, Y.

Cheng, F.

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12, 6326–6334 (2018).
[Crossref]

Chess, B.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Child, R.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Choi, M. C.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
[Crossref]

Chugh, T.

T. Chugh, C. Sun, H. Wang, and Y. Jin, “Surrogate-assisted evolutionary optimization of large problems,” in High-Performance Simulation-Based Optimization, T. Bartz-Beielstein, B. Filipič, P. Korošec, and E.-G. Talbi, eds. (Springer, 2020), pp. 165–187.

Ciccacci, F.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Cichos, F.

A. Argun, T. Thalheim, S. Bo, F. Cichos, and G. Volpe, “Enhanced force-field calibration via machine learning,” Appl. Phys. Rev. 7, 041404 (2020).
[Crossref]

Cirovic, D. A.

D. A. Cirovic, “Feed-forward artificial neural networks: applications to spectroscopy,” TRAC Trends Anal. Chem. 16, 148–155 (1997).
[Crossref]

Clark, J.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Clements, W. R.

Cortes, C. L.

C. L. Cortes, S. Adhikari, X. Ma, and S. K. Gray, “Accelerating quantum optics experiments with statistical learning,” Appl. Phys. Lett. 116, 184003 (2020).
[Crossref]

Courville, A.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).

Cuche, A.

P. R. Wiecha, P. R. Wiecha, C. Majorel, C. Girard, A. Cuche, V. Paillard, O. L. Muskens, and A. Arbouet, “Design of plasmonic directional antennas via evolutionary optimization,” Opt. Express 27, 29069–29081 (2019).
[Crossref]

G. C. des Francs, J. Barthes, A. Bouhelier, J. C. Weeber, A. Dereux, A. Cuche, and C. Girard, “Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources,” J. Opt. 18, 094005 (2016).
[Crossref]

Culurciello, E.

P. Zhang, S. Liu, A. Chaurasia, D. Ma, M. J. Mlodzianoski, E. Culurciello, and F. Huang, “Analyzing complex single-molecule emission patterns with deep learning,” Nat. Methods 15, 913–916 (2018).
[Crossref]

Das, P.

R. Pestourie, Y. Mroueh, T. V. Nguyen, P. Das, and S. G. Johnson, “Active learning of deep surrogates for PDEs: application to metasurface design,” arXiv:2008.12649 (2020).

De Angelis, C.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

de Groot, C. H.

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces,” ACS Nano 8, 6390–6399 (2014).
[Crossref]

Deb, K.

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, 2001), Vol. 16.

del Rio, L.

R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner, “Discovering physical concepts with neural networks,” Phys. Rev. Lett. 124, 010508 (2020).
[Crossref]

DeLacy, B. G.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4, eaar4206 (2018).
[Crossref]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

Dereux, A.

G. C. des Francs, J. Barthes, A. Bouhelier, J. C. Weeber, A. Dereux, A. Cuche, and C. Girard, “Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources,” J. Opt. 18, 094005 (2016).
[Crossref]

des Francs, G. C.

G. C. des Francs, J. Barthes, A. Bouhelier, J. C. Weeber, A. Dereux, A. Cuche, and C. Girard, “Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources,” J. Opt. 18, 094005 (2016).
[Crossref]

Devlin, R.

Dhariwal, P.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Dholakia, K.

Dimakis, A. G.

G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in imaging,” IEEE J. Sel. Areas Inform. Theor. 1, 39–56 (2020).
[Crossref]

Ding, J.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

Dong, C.

C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A. Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-Loaiza, “Identification of light sources using machine learning,” Appl. Phys. Rev. 7, 021404 (2020).
[Crossref]

Dong, J.

X. Li, J. Dong, B. Li, Y. Zhang, Y. Zhang, A. Veeraraghavan, and X. Ji, “Fast confocal microscopy imaging based on deep learning,” in IEEE International Conference on Computational Photography (ICCP) (2020), pp. 1–12.

Dudley, J. M.

M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, and G. Genty, “Machine learning analysis of extreme events in optical fibre modulation instability,” Nat. Commun. 9, 4923 (2018).
[Crossref]

Dunjko, V.

A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel, “Active learning machine learns to create new quantum experiments,” Proc. Natl. Acad. Sci. USA 115, 1221–1226 (2018).
[Crossref]

Duò, L.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Duvigneau, R.

M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, and P. Genevet, “Numerical optimization methods for metasurfaces,” Laser Photonics Rev. 14, 1900445 (2020).
[Crossref]

Dyck, O.

M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
[Crossref]

Ede, J. M.

J. M. Ede and R. Beanland, “Partial scanning transmission electron microscopy with deep learning,” Sci. Rep. 10, 8332 (2020).
[Crossref]

Edwards, B.

N. M. Estakhri, B. Edwards, and N. Engheta, “Inverse-designed metastructures that solve equations,” Science 363, 1333–1338 (2019).
[Crossref]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Eklund, F.

B. Midtvedt, E. Olsén, F. Eklund, F. Höök, C. B. Adiels, G. Volpe, and D. Midtvedt, “Holographic characterisation of subwavelength particles enhanced by deep learning,” arXiv:2006.11154 (2020).

Elsawy, M. M. R.

M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, and P. Genevet, “Numerical optimization methods for metasurfaces,” Laser Photonics Rev. 14, 1900445 (2020).
[Crossref]

Elzouka, M.

M. Elzouka, C. Yang, A. Albert, S. Lubner, and R. S. Prasher, “Interpretable inverse design of particle spectral emissivity using machine learning,” arXiv:2002.04223 (2020).

Engheta, N.

N. M. Estakhri, B. Edwards, and N. Engheta, “Inverse-designed metastructures that solve equations,” Science 363, 1333–1338 (2019).
[Crossref]

Erhard, M.

M. Krenn, M. Erhard, and A. Zeilinger, “Computer-inspired quantum experiments,” Nat. Rev. Phys. 2, 649–661 (2020).
[Crossref]

Es-Saidi, S.

Estakhri, N. M.

N. M. Estakhri, B. Edwards, and N. Engheta, “Inverse-designed metastructures that solve equations,” Science 363, 1333–1338 (2019).
[Crossref]

Facchin, M.

Fan, J. A.

M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, and P. Genevet, “Numerical optimization methods for metasurfaces,” Laser Photonics Rev. 14, 1900445 (2020).
[Crossref]

J. Jiang and J. A. Fan, “Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks,” Nanophotonics 10, 361–369 (2020).
[Crossref]

F. Wen, J. Jiang, and J. A. Fan, “Robust freeform metasurface design based on progressively growing generative networks,” ACS Photonics 7, 2098–2104 (2020).
[Crossref]

J. Jiang and J. A. Fan, “Global optimization of dielectric metasurfaces using a physics-driven neural network,” Nano Lett. 19, 5366–5372 (2019).
[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13, 8872–8878 (2019).
[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9, 1842–1863 (2019).
[Crossref]

J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” arXiv:2007.00084 (2020).

Fan, K.

S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and L. You, “Massive computational acceleration by using neural networks to emulate mechanism-based biological models,” Nat. Commun. 10, 4354 (2019).
[Crossref]

Fan, S.

T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan, “Wave physics as an analog recurrent neural network,” Sci. Adv. 5, eaay6946 (2019).
[Crossref]

Fang, Z.

Z. Fang and J. Zhan, “Deep physical informed neural networks for metamaterial design,” IEEE Access 8, 24506–24513 (2020).
[Crossref]

Fatemi, V.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Feichtner, T.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[Crossref]

Ferdman, B.

E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
[Crossref]

Ferrie, C.

A. Youssry, R. J. Chapman, A. Peruzzo, C. Ferrie, and M. Tomamichel, “Modeling and control of a reconfigurable photonic circuit using deep learning,” Quantum Sci. Technol. 5, 025001 (2020).
[Crossref]

Fickler, R.

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

Finazzi, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Fink, M.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Fischer, P.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” arXiv:1505.04597 (2015).

Fletcher, D. A.

Fleury, R.

F. Zangeneh-Nejad, D. L. Sounas, A. Alù, and R. Fleury, “Analogue computing with metamaterials,” Nat. Rev. Mater. 6, 207–225 (2021).
[Crossref]

Forest, M. G.

J. M. Newby, A. M. Schaefer, P. T. Lee, M. G. Forest, and S. K. Lai, “Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D,” Proc. Natl. Acad. Sci. USA 115, 9026–9031 (2018).
[Crossref]

Fowler, C.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design with a generative adversarial network,” arXiv:1908.04851 (2020).

Freedman, D.

E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
[Crossref]

French, R.

Froustey, E.

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).
[Crossref]

Fu, X.

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

Gallinet, B.

B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges,” Laser Photonics Rev. 9, 577–603 (2015).
[Crossref]

Gao, H.

H. Gao, L. Sun, and J.-X. Wang, “PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain,” J. Comput. Phys. 428, 110079 (2020).
[Crossref]

Gao, L.

L. Gao, X. Li, D. Liu, L. Wang, and Z. Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. 31, 1905467 (2019).
[Crossref]

Genevet, P.

M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, and P. Genevet, “Numerical optimization methods for metasurfaces,” Laser Photonics Rev. 14, 1900445 (2020).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

Geng, Z.-G.

Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
[Crossref]

Genty, G.

M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, and G. Genty, “Machine learning analysis of extreme events in optical fibre modulation instability,” Nat. Commun. 9, 4923 (2018).
[Crossref]

Gerber, G.

R. Selle, G. Vogt, T. Brixner, G. Gerber, R. Metzler, and W. Kinzel, “Modeling of light-matter interactions with neural networks,” Phys. Rev. A 76, 023810 (2007).
[Crossref]

Ghosh, A.

A. Ghosh, D. J. Roth, L. H. Nicholls, W. P. Wardley, A. V. Zayats, and V. A. Podolskiy, “Machine learning—based diffractive imaging with subwavelength resolution,” arXiv:2005.03595 (2020).

Gigan, S.

R. French, S. Gigan, and O. L. Muskens, “Snapshot fiber spectral imaging using speckle correlations and compressive sensing,” Opt. Express 26, 32302–32316 (2018).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Girard, C.

P. R. Wiecha, P. R. Wiecha, C. Majorel, C. Girard, A. Cuche, V. Paillard, O. L. Muskens, and A. Arbouet, “Design of plasmonic directional antennas via evolutionary optimization,” Opt. Express 27, 29069–29081 (2019).
[Crossref]

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12, 163–169 (2017).
[Crossref]

G. C. des Francs, J. Barthes, A. Bouhelier, J. C. Weeber, A. Dereux, A. Cuche, and C. Girard, “Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources,” J. Opt. 18, 094005 (2016).
[Crossref]

C. Girard, “Near fields in nanostructures,” Rep. Prog. Phys. 68, 1883–1933 (2005).
[Crossref]

González-Alcalde, A. K.

Goodfellow, I.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).

Gordon, R.

E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
[Crossref]

Göröcs, Z.

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).
[Crossref]

Govorov, A. O.

Gray, S.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Gray, S. K.

C. L. Cortes, S. Adhikari, X. Ma, and S. K. Gray, “Accelerating quantum optics experiments with statistical learning,” Appl. Phys. Lett. 116, 184003 (2020).
[Crossref]

Gregory, S.

D. Piccinotti, K. F. MacDonald, S. Gregory, I. Youngs, and N. I. Zheludev, “Artificial intelligence for photonics and photonic materials,” Rep. Prog. Phys. 84, 012401 (2020).
[Crossref]

Grier, D. G.

Großmann, S.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Gu, T.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design with a generative adversarial network,” arXiv:1908.04851 (2020).

Günaydin, H.

Günaydn, H.

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydn, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).
[Crossref]

Guo, L. J.

H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. 2, 025013 (2021).
[Crossref]

H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. (2020).

Haghighi, N.

X. Porte, A. Skalli, N. Haghighi, S. Reitzenstein, J. A. Lott, and D. Brunner, “A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser,” arXiv:2012.11153 (2020).

Haick, H.

B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick, “Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase,” Nano Lett. 14, 933–938 (2014).
[Crossref]

Han, B.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Hannel, M.

Hannel, M. D.

Hao, X.

W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, “Deep learning massively accelerates super-resolution localization microscopy,” Nat. Biotechnol. 36, 460–468 (2018).
[Crossref]

Harootunian, A.

Hecht, B.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Hegde, R. S.

R. S. Hegde, “Deep learning: a new tool for photonic nanostructure design,” Nanoscale Adv. 2, 1007–1023 (2020).
[Crossref]

R. S. Hegde, “Photonics inverse design: pairing deep neural networks with evolutionary algorithms,” IEEE J. Sel. Top. Quantum Electron. 26, 7700908 (2020).
[Crossref]

Helgadottir, S.

Heller, K. A.

S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and L. You, “Massive computational acceleration by using neural networks to emulate mechanism-based biological models,” Nat. Commun. 10, 4354 (2019).
[Crossref]

Hemmatyar, O.

Y. Kiarashinejad, M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar, R. Pourabolghasem, and A. Adibi, “Knowledge discovery in nanophotonics using geometric deep learning,” Adv. Intell. Syst. 2, 1900132 (2020).
[Crossref]

Y. Kiarashinejad, S. Abdollahramezani, M. Zandehshahvar, O. Hemmatyar, and A. Adibi, “Deep learning reveals underlying physics of light–matter interactions in nanophotonic devices,” Adv. Theor. Simul. 2, 1900088 (2019).
[Crossref]

Henighan, T.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Herbert-Voss, A.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Hesse, C.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Hickey, J.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13, 8872–8878 (2019).
[Crossref]

Hinton, G.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref]

Ho, D.

C. Yeung, J.-M. Tsai, B. King, B. Pham, J. Liang, D. Ho, M. W. Knight, and A. P. Raman, “Designing multiplexed supercell metasurfaces with tandem neural networks,” Nanophotonics 10, 1133–1143 (2021).
[Crossref]

C. Yeung, J.-M. Tsai, B. King, Y. Kawagoe, D. Ho, M. Knight, and A. P. Raman, “Elucidating the behavior of nanophotonic structures through explainable machine learning algorithms,” ACS Photonics 7, 2309–2318 (2020).
[Crossref]

C. Yeung, J.-M. Tsai, Y. Kawagoe, B. King, D. Ho, and A. P. Raman, “Elucidating the design and behavior of nanophotonic structures through explainable convolutional neural networks,” arXiv:2003.06075 (2020).

Hong, J.

Höök, F.

B. Midtvedt, E. Olsén, F. Eklund, F. Höök, C. B. Adiels, G. Volpe, and D. Midtvedt, “Holographic characterisation of subwavelength particles enhanced by deep learning,” arXiv:2006.11154 (2020).

Horisaki, R.

Y. Nishizaki, R. Horisaki, K. Kitaguchi, M. Saito, and J. Tanida, “Analysis of non-iterative phase retrieval based on machine learning,” Opt. Rev. 27, 136–141 (2020).
[Crossref]

R. Horisaki, R. Takagi, and J. Tanida, “Learning-based imaging through scattering media,” Opt. Express 24, 13738–13743 (2016).
[Crossref]

Hoyer, S.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13, 8872–8878 (2019).
[Crossref]

Hu, B.

Hu, J.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design with a generative adversarial network,” arXiv:1908.04851 (2020).

Huang, B.

C. C. Nadell, B. Huang, J. M. Malof, and W. J. Padilla, “Deep learning for accelerated all-dielectric metasurface design,” Opt. Express 27, 27523–27535 (2019).
[Crossref]

J. Zhou, B. Huang, Z. Yan, and J.-C. G. Bünzli, “Emerging role of machine learning in light-matter interaction,” Light Sci. Appl. 8, 1 (2019).
[Crossref]

Huang, F.

P. Zhang, S. Liu, A. Chaurasia, D. Ma, M. J. Mlodzianoski, E. Culurciello, and F. Huang, “Analyzing complex single-molecule emission patterns with deep learning,” Nat. Methods 15, 913–916 (2018).
[Crossref]

Huang, L.

L. Huang, L. Xu, and A. E. Miroshnichenko, “Deep learning enabled nanophotonics,” in Advances in Deep Learning (InTech, 2020).
[Crossref]

Huang, X.

F. Meng, X. Huang, and B. Jia, “Bi-directional evolutionary optimization for photonic band gap structures,” J. Comput. Phys. 302, 393–404 (2015).
[Crossref]

Hughes, T. W.

T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan, “Wave physics as an analog recurrent neural network,” Sci. Adv. 5, eaay6946 (2019).
[Crossref]

Humphreys, P. C.

Huynh, T. V.

A. D. Phan, C. V. Nguyen, P. T. Linh, T. V. Huynh, V. D. Lam, A.-T. Le, and K. Wakabayashi, “Deep learning for the inverse design of mid-infrared graphene plasmons,” Crystals 10, 125 (2020).
[Crossref]

Ioffe, S.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-ResNet and the impact of residual connections on learning,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2016), pp. 4278–4284.

Isaacson, M.

Isacsson, T.

Z. A. Kudyshev, S. I. Bogdanov, T. Isacsson, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Rapid classification of quantum sources enabled by machine learning,” Adv. Quantum Technol. 3, 2000067 (2020).
[Crossref]

Iten, R.

R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner, “Discovering physical concepts with neural networks,” Phys. Rev. Lett. 124, 010508 (2020).
[Crossref]

Jacquot, M.

Jalal, A.

G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in imaging,” IEEE J. Sel. Areas Inform. Theor. 1, 39–56 (2020).
[Crossref]

Jarillo-Herrero, P.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Jarrahi, M.

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).
[Crossref]

Javaid, A.

C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A. Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-Loaiza, “Identification of light sources using machine learning,” Appl. Phys. Rev. 7, 021404 (2020).
[Crossref]

Jenkins, R. P.

Jensen, J. S.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5, 308–321 (2011).
[Crossref]

Jesse, S.

M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
[Crossref]

Ji, C.

H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. 2, 025013 (2021).
[Crossref]

H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. (2020).

Ji, X.

X. Li, J. Dong, B. Li, Y. Zhang, Y. Zhang, A. Veeraraghavan, and X. Ji, “Fast confocal microscopy imaging based on deep learning,” in IEEE International Conference on Computational Photography (ICCP) (2020), pp. 1–12.

Jia, B.

F. Meng, X. Huang, and B. Jia, “Bi-directional evolutionary optimization for photonic band gap structures,” J. Comput. Phys. 302, 393–404 (2015).
[Crossref]

Jiang, J.

F. Wen, J. Jiang, and J. A. Fan, “Robust freeform metasurface design based on progressively growing generative networks,” ACS Photonics 7, 2098–2104 (2020).
[Crossref]

J. Jiang and J. A. Fan, “Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks,” Nanophotonics 10, 361–369 (2020).
[Crossref]

J. Jiang and J. A. Fan, “Global optimization of dielectric metasurfaces using a physics-driven neural network,” Nano Lett. 19, 5366–5372 (2019).
[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13, 8872–8878 (2019).
[Crossref]

J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” arXiv:2007.00084 (2020).

Jin, J.

C. Zhang, J. Jin, W. Na, Q.-J. Zhang, and M. Yu, “Multivalued neural network inverse modeling and applications to microwave filters,” IEEE Trans. Microwave Theory Tech. 66, 3781–3797 (2018).
[Crossref]

Jin, K. H.

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).
[Crossref]

Jin, W.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Jin, Y.

T. Chugh, C. Sun, H. Wang, and Y. Jin, “Surrogate-assisted evolutionary optimization of large problems,” in High-Performance Simulation-Based Optimization, T. Bartz-Beielstein, B. Filipič, P. Korošec, and E.-G. Talbi, eds. (Springer, 2020), pp. 165–187.

Jing, L.

Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljačić, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6, 1168–1174 (2019).
[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4, eaar4206 (2018).
[Crossref]

Jo, Y.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
[Crossref]

Joannopoulos, J. D.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4, eaar4206 (2018).
[Crossref]

Johnson, S. G.

R. Pestourie, Y. Mroueh, T. V. Nguyen, P. Das, and S. G. Johnson, “Active learning of deep surrogates for PDEs: application to metasurface design,” arXiv:2008.12649 (2020).

Joo, H.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
[Crossref]

Jung, J.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
[Crossref]

Kabir, H.

H. Kabir, Y. Wang, M. Yu, and Q.-J. Zhang, “Neural network inverse modeling and applications to microwave filter design,” IEEE Trans. Microwave Theory Tech. 56, 867–879 (2008).
[Crossref]

Kadic, M.

Kakkava, E.

Kalinin, S. V.

M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
[Crossref]

Kalt, V.

Kang, L.

Y. Li, Y. Wang, S. Qi, Q. Ren, L. Kang, S. D. Campbell, P. L. Werner, and D. H. Werner, “Predicting scattering from complex nano-structures via deep learning,” IEEE Access 8, 139983 (2020).
[Crossref]

Kang, M.

Kang, S.-J.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
[Crossref]

Kaplan, J.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Karniadakis, G. E.

Y. Chen, L. Lu, G. E. Karniadakis, and L. D. Negro, “Physics-informed neural networks for inverse problems in nano-optics and metamaterials,” Opt Express 28, 11618–11633 (2020).
[Crossref]

M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations,” Science 367, 1026–1030 (2020).
[Crossref]

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys. 378, 686–707 (2019).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Kawagoe, Y.

C. Yeung, J.-M. Tsai, B. King, Y. Kawagoe, D. Ho, M. Knight, and A. P. Raman, “Elucidating the behavior of nanophotonic structures through explainable machine learning algorithms,” ACS Photonics 7, 2309–2318 (2020).
[Crossref]

C. Yeung, J.-M. Tsai, Y. Kawagoe, B. King, D. Ho, and A. P. Raman, “Elucidating the design and behavior of nanophotonic structures through explainable convolutional neural networks,” arXiv:2003.06075 (2020).

Khoram, E.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5, 1365–1369 (2018).
[Crossref]

Khorasaninejad, M.

Kiarashinejad, Y.

Y. Kiarashinejad, M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar, R. Pourabolghasem, and A. Adibi, “Knowledge discovery in nanophotonics using geometric deep learning,” Adv. Intell. Syst. 2, 1900132 (2020).
[Crossref]

Y. Kiarashinejad, S. Abdollahramezani, M. Zandehshahvar, O. Hemmatyar, and A. Adibi, “Deep learning reveals underlying physics of light–matter interactions in nanophotonic devices,” Adv. Theor. Simul. 2, 1900088 (2019).
[Crossref]

Y. Kiarashinejad, S. Abdollahramezani, and A. Adibi, “Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures,” arXiv:1902.03865 (2019).

Kildishev, A. V.

Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine learning assisted global optimization of photonic devices,” Nanophotonics 10, 371–383 (2020).
[Crossref]

Z. A. Kudyshev, S. I. Bogdanov, T. Isacsson, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Rapid classification of quantum sources enabled by machine learning,” Adv. Quantum Technol. 3, 2000067 (2020).
[Crossref]

Kim, I.

T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22, 2337–2342 (2020).
[Crossref]

Kim, M.-H.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
[Crossref]

King, B.

C. Yeung, J.-M. Tsai, B. King, B. Pham, J. Liang, D. Ho, M. W. Knight, and A. P. Raman, “Designing multiplexed supercell metasurfaces with tandem neural networks,” Nanophotonics 10, 1133–1143 (2021).
[Crossref]

C. Yeung, J.-M. Tsai, B. King, Y. Kawagoe, D. Ho, M. Knight, and A. P. Raman, “Elucidating the behavior of nanophotonic structures through explainable machine learning algorithms,” ACS Photonics 7, 2309–2318 (2020).
[Crossref]

C. Yeung, J.-M. Tsai, Y. Kawagoe, B. King, D. Ho, and A. P. Raman, “Elucidating the design and behavior of nanophotonic structures through explainable convolutional neural networks,” arXiv:2003.06075 (2020).

Kingma, D. P.

D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” Found. Trends Mach. Learn. 12, 307–392 (2019).
[Crossref]

Kinzel, W.

R. Selle, G. Vogt, T. Brixner, G. Gerber, R. Metzler, and W. Kinzel, “Modeling of light-matter interactions with neural networks,” Phys. Rev. A 76, 023810 (2007).
[Crossref]

Kitadai, H.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Kitaguchi, K.

Y. Nishizaki, R. Horisaki, K. Kitaguchi, M. Saito, and J. Tanida, “Analysis of non-iterative phase retrieval based on machine learning,” Opt. Rev. 27, 136–141 (2020).
[Crossref]

Kiunke, M.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[Crossref]

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

Klein, D.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Knight, M.

C. Yeung, J.-M. Tsai, B. King, Y. Kawagoe, D. Ho, M. Knight, and A. P. Raman, “Elucidating the behavior of nanophotonic structures through explainable machine learning algorithms,” ACS Photonics 7, 2309–2318 (2020).
[Crossref]

Knight, M. W.

C. Yeung, J.-M. Tsai, B. King, B. Pham, J. Liang, D. Ho, M. W. Knight, and A. P. Raman, “Designing multiplexed supercell metasurfaces with tandem neural networks,” Nanophotonics 10, 1133–1143 (2021).
[Crossref]

Kolthammer, W. S.

Kong, J.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Konstantinou, G.

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light Sci. Appl. 7, 69 (2018).
[Crossref]

Kouichi, S.

J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep neural networks,” IEEE Trans. Evol. Comput. 23, 828–841 (2019).
[Crossref]

Koutsourelakis, P.-S.

Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, “Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data,” J. Comput. Phys. 394, 56–81 (2019).
[Crossref]

Kovlakov, E.

A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D. Biamonte, and S. Kulik, “Experimental neural network enhanced quantum tomography,” npj Quantum Inf. 6, 20 (2020).
[Crossref]

Krenn, M.

M. Krenn, M. Erhard, and A. Zeilinger, “Computer-inspired quantum experiments,” Nat. Rev. Phys. 2, 649–661 (2020).
[Crossref]

A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel, “Active learning machine learns to create new quantum experiments,” Proc. Natl. Acad. Sci. USA 115, 1221–1226 (2018).
[Crossref]

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

Krueger, G.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Kudyshev, Z. A.

W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, “Deep learning for the design of photonic structures,” Nat. Photonics 15, 77–90 (2020).
[Crossref]

Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine learning assisted global optimization of photonic devices,” Nanophotonics 10, 371–383 (2020).
[Crossref]

Z. A. Kudyshev, S. I. Bogdanov, T. Isacsson, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Rapid classification of quantum sources enabled by machine learning,” Adv. Quantum Technol. 3, 2000067 (2020).
[Crossref]

Kulik, S.

A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D. Biamonte, and S. Kulik, “Experimental neural network enhanced quantum tomography,” npj Quantum Inf. 6, 20 (2020).
[Crossref]

Kumar, A.

A. Mall, A. Patil, D. Tamboli, A. Sethi, and A. Kumar, “Fast design of plasmonic metasurfaces enabled by deep learning,” J. Phys. D 53, 49LT01 (2020).
[Crossref]

Kumar, S. S.

Kürüm, U.

Kutz, J. N.

T. Baumeister, S. L. Brunton, and J. N. Kutz, “Deep learning and model predictive control for self-tuning mode-locked lasers,” J. Opt. Soc. Am. B 35, 617–626 (2018).
[Crossref]

J. N. Kutz and S. L. Brunton, “Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics,” Nanophotonics 4, 459–471 (2015).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

Lai, S. K.

J. M. Newby, A. M. Schaefer, P. T. Lee, M. G. Forest, and S. K. Lai, “Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D,” Proc. Natl. Acad. Sci. USA 115, 9026–9031 (2018).
[Crossref]

Laing, A.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

Lam, V. D.

A. D. Phan, C. V. Nguyen, P. T. Linh, T. V. Huynh, V. D. Lam, A.-T. Le, and K. Wakabayashi, “Deep learning for the inverse design of mid-infrared graphene plasmons,” Crystals 10, 125 (2020).
[Crossref]

Lambert, A.

C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A. Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-Loaiza, “Identification of light sources using machine learning,” Appl. Phys. Rev. 7, 021404 (2020).
[Crossref]

Lanteri, S.

M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, and P. Genevet, “Numerical optimization methods for metasurfaces,” Laser Photonics Rev. 14, 1900445 (2020).
[Crossref]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

Lapkiewicz, R.

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

Larger, L.

Larrieu, G.

P. R. Wiecha, A. Lecestre, N. Mallet, and G. Larrieu, “Pushing the limits of optical information storage using deep learning,” Nat. Nanotechnol. 14, 237–244 (2019).
[Crossref]

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12, 163–169 (2017).
[Crossref]

Le, A.-T.

A. D. Phan, C. V. Nguyen, P. T. Linh, T. V. Huynh, V. D. Lam, A.-T. Le, and K. Wakabayashi, “Deep learning for the inverse design of mid-infrared graphene plasmons,” Crystals 10, 125 (2020).
[Crossref]

Lecestre, A.

P. R. Wiecha, A. Lecestre, N. Mallet, and G. Larrieu, “Pushing the limits of optical information storage using deep learning,” Nat. Nanotechnol. 14, 237–244 (2019).
[Crossref]

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12, 163–169 (2017).
[Crossref]

LeCun, Y.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref]

Lee, H.

I. Sajedian, H. Lee, and J. Rho, “Double-deep Q-learning to increase the efficiency of metasurface holograms,” Sci. Rep. 9, 10899 (2019).
[Crossref]

Lee, K.-T.

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18, 6570–6576 (2018).
[Crossref]

Lee, P. T.

J. M. Newby, A. M. Schaefer, P. T. Lee, M. G. Forest, and S. K. Lai, “Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D,” Proc. Natl. Acad. Sci. USA 115, 9026–9031 (2018).
[Crossref]

Lee, S. Y.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
[Crossref]

Lei, T.

Lelek, M.

W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, “Deep learning massively accelerates super-resolution localization microscopy,” Nat. Biotechnol. 36, 460–468 (2018).
[Crossref]

Lenton, I. C. D.

I. C. D. Lenton, G. Volpe, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Machine learning reveals complex behaviours in optically trapped particles,” Mach. Learn. Sci. Technol. 1, 045009 (2020).
[Crossref]

Leong, W. S.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

León-Montiel, R. de. J.

C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A. Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-Loaiza, “Identification of light sources using machine learning,” Appl. Phys. Rev. 7, 021404 (2020).
[Crossref]

Lerosey, G.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Lewis, A.

Li, B.

X. Li, J. Dong, B. Li, Y. Zhang, Y. Zhang, A. Veeraraghavan, and X. Ji, “Fast confocal microscopy imaging based on deep learning,” in IEEE International Conference on Computational Photography (ICCP) (2020), pp. 1–12.

Li, D.-T.

Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
[Crossref]

Li, H.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design with a generative adversarial network,” arXiv:1908.04851 (2020).

Li, P.-Q.

Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
[Crossref]

Li, W.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Li, X.

L. Gao, X. Li, D. Liu, L. Wang, and Z. Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. 31, 1905467 (2019).
[Crossref]

M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
[Crossref]

X. Li, J. Dong, B. Li, Y. Zhang, Y. Zhang, A. Veeraraghavan, and X. Ji, “Fast confocal microscopy imaging based on deep learning,” in IEEE International Conference on Computational Photography (ICCP) (2020), pp. 1–12.

Li, Y.

Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
[Crossref]

Y. Li, Y. Wang, S. Qi, Q. Ren, L. Kang, S. D. Campbell, P. L. Werner, and D. H. Werner, “Predicting scattering from complex nano-structures via deep learning,” IEEE Access 8, 139983 (2020).
[Crossref]

Liang, J.

C. Yeung, J.-M. Tsai, B. King, B. Pham, J. Liang, D. Ho, M. W. Knight, and A. P. Raman, “Designing multiplexed supercell metasurfaces with tandem neural networks,” Nanophotonics 10, 1133–1143 (2021).
[Crossref]

Liang, K.

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

Lin, X.

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).
[Crossref]

Lin, Y.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Lin, Z.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Ling, X.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Linh, P. T.

A. D. Phan, C. V. Nguyen, P. T. Linh, T. V. Huynh, V. D. Lam, A.-T. Le, and K. Wakabayashi, “Deep learning for the inverse design of mid-infrared graphene plasmons,” Crystals 10, 125 (2020).
[Crossref]

Litwin, M.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Liu, D.

L. Gao, X. Li, D. Liu, L. Wang, and Z. Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. 31, 1905467 (2019).
[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5, 1365–1369 (2018).
[Crossref]

Liu, S.

P. Zhang, S. Liu, A. Chaurasia, D. Ma, M. J. Mlodzianoski, E. Culurciello, and F. Huang, “Analyzing complex single-molecule emission patterns with deep learning,” Nat. Methods 15, 913–916 (2018).
[Crossref]

Liu, Y.

W. Ma and Y. Liu, “A data-efficient self-supervised deep learning model for design and characterization of nanophotonic structures,” Sci. China Phys. Mech. Astron. 63, 284212 (2020).
[Crossref]

W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, “Deep learning for the design of photonic structures,” Nat. Photonics 15, 77–90 (2020).
[Crossref]

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12, 6326–6334 (2018).
[Crossref]

Liu, Z.

Z. Liu, L. Raju, D. Zhu, and W. Cai, “A hybrid strategy for the discovery and design of photonic structures,” IEEE J. Emerging Sel. Top. Circuits Syst. 10, 126–135 (2020).
[Crossref]

Z. Liu, Z. Liu, Z. Zhu, and W. Cai, “Topological encoding method for data-driven photonics inverse design,” Opt. Express 28, 4825–4835 (2020).
[Crossref]

Z. Liu, Z. Liu, Z. Zhu, and W. Cai, “Topological encoding method for data-driven photonics inverse design,” Opt. Express 28, 4825–4835 (2020).
[Crossref]

W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, “Deep learning for the design of photonic structures,” Nat. Photonics 15, 77–90 (2020).
[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18, 6570–6576 (2018).
[Crossref]

Locatelli, A.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Loterie, D.

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light Sci. Appl. 7, 69 (2018).
[Crossref]

Lott, J. A.

X. Porte, A. Skalli, N. Haghighi, S. Reitzenstein, J. A. Lott, and D. Brunner, “A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser,” arXiv:2012.11153 (2020).

Lu, J.

R. Trivedi, L. Su, J. Lu, M. F. Schubert, and J. Vuckovic, “Data-driven acceleration of photonic simulations,” Sci. Rep. 9, 19728 (2019).
[Crossref]

Lu, L.

Y. Chen, L. Lu, G. E. Karniadakis, and L. D. Negro, “Physics-informed neural networks for inverse problems in nano-optics and metamaterials,” Opt Express 28, 11618–11633 (2020).
[Crossref]

Lubner, S.

M. Elzouka, C. Yang, A. Albert, S. Lubner, and R. S. Prasher, “Interpretable inverse design of particle spectral emissivity using machine learning,” arXiv:2002.04223 (2020).

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

Lundervold, A.

A. S. Lundervold and A. Lundervold, “An overview of deep learning in medical imaging focusing on MRI,” Z. Med. Phys. 29, 102–127 (2019).
[Crossref]

Lundervold, A. S.

A. S. Lundervold and A. Lundervold, “An overview of deep learning in medical imaging focusing on MRI,” Z. Med. Phys. 29, 102–127 (2019).
[Crossref]

Luo, N.

S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and L. You, “Massive computational acceleration by using neural networks to emulate mechanism-based biological models,” Nat. Commun. 10, 4354 (2019).
[Crossref]

Luo, Y.

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).
[Crossref]

Luo, Y.-T.

Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
[Crossref]

Ma, D.

P. Zhang, S. Liu, A. Chaurasia, D. Ma, M. J. Mlodzianoski, E. Culurciello, and F. Huang, “Analyzing complex single-molecule emission patterns with deep learning,” Nat. Methods 15, 913–916 (2018).
[Crossref]

Ma, Q.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Ma, W.

W. Ma and Y. Liu, “A data-efficient self-supervised deep learning model for design and characterization of nanophotonic structures,” Sci. China Phys. Mech. Astron. 63, 284212 (2020).
[Crossref]

W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, “Deep learning for the design of photonic structures,” Nat. Photonics 15, 77–90 (2020).
[Crossref]

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12, 6326–6334 (2018).
[Crossref]

Ma, X.

C. L. Cortes, S. Adhikari, X. Ma, and S. K. Gray, “Accelerating quantum optics experiments with statistical learning,” Appl. Phys. Lett. 116, 184003 (2020).
[Crossref]

MacDonald, K. F.

D. Piccinotti, K. F. MacDonald, S. Gregory, I. Youngs, and N. I. Zheludev, “Artificial intelligence for photonics and photonic materials,” Rep. Prog. Phys. 84, 012401 (2020).
[Crossref]

Macías, D.

MacNeill, D.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Magaña-Loaiza, O. S.

C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A. Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-Loaiza, “Identification of light sources using machine learning,” Appl. Phys. Rev. 7, 021404 (2020).
[Crossref]

Majorel, C.

Majumdar, A.

M. V. Zhelyeznyakov, S. L. Brunton, and A. Majumdar, “Deep learning to accelerate Maxwell’s equations for inverse design of dielectric metasurfaces,” arXiv:2008.10632 (2020).

Maksov, A.

M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
[Crossref]

Malik, M.

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

Malkiel, I.

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via deep learning,” Light Sci. Appl. 7, 60 (2018).
[Crossref]

Mall, A.

A. Mall, A. Patil, D. Tamboli, A. Sethi, and A. Kumar, “Fast design of plasmonic metasurfaces enabled by deep learning,” J. Phys. D 53, 49LT01 (2020).
[Crossref]

Mallery, K.

Mallet, N.

P. R. Wiecha, A. Lecestre, N. Mallet, and G. Larrieu, “Pushing the limits of optical information storage using deep learning,” Nat. Nanotechnol. 14, 237–244 (2019).
[Crossref]

Malof, J. M.

Mann, B.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Mao, N.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Markham, A.

B. Moseley, A. Markham, and T. Nissen-Meyer, “Solving the wave equation with physics-informed deep learning,” arXiv:2006.11894 (2020).

Martin, O. J. F.

A.-P. Blanchard-Dionne and O. J. F. Martin, “Successive training of a generative adversarial network for the design of an optical cloak,” OSA Contin. 4, 87–95 (2021).
[Crossref]

A.-P. Blanchard-Dionne and O. J. F. Martin, “Teaching optics to a machine learning network,” Opt. Lett. 45, 2922–2925 (2020).
[Crossref]

B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges,” Laser Photonics Rev. 9, 577–603 (2015).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

McCandlish, S.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

McCann, M. T.

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).
[Crossref]

Melnikov, A. A.

A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel, “Active learning machine learns to create new quantum experiments,” Proc. Natl. Acad. Sci. USA 115, 1221–1226 (2018).
[Crossref]

Meng, F.

F. Meng, X. Huang, and B. Jia, “Bi-directional evolutionary optimization for photonic band gap structures,” J. Comput. Phys. 302, 393–404 (2015).
[Crossref]

Mengu, D.

D. Mengu, Y. Rivenson, and A. Ozcan, “Scale-, shift- and rotation-invariant diffractive optical networks,” ACS Photon. 8, 324–334 (2021).
[Crossref]

Metcalf, B. J.

Metger, T.

R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner, “Discovering physical concepts with neural networks,” Phys. Rev. Lett. 124, 010508 (2020).
[Crossref]

Metzler, C. A.

G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in imaging,” IEEE J. Sel. Areas Inform. Theor. 1, 39–56 (2020).
[Crossref]

Metzler, R.

R. Selle, G. Vogt, T. Brixner, G. Gerber, R. Metzler, and W. Kinzel, “Modeling of light-matter interactions with neural networks,” Phys. Rev. A 76, 023810 (2007).
[Crossref]

Michaeli, T.

E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
[Crossref]

E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-STORM: super-resolution single-molecule microscopy by deep learning,” Optica 5, 458–464 (2018).
[Crossref]

Midtvedt, B.

B. Midtvedt, E. Olsén, F. Eklund, F. Höök, C. B. Adiels, G. Volpe, and D. Midtvedt, “Holographic characterisation of subwavelength particles enhanced by deep learning,” arXiv:2006.11154 (2020).

Midtvedt, D.

B. Midtvedt, E. Olsén, F. Eklund, F. Höök, C. B. Adiels, G. Volpe, and D. Midtvedt, “Holographic characterisation of subwavelength particles enhanced by deep learning,” arXiv:2006.11154 (2020).

Minkov, M.

T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan, “Wave physics as an analog recurrent neural network,” Sci. Adv. 5, eaay6946 (2019).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

L. Huang, L. Xu, and A. E. Miroshnichenko, “Deep learning enabled nanophotonics,” in Advances in Deep Learning (InTech, 2020).
[Crossref]

Mlodzianoski, M. J.

P. Zhang, S. Liu, A. Chaurasia, D. Ma, M. J. Mlodzianoski, E. Culurciello, and F. Huang, “Analyzing complex single-molecule emission patterns with deep learning,” Nat. Methods 15, 913–916 (2018).
[Crossref]

Molesky, S.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Monticone, F.

A. Sheverdin, F. Monticone, and C. Valagiannopoulos, “Photonic inverse design with neural networks: the case of invisibility in the visible,” Phys. Rev. Appl. 14, 024054 (2020).
[Crossref]

Moseley, B.

B. Moseley, A. Markham, and T. Nissen-Meyer, “Solving the wave equation with physics-informed deep learning,” arXiv:2006.11894 (2020).

Moser, C.

N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5, 960–966 (2018).
[Crossref]

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light Sci. Appl. 7, 69 (2018).
[Crossref]

Mosk, A. P.

Moughames, J.

Mrejen, M.

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via deep learning,” Light Sci. Appl. 7, 60 (2018).
[Crossref]

Mroueh, Y.

R. Pestourie, Y. Mroueh, T. V. Nguyen, P. Das, and S. G. Johnson, “Active learning of deep surrogates for PDEs: application to metasurface design,” arXiv:2008.12649 (2020).

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Mun, J.

S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11, 24264–24268 (2019).
[Crossref]

Muskens, O. L.

Na, W.

C. Zhang, J. Jin, W. Na, Q.-J. Zhang, and M. Yu, “Multivalued neural network inverse modeling and applications to microwave filters,” IEEE Trans. Microwave Theory Tech. 66, 3781–3797 (2018).
[Crossref]

Nadell, C. C.

Nagar, J.

S. D. Campbell, D. Z. Zhu, E. B. Whiting, J. Nagar, D. H. Werner, and P. L. Werner, “Advanced multi-objective and surrogate-assisted optimization of topologically diverse metasurface architectures,” Proc. SPIE 10719, 107190U (2018).
[Crossref]

Nagler, A.

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via deep learning,” Light Sci. Appl. 7, 60 (2018).
[Crossref]

Naor, T.

E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
[Crossref]

Närhi, M.

M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, and G. Genty, “Machine learning analysis of extreme events in optical fibre modulation instability,” Nat. Commun. 9, 4923 (2018).
[Crossref]

Nautrup, H. P.

A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel, “Active learning machine learns to create new quantum experiments,” Proc. Natl. Acad. Sci. USA 115, 1221–1226 (2018).
[Crossref]

Navarro-Moratalla, E.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Neelakantan, A.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Negro, L. D.

Y. Chen, L. Lu, G. E. Karniadakis, and L. D. Negro, “Physics-informed neural networks for inverse problems in nano-optics and metamaterials,” Opt Express 28, 11618–11633 (2020).
[Crossref]

Nehme, E.

E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
[Crossref]

E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-STORM: super-resolution single-molecule microscopy by deep learning,” Optica 5, 458–464 (2018).
[Crossref]

Neogi, A.

Newby, J. M.

J. M. Newby, A. M. Schaefer, P. T. Lee, M. G. Forest, and S. K. Lai, “Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D,” Proc. Natl. Acad. Sci. USA 115, 9026–9031 (2018).
[Crossref]

Ng, R. J. H.

J. Trisno, H. Wang, H. T. Wang, R. J. H. Ng, S. D. Rezaei, and J. K. W. Yang, “Applying machine learning to the optics of dielectric nano-blobs,” Adv. Photonics Res. 1, 2000068 (2020).
[Crossref]

Nguyen, C. V.

A. D. Phan, C. V. Nguyen, P. T. Linh, T. V. Huynh, V. D. Lam, A.-T. Le, and K. Wakabayashi, “Deep learning for the inverse design of mid-infrared graphene plasmons,” Crystals 10, 125 (2020).
[Crossref]

Nguyen, T. V.

R. Pestourie, Y. Mroueh, T. V. Nguyen, P. Das, and S. G. Johnson, “Active learning of deep surrogates for PDEs: application to metasurface design,” arXiv:2008.12649 (2020).

Nicholls, G.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
[Crossref]

Nicholls, L. H.

A. Ghosh, D. J. Roth, L. H. Nicholls, W. P. Wardley, A. V. Zayats, and V. A. Podolskiy, “Machine learning—based diffractive imaging with subwavelength resolution,” arXiv:2005.03595 (2020).

Nieminen, T. A.

I. C. D. Lenton, G. Volpe, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Machine learning reveals complex behaviours in optically trapped particles,” Mach. Learn. Sci. Technol. 1, 045009 (2020).
[Crossref]

Nishizaki, Y.

Y. Nishizaki, R. Horisaki, K. Kitaguchi, M. Saito, and J. Tanida, “Analysis of non-iterative phase retrieval based on machine learning,” Opt. Rev. 27, 136–141 (2020).
[Crossref]

Nissen-Meyer, T.

B. Moseley, A. Markham, and T. Nissen-Meyer, “Solving the wave equation with physics-informed deep learning,” arXiv:2006.11894 (2020).

Noda, S.

T. Asano and S. Noda, “Iterative optimization of photonic crystal nanocavity designs by using deep neural networks,” Nanophotonics 8, 2243–2256 (2019).
[Crossref]

Noh, J.

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9, 1041–1057 (2020).
[Crossref]

O’Brien, M.

O’Donnell, L.

Olsén, E.

B. Midtvedt, E. Olsén, F. Eklund, F. Höök, C. B. Adiels, G. Volpe, and D. Midtvedt, “Holographic characterisation of subwavelength particles enhanced by deep learning,” arXiv:2006.11154 (2020).

Ongie, G.

G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in imaging,” IEEE J. Sel. Areas Inform. Theor. 1, 39–56 (2020).
[Crossref]

Orange, R.

E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
[Crossref]

Osellame, R.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Osher, S.

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79, 12–49 (1988).
[Crossref]

Ou, J. Y.

T. Pu, J. Y. Ou, N. Papasimakis, and N. I. Zheludev, “Label-free deeply subwavelength optical microscopy,” Appl. Phys. Lett. 116, 131105 (2020).
[Crossref]

Ou, J.-Y.

T. Pu, J.-Y. Ou, V. Savinov, G. Yuan, N. Papasimakis, and N. Zheludev, “Unlabeled far-field deeply subwavelength topological microscopy (DSTM),” Adv. Sci. 8, 2002886 (2020).
[Crossref]

Ouyang, W.

W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, “Deep learning massively accelerates super-resolution localization microscopy,” Nat. Biotechnol. 36, 460–468 (2018).
[Crossref]

Ozcan, A.

D. Mengu, Y. Rivenson, and A. Ozcan, “Scale-, shift- and rotation-invariant diffractive optical networks,” ACS Photon. 8, 324–334 (2021).
[Crossref]

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydn, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).
[Crossref]

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).
[Crossref]

Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).
[Crossref]

Padilla, W. J.

Paillard, V.

P. R. Wiecha, P. R. Wiecha, C. Majorel, C. Girard, A. Cuche, V. Paillard, O. L. Muskens, and A. Arbouet, “Design of plasmonic directional antennas via evolutionary optimization,” Opt. Express 27, 29069–29081 (2019).
[Crossref]

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12, 163–169 (2017).
[Crossref]

Palacios, T.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Palmieri, A. M.

A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D. Biamonte, and S. Kulik, “Experimental neural network enhanced quantum tomography,” npj Quantum Inf. 6, 20 (2020).
[Crossref]

Papasimakis, N.

T. Pu, J.-Y. Ou, V. Savinov, G. Yuan, N. Papasimakis, and N. Zheludev, “Unlabeled far-field deeply subwavelength topological microscopy (DSTM),” Adv. Sci. 8, 2002886 (2020).
[Crossref]

T. Pu, J. Y. Ou, N. Papasimakis, and N. I. Zheludev, “Label-free deeply subwavelength optical microscopy,” Appl. Phys. Lett. 116, 131105 (2020).
[Crossref]

Park, S.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
[Crossref]

Park, Y.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
[Crossref]

Patil, A.

A. Mall, A. Patil, D. Tamboli, A. Sethi, and A. Kumar, “Fast design of plasmonic metasurfaces enabled by deep learning,” J. Phys. D 53, 49LT01 (2020).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

Peng, Y.-G.

Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
[Crossref]

Perdikaris, P.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys. 378, 686–707 (2019).
[Crossref]

Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, “Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data,” J. Comput. Phys. 394, 56–81 (2019).
[Crossref]

Perez-Leija, A.

C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A. Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-Loaiza, “Identification of light sources using machine learning,” Appl. Phys. Rev. 7, 021404 (2020).
[Crossref]

Peruzzo, A.

A. Youssry, R. J. Chapman, A. Peruzzo, C. Ferrie, and M. Tomamichel, “Modeling and control of a reconfigurable photonic circuit using deep learning,” Quantum Sci. Technol. 5, 025001 (2020).
[Crossref]

Pestourie, R.

R. Pestourie, Y. Mroueh, T. V. Nguyen, P. Das, and S. G. Johnson, “Active learning of deep surrogates for PDEs: application to metasurface design,” arXiv:2008.12649 (2020).

Petruccione, F.

M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemp. Phys. 56, 172–185 (2015).
[Crossref]

Peurifoy, J.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4, eaar4206 (2018).
[Crossref]

Pham, B.

C. Yeung, J.-M. Tsai, B. King, B. Pham, J. Liang, D. Ho, M. W. Knight, and A. P. Raman, “Designing multiplexed supercell metasurfaces with tandem neural networks,” Nanophotonics 10, 1133–1143 (2021).
[Crossref]

Phan, A. D.

A. D. Phan, C. V. Nguyen, P. T. Linh, T. V. Huynh, V. D. Lam, A.-T. Le, and K. Wakabayashi, “Deep learning for the inverse design of mid-infrared graphene plasmons,” Crystals 10, 125 (2020).
[Crossref]

Phillips, Z.

Piccinotti, D.

D. Piccinotti, K. F. MacDonald, S. Gregory, I. Youngs, and N. I. Zheludev, “Artificial intelligence for photonics and photonic materials,” Rep. Prog. Phys. 84, 012401 (2020).
[Crossref]

Piggott, A. Y.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Pinkard, H.

Podolskiy, V. A.

A. Ghosh, D. J. Roth, L. H. Nicholls, W. P. Wardley, A. V. Zayats, and V. A. Podolskiy, “Machine learning—based diffractive imaging with subwavelength resolution,” arXiv:2005.03595 (2020).

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Porte, X.

J. Moughames, X. Porte, M. Thiel, G. Ulliac, L. Larger, M. Jacquot, M. Kadic, and D. Brunner, “Three-dimensional waveguide interconnects for scalable integration of photonic neural networks,” Optica 7, 640–646 (2020).
[Crossref]

X. Porte, A. Skalli, N. Haghighi, S. Reitzenstein, J. A. Lott, and D. Brunner, “A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser,” arXiv:2012.11153 (2020).

Pourabolghasem, R.

Y. Kiarashinejad, M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar, R. Pourabolghasem, and A. Adibi, “Knowledge discovery in nanophotonics using geometric deep learning,” Adv. Intell. Syst. 2, 1900132 (2020).
[Crossref]

Prasher, R. S.

M. Elzouka, C. Yang, A. Albert, S. Lubner, and R. S. Prasher, “Interpretable inverse design of particle spectral emissivity using machine learning,” arXiv:2002.04223 (2020).

Psaltis, D.

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light Sci. Appl. 7, 69 (2018).
[Crossref]

N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5, 960–966 (2018).
[Crossref]

Pu, T.

T. Pu, J. Y. Ou, N. Papasimakis, and N. I. Zheludev, “Label-free deeply subwavelength optical microscopy,” Appl. Phys. Lett. 116, 131105 (2020).
[Crossref]

T. Pu, J.-Y. Ou, V. Savinov, G. Yuan, N. Papasimakis, and N. Zheludev, “Unlabeled far-field deeply subwavelength topological microscopy (DSTM),” Adv. Sci. 8, 2002886 (2020).
[Crossref]

Qi, S.

Y. Li, Y. Wang, S. Qi, Q. Ren, L. Kang, S. D. Campbell, P. L. Werner, and D. H. Werner, “Predicting scattering from complex nano-structures via deep learning,” IEEE Access 8, 139983 (2020).
[Crossref]

Qiu, M.

Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljačić, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6, 1168–1174 (2019).
[Crossref]

Qiu, T.

X. Shi, T. Qiu, J. Wang, X. Zhao, and S. Qu, “Metasurface inverse design using machine learning approaches,” J. Phys. D 53, 275105 (2020).
[Crossref]

Qu, S.

X. Shi, T. Qiu, J. Wang, X. Zhao, and S. Qu, “Metasurface inverse design using machine learning approaches,” J. Phys. D 53, 275105 (2020).
[Crossref]

Qu, Y.

Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljačić, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6, 1168–1174 (2019).
[Crossref]

Quiroz-Juárez, M. A.

C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A. Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-Loaiza, “Identification of light sources using machine learning,” Appl. Phys. Rev. 7, 021404 (2020).
[Crossref]

Radford, A.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Rahmani, B.

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light Sci. Appl. 7, 69 (2018).
[Crossref]

Raissi, M.

M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations,” Science 367, 1026–1030 (2020).
[Crossref]

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys. 378, 686–707 (2019).
[Crossref]

Raju, L.

Z. Liu, L. Raju, D. Zhu, and W. Cai, “A hybrid strategy for the discovery and design of photonic structures,” IEEE J. Emerging Sel. Top. Circuits Syst. 10, 126–135 (2020).
[Crossref]

Raman, A. P.

C. Yeung, J.-M. Tsai, B. King, B. Pham, J. Liang, D. Ho, M. W. Knight, and A. P. Raman, “Designing multiplexed supercell metasurfaces with tandem neural networks,” Nanophotonics 10, 1133–1143 (2021).
[Crossref]

C. Yeung, J.-M. Tsai, B. King, Y. Kawagoe, D. Ho, M. Knight, and A. P. Raman, “Elucidating the behavior of nanophotonic structures through explainable machine learning algorithms,” ACS Photonics 7, 2309–2318 (2020).
[Crossref]

C. Yeung, J.-M. Tsai, Y. Kawagoe, B. King, D. Ho, and A. P. Raman, “Elucidating the design and behavior of nanophotonic structures through explainable convolutional neural networks,” arXiv:2003.06075 (2020).

Ramesh, A.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Reitzenstein, S.

X. Porte, A. Skalli, N. Haghighi, S. Reitzenstein, J. A. Lott, and D. Brunner, “A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser,” arXiv:2012.11153 (2020).

Ren, Q.

Y. Li, Y. Wang, S. Qi, Q. Ren, L. Kang, S. D. Campbell, P. L. Werner, and D. H. Werner, “Predicting scattering from complex nano-structures via deep learning,” IEEE Access 8, 139983 (2020).
[Crossref]

Ren, Z.

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

Renner, R.

R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner, “Discovering physical concepts with neural networks,” Phys. Rev. Lett. 124, 010508 (2020).
[Crossref]

Rezaei, S. D.

J. Trisno, H. Wang, H. T. Wang, R. J. H. Ng, S. D. Rezaei, and J. K. W. Yang, “Applying machine learning to the optics of dielectric nano-blobs,” Adv. Photonics Res. 1, 2000068 (2020).
[Crossref]

Rho, J.

T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22, 2337–2342 (2020).
[Crossref]

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9, 1041–1057 (2020).
[Crossref]

S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11, 24264–24268 (2019).
[Crossref]

S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8, 1255–1261 (2019).
[Crossref]

I. Sajedian, H. Lee, and J. Rho, “Double-deep Q-learning to increase the efficiency of metasurface holograms,” Sci. Rep. 9, 10899 (2019).
[Crossref]

Richardson, K. A.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

Rivenson, Y.

D. Mengu, Y. Rivenson, and A. Ozcan, “Scale-, shift- and rotation-invariant diffractive optical networks,” ACS Photon. 8, 324–334 (2021).
[Crossref]

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).
[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydn, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).
[Crossref]

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).
[Crossref]

Rivero-Baleine, C.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

Rockstuhl, C.

Y. Augenstein and C. Rockstuhl, “Inverse design of nanophotonic devices with structural integrity,” ACS Photonics 7, 2190–2196 (2020).
[Crossref]

Rodan-Legrain, D.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Rodrigues, S. P.

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18, 6570–6576 (2018).
[Crossref]

Rodriguez, A. W.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Ronneberger, O.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” arXiv:1505.04597 (2015).

Roth, D. J.

A. Ghosh, D. J. Roth, L. H. Nicholls, W. P. Wardley, A. V. Zayats, and V. A. Podolskiy, “Machine learning—based diffractive imaging with subwavelength resolution,” arXiv:2005.03595 (2020).

Rubinsztein-Dunlop, H.

I. C. D. Lenton, G. Volpe, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Machine learning reveals complex behaviours in optically trapped particles,” Mach. Learn. Sci. Technol. 1, 045009 (2020).
[Crossref]

Ryder, N.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Sacha, G. M.

G. M. Sacha and P. Varona, “Artificial intelligence in nanotechnology,” Nanotechnology 24, 452002 (2013).
[Crossref]

Saito, M.

Y. Nishizaki, R. Horisaki, K. Kitaguchi, M. Saito, and J. Tanida, “Analysis of non-iterative phase retrieval based on machine learning,” Opt. Rev. 27, 136–141 (2020).
[Crossref]

Sajedian, I.

I. Sajedian, H. Lee, and J. Rho, “Double-deep Q-learning to increase the efficiency of metasurface holograms,” Sci. Rep. 9, 10899 (2019).
[Crossref]

Salas-Montiel, R.

Salmela, L.

M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, and G. Genty, “Machine learning analysis of extreme events in optical fibre modulation instability,” Nat. Commun. 9, 4923 (2018).
[Crossref]

Sang, X.

M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
[Crossref]

Sastry, G.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Savinov, V.

T. Pu, J.-Y. Ou, V. Savinov, G. Yuan, N. Papasimakis, and N. Zheludev, “Unlabeled far-field deeply subwavelength topological microscopy (DSTM),” Adv. Sci. 8, 2002886 (2020).
[Crossref]

Schaefer, A. M.

J. M. Newby, A. M. Schaefer, P. T. Lee, M. G. Forest, and S. K. Lai, “Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D,” Proc. Natl. Acad. Sci. USA 115, 9026–9031 (2018).
[Crossref]

Schubert, M. F.

R. Trivedi, L. Su, J. Lu, M. F. Schubert, and J. Vuckovic, “Data-driven acceleration of photonic simulations,” Sci. Rep. 9, 19728 (2019).
[Crossref]

Schuld, M.

M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemp. Phys. 56, 172–185 (2015).
[Crossref]

Sciarrino, F.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

Seifert, J.

Selig, O.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[Crossref]

Sell, D.

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9, 1842–1863 (2019).
[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13, 8872–8878 (2019).
[Crossref]

Selle, R.

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. B 41, 074019 (2008).
[Crossref]

R. Selle, G. Vogt, T. Brixner, G. Gerber, R. Metzler, and W. Kinzel, “Modeling of light-matter interactions with neural networks,” Phys. Rev. A 76, 023810 (2007).
[Crossref]

Sethi, A.

A. Mall, A. Patil, D. Tamboli, A. Sethi, and A. Kumar, “Fast design of plasmonic metasurfaces enabled by deep learning,” J. Phys. D 53, 49LT01 (2020).
[Crossref]

Sethian, J. A.

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79, 12–49 (1988).
[Crossref]

Shalaev, V. M.

Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine learning assisted global optimization of photonic devices,” Nanophotonics 10, 371–383 (2020).
[Crossref]

Z. A. Kudyshev, S. I. Bogdanov, T. Isacsson, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Rapid classification of quantum sources enabled by machine learning,” Adv. Quantum Technol. 3, 2000067 (2020).
[Crossref]

Shalaginov, M. Y.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design with a generative adversarial network,” arXiv:1908.04851 (2020).

Shao, S.

Shechtman, Y.

E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
[Crossref]

E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-STORM: super-resolution single-molecule microscopy by deep learning,” Optica 5, 458–464 (2018).
[Crossref]

Shen, Y.

Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljačić, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6, 1168–1174 (2019).
[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4, eaar4206 (2018).
[Crossref]

Sheverdin, A.

A. Sheverdin, F. Monticone, and C. Valagiannopoulos, “Photonic inverse design with neural networks: the case of invisibility in the visible,” Phys. Rev. Appl. 14, 024054 (2020).
[Crossref]

Shi, X.

X. Shi, T. Qiu, J. Wang, X. Zhao, and S. Qu, “Metasurface inverse design using machine learning approaches,” J. Phys. D 53, 275105 (2020).
[Crossref]

Shyam, P.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Siegel, E. L.

S. Chan and E. L. Siegel, “Will machine learning end the viability of radiology as a thriving medical specialty?” Br. J. Radiol. 92, 20180416 (2018).
[Crossref]

Sigler, E.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Sigmund, O.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5, 308–321 (2011).
[Crossref]

Sinayskiy, I.

M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemp. Phys. 56, 172–185 (2015).
[Crossref]

Situ, G.

Skalli, A.

X. Porte, A. Skalli, N. Haghighi, S. Reitzenstein, J. A. Lott, and D. Brunner, “A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser,” arXiv:2012.11153 (2020).

So, S.

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9, 1041–1057 (2020).
[Crossref]

S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11, 24264–24268 (2019).
[Crossref]

S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8, 1255–1261 (2019).
[Crossref]

Soljacic, M.

Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljačić, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6, 1168–1174 (2019).
[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4, eaar4206 (2018).
[Crossref]

Sounas, D. L.

F. Zangeneh-Nejad, D. L. Sounas, A. Alù, and R. Fleury, “Analogue computing with metamaterials,” Nat. Rev. Mater. 6, 207–225 (2021).
[Crossref]

Stilgoe, A. B.

I. C. D. Lenton, G. Volpe, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Machine learning reveals complex behaviours in optically trapped particles,” Mach. Learn. Sci. Technol. 1, 045009 (2020).
[Crossref]

Straupe, S.

A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D. Biamonte, and S. Kulik, “Experimental neural network enhanced quantum tomography,” npj Quantum Inf. 6, 20 (2020).
[Crossref]

Su, J.

J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep neural networks,” IEEE Trans. Evol. Comput. 23, 828–841 (2019).
[Crossref]

Su, L.

R. Trivedi, L. Su, J. Lu, M. F. Schubert, and J. Vuckovic, “Data-driven acceleration of photonic simulations,” Sci. Rep. 9, 19728 (2019).
[Crossref]

Subbiah, M.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Suchowski, H.

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via deep learning,” Light Sci. Appl. 7, 60 (2018).
[Crossref]

Sun, C.

T. Chugh, C. Sun, H. Wang, and Y. Jin, “Surrogate-assisted evolutionary optimization of large problems,” in High-Performance Simulation-Based Optimization, T. Bartz-Beielstein, B. Filipič, P. Korošec, and E.-G. Talbi, eds. (Springer, 2020), pp. 165–187.

Sun, L.

H. Gao, L. Sun, and J.-X. Wang, “PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain,” J. Comput. Phys. 428, 110079 (2020).
[Crossref]

Sutskever, I.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Szegedy, C.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-ResNet and the impact of residual connections on learning,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2016), pp. 4278–4284.

Takagi, R.

Tamboli, D.

A. Mall, A. Patil, D. Tamboli, A. Sethi, and A. Kumar, “Fast design of plasmonic metasurfaces enabled by deep learning,” J. Phys. D 53, 49LT01 (2020).
[Crossref]

Tan, D.

Tan, Y.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5, 1365–1369 (2018).
[Crossref]

Tang, H.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design with a generative adversarial network,” arXiv:1908.04851 (2020).

Tanida, J.

Y. Nishizaki, R. Horisaki, K. Kitaguchi, M. Saito, and J. Tanida, “Analysis of non-iterative phase retrieval based on machine learning,” Opt. Rev. 27, 136–141 (2020).
[Crossref]

R. Horisaki, R. Takagi, and J. Tanida, “Learning-based imaging through scattering media,” Opt. Express 24, 13738–13743 (2016).
[Crossref]

Tegmark, M.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4, eaar4206 (2018).
[Crossref]

Teng, D.

Y. Rivenson, Y. Zhang, H. Günaydn, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).
[Crossref]

Thalheim, T.

A. Argun, T. Thalheim, S. Bo, F. Cichos, and G. Volpe, “Enhanced force-field calibration via machine learning,” Appl. Phys. Rev. 7, 041404 (2020).
[Crossref]

Thiel, M.

Thompson, M. G.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

Tiersch, M.

A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel, “Active learning machine learns to create new quantum experiments,” Proc. Natl. Acad. Sci. USA 115, 1221–1226 (2018).
[Crossref]

Toivonen, J.

M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, and G. Genty, “Machine learning analysis of extreme events in optical fibre modulation instability,” Nat. Commun. 9, 4923 (2018).
[Crossref]

Tomamichel, M.

A. Youssry, R. J. Chapman, A. Peruzzo, C. Ferrie, and M. Tomamichel, “Modeling and control of a reconfigurable photonic circuit using deep learning,” Quantum Sci. Technol. 5, 025001 (2020).
[Crossref]

Torrecilla, J. S.

B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick, “Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase,” Nano Lett. 14, 933–938 (2014).
[Crossref]

Trisno, J.

J. Trisno, H. Wang, H. T. Wang, R. J. H. Ng, S. D. Rezaei, and J. K. W. Yang, “Applying machine learning to the optics of dielectric nano-blobs,” Adv. Photonics Res. 1, 2000068 (2020).
[Crossref]

Trivedi, R.

R. Trivedi, L. Su, J. Lu, M. F. Schubert, and J. Vuckovic, “Data-driven acceleration of photonic simulations,” Sci. Rep. 9, 19728 (2019).
[Crossref]

Tsai, J.-M.

C. Yeung, J.-M. Tsai, B. King, B. Pham, J. Liang, D. Ho, M. W. Knight, and A. P. Raman, “Designing multiplexed supercell metasurfaces with tandem neural networks,” Nanophotonics 10, 1133–1143 (2021).
[Crossref]

C. Yeung, J.-M. Tsai, B. King, Y. Kawagoe, D. Ho, M. Knight, and A. P. Raman, “Elucidating the behavior of nanophotonic structures through explainable machine learning algorithms,” ACS Photonics 7, 2309–2318 (2020).
[Crossref]

C. Yeung, J.-M. Tsai, Y. Kawagoe, B. King, D. Ho, and A. P. Raman, “Elucidating the design and behavior of nanophotonic structures through explainable convolutional neural networks,” arXiv:2003.06075 (2020).

Tseng, D.

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

Ulliac, G.

Unni, R.

R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7, 2703–2712 (2020).
[Crossref]

K. Yao, R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8, 339–366 (2019).
[Crossref]

Unocic, R. R.

M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
[Crossref]

Unser, M.

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).
[Crossref]

Valagiannopoulos, C.

A. Sheverdin, F. Monticone, and C. Valagiannopoulos, “Photonic inverse design with neural networks: the case of invisibility in the visible,” Phys. Rev. Appl. 14, 024054 (2020).
[Crossref]

Vanhoucke, V.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-ResNet and the impact of residual connections on learning,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2016), pp. 4278–4284.

Vargas, D. V.

J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep neural networks,” IEEE Trans. Evol. Comput. 23, 828–841 (2019).
[Crossref]

Varona, P.

G. M. Sacha and P. Varona, “Artificial intelligence in nanotechnology,” Nanotechnology 24, 452002 (2013).
[Crossref]

Vasudevan, R.

M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
[Crossref]

Veeraraghavan, A.

X. Li, J. Dong, B. Li, Y. Zhang, Y. Zhang, A. Veeraraghavan, and X. Ji, “Fast confocal microscopy imaging based on deep learning,” in IEEE International Conference on Computational Photography (ICCP) (2020), pp. 1–12.

Veli, M.

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).
[Crossref]

Vogt, G.

R. Selle, G. Vogt, T. Brixner, G. Gerber, R. Metzler, and W. Kinzel, “Modeling of light-matter interactions with neural networks,” Phys. Rev. A 76, 023810 (2007).
[Crossref]

Volpe, G.

I. C. D. Lenton, G. Volpe, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Machine learning reveals complex behaviours in optically trapped particles,” Mach. Learn. Sci. Technol. 1, 045009 (2020).
[Crossref]

A. Argun, T. Thalheim, S. Bo, F. Cichos, and G. Volpe, “Enhanced force-field calibration via machine learning,” Appl. Phys. Rev. 7, 041404 (2020).
[Crossref]

S. Helgadottir, A. Argun, and G. Volpe, “Digital video microscopy enhanced by deep learning,” Optica 6, 506–513 (2019).
[Crossref]

B. Midtvedt, E. Olsén, F. Eklund, F. Höök, C. B. Adiels, G. Volpe, and D. Midtvedt, “Holographic characterisation of subwavelength particles enhanced by deep learning,” arXiv:2006.11154 (2020).

Vuckovic, J.

R. Trivedi, L. Su, J. Lu, M. F. Schubert, and J. Vuckovic, “Data-driven acceleration of photonic simulations,” Sci. Rep. 9, 19728 (2019).
[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Wakabayashi, K.

A. D. Phan, C. V. Nguyen, P. T. Linh, T. V. Huynh, V. D. Lam, A.-T. Le, and K. Wakabayashi, “Deep learning for the inverse design of mid-infrared graphene plasmons,” Crystals 10, 125 (2020).
[Crossref]

Waller, L.

Walmsley, I. A.

Wang, B.

B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick, “Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase,” Nano Lett. 14, 933–938 (2014).
[Crossref]

Wang, H.

H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. 2, 025013 (2021).
[Crossref]

J. Trisno, H. Wang, H. T. Wang, R. J. H. Ng, S. D. Rezaei, and J. K. W. Yang, “Applying machine learning to the optics of dielectric nano-blobs,” Adv. Photonics Res. 1, 2000068 (2020).
[Crossref]

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).
[Crossref]

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. (2020).

T. Chugh, C. Sun, H. Wang, and Y. Jin, “Surrogate-assisted evolutionary optimization of large problems,” in High-Performance Simulation-Based Optimization, T. Bartz-Beielstein, B. Filipič, P. Korošec, and E.-G. Talbi, eds. (Springer, 2020), pp. 165–187.

Wang, H. T.

J. Trisno, H. Wang, H. T. Wang, R. J. H. Ng, S. D. Rezaei, and J. K. W. Yang, “Applying machine learning to the optics of dielectric nano-blobs,” Adv. Photonics Res. 1, 2000068 (2020).
[Crossref]

Wang, J.

X. Shi, T. Qiu, J. Wang, X. Zhao, and S. Qu, “Metasurface inverse design using machine learning approaches,” J. Phys. D 53, 275105 (2020).
[Crossref]

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

Wang, J. I.-J.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Wang, J.-X.

H. Gao, L. Sun, and J.-X. Wang, “PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain,” J. Comput. Phys. 428, 110079 (2020).
[Crossref]

Wang, L.

L. Gao, X. Li, D. Liu, L. Wang, and Z. Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. 31, 1905467 (2019).
[Crossref]

Wang, S.

S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and L. You, “Massive computational acceleration by using neural networks to emulate mechanism-based biological models,” Nat. Commun. 10, 4354 (2019).
[Crossref]

Wang, Y.

Y. Li, Y. Wang, S. Qi, Q. Ren, L. Kang, S. D. Campbell, P. L. Werner, and D. H. Werner, “Predicting scattering from complex nano-structures via deep learning,” IEEE Access 8, 139983 (2020).
[Crossref]

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces,” ACS Nano 8, 6390–6399 (2014).
[Crossref]

H. Kabir, Y. Wang, M. Yu, and Q.-J. Zhang, “Neural network inverse modeling and applications to microwave filter design,” IEEE Trans. Microwave Theory Tech. 56, 867–879 (2008).
[Crossref]

Wang, Z. M.

Wardley, W. P.

A. Ghosh, D. J. Roth, L. H. Nicholls, W. P. Wardley, A. V. Zayats, and V. A. Podolskiy, “Machine learning—based diffractive imaging with subwavelength resolution,” arXiv:2005.03595 (2020).

Weeber, J. C.

G. C. des Francs, J. Barthes, A. Bouhelier, J. C. Weeber, A. Dereux, A. Cuche, and C. Girard, “Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources,” J. Opt. 18, 094005 (2016).
[Crossref]

Wei, Z.

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

Weiss, L. E.

E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
[Crossref]

E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-STORM: super-resolution single-molecule microscopy by deep learning,” Optica 5, 458–464 (2018).
[Crossref]

Welling, M.

D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” Found. Trends Mach. Learn. 12, 307–392 (2019).
[Crossref]

Wen, F.

F. Wen, J. Jiang, and J. A. Fan, “Robust freeform metasurface design based on progressively growing generative networks,” ACS Photonics 7, 2098–2104 (2020).
[Crossref]

Wen, Q.

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

Werner, D. H.

Y. Li, Y. Wang, S. Qi, Q. Ren, L. Kang, S. D. Campbell, P. L. Werner, and D. H. Werner, “Predicting scattering from complex nano-structures via deep learning,” IEEE Access 8, 139983 (2020).
[Crossref]

D. Z. Zhu, E. B. Whiting, S. D. Campbell, D. B. Burckel, and D. H. Werner, “Optimal high efficiency 3D plasmonic metasurface elements revealed by lazy ants,” ACS Photonics 6, 2741–2748 (2019).
[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9, 1842–1863 (2019).
[Crossref]

S. D. Campbell, D. Z. Zhu, E. B. Whiting, J. Nagar, D. H. Werner, and P. L. Werner, “Advanced multi-objective and surrogate-assisted optimization of topologically diverse metasurface architectures,” Proc. SPIE 10719, 107190U (2018).
[Crossref]

Werner, P. L.

Y. Li, Y. Wang, S. Qi, Q. Ren, L. Kang, S. D. Campbell, P. L. Werner, and D. H. Werner, “Predicting scattering from complex nano-structures via deep learning,” IEEE Access 8, 139983 (2020).
[Crossref]

S. D. Campbell, D. Z. Zhu, E. B. Whiting, J. Nagar, D. H. Werner, and P. L. Werner, “Advanced multi-objective and surrogate-assisted optimization of topologically diverse metasurface architectures,” Proc. SPIE 10719, 107190U (2018).
[Crossref]

Whiting, E. B.

D. Z. Zhu, E. B. Whiting, S. D. Campbell, D. B. Burckel, and D. H. Werner, “Optimal high efficiency 3D plasmonic metasurface elements revealed by lazy ants,” ACS Photonics 6, 2741–2748 (2019).
[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9, 1842–1863 (2019).
[Crossref]

S. D. Campbell, D. Z. Zhu, E. B. Whiting, J. Nagar, D. H. Werner, and P. L. Werner, “Advanced multi-objective and surrogate-assisted optimization of topologically diverse metasurface architectures,” Proc. SPIE 10719, 107190U (2018).
[Crossref]

Wiecha, P. R.

P. R. Wiecha and O. L. Muskens, “Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures,” Nano Lett. 20, 329–338 (2020).
[Crossref]

P. R. Wiecha, P. R. Wiecha, C. Majorel, C. Girard, A. Cuche, V. Paillard, O. L. Muskens, and A. Arbouet, “Design of plasmonic directional antennas via evolutionary optimization,” Opt. Express 27, 29069–29081 (2019).
[Crossref]

P. R. Wiecha, P. R. Wiecha, C. Majorel, C. Girard, A. Cuche, V. Paillard, O. L. Muskens, and A. Arbouet, “Design of plasmonic directional antennas via evolutionary optimization,” Opt. Express 27, 29069–29081 (2019).
[Crossref]

U. Kürüm, P. R. Wiecha, R. French, and O. L. Muskens, “Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array,” Opt. Express 27, 20965–20979 (2019).
[Crossref]

P. R. Wiecha, A. Lecestre, N. Mallet, and G. Larrieu, “Pushing the limits of optical information storage using deep learning,” Nat. Nanotechnol. 14, 237–244 (2019).
[Crossref]

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12, 163–169 (2017).
[Crossref]

Willett, R.

G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in imaging,” IEEE J. Sel. Areas Inform. Theor. 1, 39–56 (2020).
[Crossref]

Williamson, I. A. D.

T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan, “Wave physics as an analog recurrent neural network,” Sci. Adv. 5, eaay6946 (2019).
[Crossref]

Wilming, H.

R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner, “Discovering physical concepts with neural networks,” Phys. Rev. Lett. 124, 010508 (2020).
[Crossref]

Winter, C.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Wolf, L.

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via deep learning,” Light Sci. Appl. 7, 60 (2018).
[Crossref]

Wollenhaupt, M.

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. B 41, 074019 (2008).
[Crossref]

Wu, B.

Wu, F.

S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and L. You, “Massive computational acceleration by using neural networks to emulate mechanism-based biological models,” Nat. Commun. 10, 4354 (2019).
[Crossref]

Wu, J.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Wu, S.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Wu, X.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Xiao, K.

M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
[Crossref]

Xie, J.

J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neural networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds. (Curran Associates, 2012), Vol. 25, pp. 341–349.

Xie, S.-H.

Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
[Crossref]

Xu, J.

Xu, L.

J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neural networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds. (Curran Associates, 2012), Vol. 25, pp. 341–349.

L. Huang, L. Xu, and A. E. Miroshnichenko, “Deep learning enabled nanophotonics,” in Advances in Deep Learning (InTech, 2020).
[Crossref]

Xu, Y.

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

Yan, Z.

J. Zhou, B. Huang, Z. Yan, and J.-C. G. Bünzli, “Emerging role of machine learning in light-matter interaction,” Light Sci. Appl. 8, 1 (2019).
[Crossref]

Yang, C.

M. Elzouka, C. Yang, A. Albert, S. Lubner, and R. S. Prasher, “Interpretable inverse design of particle spectral emissivity using machine learning,” arXiv:2002.04223 (2020).

Yang, J.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13, 8872–8878 (2019).
[Crossref]

Yang, J. K. W.

J. Trisno, H. Wang, H. T. Wang, R. J. H. Ng, S. D. Rezaei, and J. K. W. Yang, “Applying machine learning to the optics of dielectric nano-blobs,” Adv. Photonics Res. 1, 2000068 (2020).
[Crossref]

Yang, Y.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4, eaar4206 (2018).
[Crossref]

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Yao, K.

R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7, 2703–2712 (2020).
[Crossref]

K. Yao, R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8, 339–366 (2019).
[Crossref]

Yardimci, N. T.

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).
[Crossref]

Yazdani, A.

M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations,” Science 367, 1026–1030 (2020).
[Crossref]

Yeung, C.

C. Yeung, J.-M. Tsai, B. King, B. Pham, J. Liang, D. Ho, M. W. Knight, and A. P. Raman, “Designing multiplexed supercell metasurfaces with tandem neural networks,” Nanophotonics 10, 1133–1143 (2021).
[Crossref]

C. Yeung, J.-M. Tsai, B. King, Y. Kawagoe, D. Ho, M. Knight, and A. P. Raman, “Elucidating the behavior of nanophotonic structures through explainable machine learning algorithms,” ACS Photonics 7, 2309–2318 (2020).
[Crossref]

C. Yeung, J.-M. Tsai, Y. Kawagoe, B. King, D. Ho, and A. P. Raman, “Elucidating the design and behavior of nanophotonic structures through explainable convolutional neural networks,” arXiv:2003.06075 (2020).

Yevick, A.

Yin, J.

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Yoon, J.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
[Crossref]

You, C.

C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A. Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-Loaiza, “Identification of light sources using machine learning,” Appl. Phys. Rev. 7, 021404 (2020).
[Crossref]

You, L.

S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and L. You, “Massive computational acceleration by using neural networks to emulate mechanism-based biological models,” Nat. Commun. 10, 4354 (2019).
[Crossref]

Youngs, I.

D. Piccinotti, K. F. MacDonald, S. Gregory, I. Youngs, and N. I. Zheludev, “Artificial intelligence for photonics and photonic materials,” Rep. Prog. Phys. 84, 012401 (2020).
[Crossref]

Youssry, A.

A. Youssry, R. J. Chapman, A. Peruzzo, C. Ferrie, and M. Tomamichel, “Modeling and control of a reconfigurable photonic circuit using deep learning,” Quantum Sci. Technol. 5, 025001 (2020).
[Crossref]

Yu, M.

C. Zhang, J. Jin, W. Na, Q.-J. Zhang, and M. Yu, “Multivalued neural network inverse modeling and applications to microwave filters,” IEEE Trans. Microwave Theory Tech. 66, 3781–3797 (2018).
[Crossref]

H. Kabir, Y. Wang, M. Yu, and Q.-J. Zhang, “Neural network inverse modeling and applications to microwave filter design,” IEEE Trans. Microwave Theory Tech. 56, 867–879 (2008).
[Crossref]

Yu, P.

Yu, Z.

L. Gao, X. Li, D. Liu, L. Wang, and Z. Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. 31, 1905467 (2019).
[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5, 1365–1369 (2018).
[Crossref]

Yuan, G.

T. Pu, J.-Y. Ou, V. Savinov, G. Yuan, N. Papasimakis, and N. Zheludev, “Unlabeled far-field deeply subwavelength topological microscopy (DSTM),” Adv. Sci. 8, 2002886 (2020).
[Crossref]

Yudin, D.

A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D. Biamonte, and S. Kulik, “Experimental neural network enhanced quantum tomography,” npj Quantum Inf. 6, 20 (2020).
[Crossref]

Yujia, X.

Yunzhe, L.

Zabaras, N.

Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, “Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data,” J. Comput. Phys. 394, 56–81 (2019).
[Crossref]

Zandehshahvar, M.

Y. Kiarashinejad, M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar, R. Pourabolghasem, and A. Adibi, “Knowledge discovery in nanophotonics using geometric deep learning,” Adv. Intell. Syst. 2, 1900132 (2020).
[Crossref]

Y. Kiarashinejad, S. Abdollahramezani, M. Zandehshahvar, O. Hemmatyar, and A. Adibi, “Deep learning reveals underlying physics of light–matter interactions in nanophotonic devices,” Adv. Theor. Simul. 2, 1900088 (2019).
[Crossref]

Zangeneh-Nejad, F.

F. Zangeneh-Nejad, D. L. Sounas, A. Alù, and R. Fleury, “Analogue computing with metamaterials,” Nat. Rev. Mater. 6, 207–225 (2021).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

A. Ghosh, D. J. Roth, L. H. Nicholls, W. P. Wardley, A. V. Zayats, and V. A. Podolskiy, “Machine learning—based diffractive imaging with subwavelength resolution,” arXiv:2005.03595 (2020).

Zeilinger, A.

M. Krenn, M. Erhard, and A. Zeilinger, “Computer-inspired quantum experiments,” Nat. Rev. Phys. 2, 649–661 (2020).
[Crossref]

A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel, “Active learning machine learns to create new quantum experiments,” Proc. Natl. Acad. Sci. USA 115, 1221–1226 (2018).
[Crossref]

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

Zhan, J.

Z. Fang and J. Zhan, “Deep physical informed neural networks for metamaterial design,” IEEE Access 8, 24506–24513 (2020).
[Crossref]

Zhang, C.

S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and L. You, “Massive computational acceleration by using neural networks to emulate mechanism-based biological models,” Nat. Commun. 10, 4354 (2019).
[Crossref]

C. Zhang, J. Jin, W. Na, Q.-J. Zhang, and M. Yu, “Multivalued neural network inverse modeling and applications to microwave filters,” IEEE Trans. Microwave Theory Tech. 66, 3781–3797 (2018).
[Crossref]

Zhang, H.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design with a generative adversarial network,” arXiv:1908.04851 (2020).

Zhang, P.

P. Zhang, S. Liu, A. Chaurasia, D. Ma, M. J. Mlodzianoski, E. Culurciello, and F. Huang, “Analyzing complex single-molecule emission patterns with deep learning,” Nat. Methods 15, 913–916 (2018).
[Crossref]

Zhang, Q.-J.

C. Zhang, J. Jin, W. Na, Q.-J. Zhang, and M. Yu, “Multivalued neural network inverse modeling and applications to microwave filters,” IEEE Trans. Microwave Theory Tech. 66, 3781–3797 (2018).
[Crossref]

H. Kabir, Y. Wang, M. Yu, and Q.-J. Zhang, “Neural network inverse modeling and applications to microwave filter design,” IEEE Trans. Microwave Theory Tech. 56, 867–879 (2008).
[Crossref]

Zhang, Y.

Y. Rivenson, Y. Zhang, H. Günaydn, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).
[Crossref]

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).
[Crossref]

X. Li, J. Dong, B. Li, Y. Zhang, Y. Zhang, A. Veeraraghavan, and X. Ji, “Fast confocal microscopy imaging based on deep learning,” in IEEE International Conference on Computational Photography (ICCP) (2020), pp. 1–12.

X. Li, J. Dong, B. Li, Y. Zhang, Y. Zhang, A. Veeraraghavan, and X. Ji, “Fast confocal microscopy imaging based on deep learning,” in IEEE International Conference on Computational Photography (ICCP) (2020), pp. 1–12.

Zhao, X.

X. Shi, T. Qiu, J. Wang, X. Zhao, and S. Qu, “Metasurface inverse design using machine learning approaches,” J. Phys. D 53, 275105 (2020).
[Crossref]

Zheludev, N.

T. Pu, J.-Y. Ou, V. Savinov, G. Yuan, N. Papasimakis, and N. Zheludev, “Unlabeled far-field deeply subwavelength topological microscopy (DSTM),” Adv. Sci. 8, 2002886 (2020).
[Crossref]

Zheludev, N. I.

T. Pu, J. Y. Ou, N. Papasimakis, and N. I. Zheludev, “Label-free deeply subwavelength optical microscopy,” Appl. Phys. Lett. 116, 131105 (2020).
[Crossref]

D. Piccinotti, K. F. MacDonald, S. Gregory, I. Youngs, and N. I. Zheludev, “Artificial intelligence for photonics and photonic materials,” Rep. Prog. Phys. 84, 012401 (2020).
[Crossref]

Zhelyeznyakov, M. V.

M. V. Zhelyeznyakov, S. L. Brunton, and A. Majumdar, “Deep learning to accelerate Maxwell’s equations for inverse design of dielectric metasurfaces,” arXiv:2008.10632 (2020).

Zheng, B.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design with a generative adversarial network,” arXiv:1908.04851 (2020).

Zheng, Y.

R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7, 2703–2712 (2020).
[Crossref]

K. Yao, R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8, 339–366 (2019).
[Crossref]

Zheng, Z.

H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. 2, 025013 (2021).
[Crossref]

H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. (2020).

Zhou, J.

J. Zhou, B. Huang, Z. Yan, and J.-C. G. Bünzli, “Emerging role of machine learning in light-matter interaction,” Light Sci. Appl. 8, 1 (2019).
[Crossref]

Zhou, L.

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design with a generative adversarial network,” arXiv:1908.04851 (2020).

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

Zhu, D.

Z. Liu, L. Raju, D. Zhu, and W. Cai, “A hybrid strategy for the discovery and design of photonic structures,” IEEE J. Emerging Sel. Top. Circuits Syst. 10, 126–135 (2020).
[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18, 6570–6576 (2018).
[Crossref]

Zhu, D. Z.

D. Z. Zhu, E. B. Whiting, S. D. Campbell, D. B. Burckel, and D. H. Werner, “Optimal high efficiency 3D plasmonic metasurface elements revealed by lazy ants,” ACS Photonics 6, 2741–2748 (2019).
[Crossref]

S. D. Campbell, D. Z. Zhu, E. B. Whiting, J. Nagar, D. H. Werner, and P. L. Werner, “Advanced multi-objective and surrogate-assisted optimization of topologically diverse metasurface architectures,” Proc. SPIE 10719, 107190U (2018).
[Crossref]

Zhu, J.

Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
[Crossref]

Zhu, X.-F.

Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
[Crossref]

Zhu, Y.

Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, “Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data,” J. Comput. Phys. 394, 56–81 (2019).
[Crossref]

Zhu, Z.

Ziatdinov, M.

M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
[Crossref]

Ziegler, D. M.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

Zimmer, C.

W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, “Deep learning massively accelerates super-resolution localization microscopy,” Nat. Biotechnol. 36, 460–468 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles,” ACS Appl. Mater. Interfaces 11, 24264–24268 (2019).
[Crossref]

ACS Nano (4)

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13, 8872–8878 (2019).
[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12, 6326–6334 (2018).
[Crossref]

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces,” ACS Nano 8, 6390–6399 (2014).
[Crossref]

M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations,” ACS Nano 11, 12742–12752 (2017).
[Crossref]

ACS Photon. (1)

D. Mengu, Y. Rivenson, and A. Ozcan, “Scale-, shift- and rotation-invariant diffractive optical networks,” ACS Photon. 8, 324–334 (2021).
[Crossref]

ACS Photonics (9)

D. Z. Zhu, E. B. Whiting, S. D. Campbell, D. B. Burckel, and D. H. Werner, “Optimal high efficiency 3D plasmonic metasurface elements revealed by lazy ants,” ACS Photonics 6, 2741–2748 (2019).
[Crossref]

Y. Augenstein and C. Rockstuhl, “Inverse design of nanophotonic devices with structural integrity,” ACS Photonics 7, 2190–2196 (2020).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics 6, 3196–3207 (2019).
[Crossref]

C. Yeung, J.-M. Tsai, B. King, Y. Kawagoe, D. Ho, M. Knight, and A. P. Raman, “Elucidating the behavior of nanophotonic structures through explainable machine learning algorithms,” ACS Photonics 7, 2309–2318 (2020).
[Crossref]

Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljačić, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6, 1168–1174 (2019).
[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5, 1365–1369 (2018).
[Crossref]

F. Wen, J. Jiang, and J. A. Fan, “Robust freeform metasurface design based on progressively growing generative networks,” ACS Photonics 7, 2098–2104 (2020).
[Crossref]

R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of layered photonic structures,” ACS Photonics 7, 2703–2712 (2020).
[Crossref]

Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H. Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A. Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5, 2354–2364 (2018).
[Crossref]

Adv. Intell. Syst. (1)

Y. Kiarashinejad, M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar, R. Pourabolghasem, and A. Adibi, “Knowledge discovery in nanophotonics using geometric deep learning,” Adv. Intell. Syst. 2, 1900132 (2020).
[Crossref]

Adv. Mater. (2)

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. 31, 1901111 (2019).
[Crossref]

L. Gao, X. Li, D. Liu, L. Wang, and Z. Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. 31, 1905467 (2019).
[Crossref]

Adv. Photonics Res. (1)

J. Trisno, H. Wang, H. T. Wang, R. J. H. Ng, S. D. Rezaei, and J. K. W. Yang, “Applying machine learning to the optics of dielectric nano-blobs,” Adv. Photonics Res. 1, 2000068 (2020).
[Crossref]

Adv. Quantum Technol. (1)

Z. A. Kudyshev, S. I. Bogdanov, T. Isacsson, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Rapid classification of quantum sources enabled by machine learning,” Adv. Quantum Technol. 3, 2000067 (2020).
[Crossref]

Adv. Sci. (1)

T. Pu, J.-Y. Ou, V. Savinov, G. Yuan, N. Papasimakis, and N. Zheludev, “Unlabeled far-field deeply subwavelength topological microscopy (DSTM),” Adv. Sci. 8, 2002886 (2020).
[Crossref]

Adv. Theor. Simul. (1)

Y. Kiarashinejad, S. Abdollahramezani, M. Zandehshahvar, O. Hemmatyar, and A. Adibi, “Deep learning reveals underlying physics of light–matter interactions in nanophotonic devices,” Adv. Theor. Simul. 2, 1900088 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

T. Pu, J. Y. Ou, N. Papasimakis, and N. I. Zheludev, “Label-free deeply subwavelength optical microscopy,” Appl. Phys. Lett. 116, 131105 (2020).
[Crossref]

C. L. Cortes, S. Adhikari, X. Ma, and S. K. Gray, “Accelerating quantum optics experiments with statistical learning,” Appl. Phys. Lett. 116, 184003 (2020).
[Crossref]

Appl. Phys. Rev. (2)

C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A. Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-Loaiza, “Identification of light sources using machine learning,” Appl. Phys. Rev. 7, 021404 (2020).
[Crossref]

A. Argun, T. Thalheim, S. Bo, F. Cichos, and G. Volpe, “Enhanced force-field calibration via machine learning,” Appl. Phys. Rev. 7, 041404 (2020).
[Crossref]

Br. J. Radiol. (1)

S. Chan and E. L. Siegel, “Will machine learning end the viability of radiology as a thriving medical specialty?” Br. J. Radiol. 92, 20180416 (2018).
[Crossref]

Contemp. Phys. (1)

M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemp. Phys. 56, 172–185 (2015).
[Crossref]

Crystals (1)

A. D. Phan, C. V. Nguyen, P. T. Linh, T. V. Huynh, V. D. Lam, A.-T. Le, and K. Wakabayashi, “Deep learning for the inverse design of mid-infrared graphene plasmons,” Crystals 10, 125 (2020).
[Crossref]

Found. Trends Mach. Learn. (1)

D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” Found. Trends Mach. Learn. 12, 307–392 (2019).
[Crossref]

IEEE Access (2)

Z. Fang and J. Zhan, “Deep physical informed neural networks for metamaterial design,” IEEE Access 8, 24506–24513 (2020).
[Crossref]

Y. Li, Y. Wang, S. Qi, Q. Ren, L. Kang, S. D. Campbell, P. L. Werner, and D. H. Werner, “Predicting scattering from complex nano-structures via deep learning,” IEEE Access 8, 139983 (2020).
[Crossref]

IEEE J. Emerging Sel. Top. Circuits Syst. (1)

Z. Liu, L. Raju, D. Zhu, and W. Cai, “A hybrid strategy for the discovery and design of photonic structures,” IEEE J. Emerging Sel. Top. Circuits Syst. 10, 126–135 (2020).
[Crossref]

IEEE J. Sel. Areas Inform. Theor. (1)

G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in imaging,” IEEE J. Sel. Areas Inform. Theor. 1, 39–56 (2020).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. S. Hegde, “Photonics inverse design: pairing deep neural networks with evolutionary algorithms,” IEEE J. Sel. Top. Quantum Electron. 26, 7700908 (2020).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

IEEE Trans. Evol. Comput. (1)

J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep neural networks,” IEEE Trans. Evol. Comput. 23, 828–841 (2019).
[Crossref]

IEEE Trans. Image Process. (1)

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

H. Kabir, Y. Wang, M. Yu, and Q.-J. Zhang, “Neural network inverse modeling and applications to microwave filter design,” IEEE Trans. Microwave Theory Tech. 56, 867–879 (2008).
[Crossref]

C. Zhang, J. Jin, W. Na, Q.-J. Zhang, and M. Yu, “Multivalued neural network inverse modeling and applications to microwave filters,” IEEE Trans. Microwave Theory Tech. 66, 3781–3797 (2018).
[Crossref]

J. Comput. Phys. (5)

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys. 378, 686–707 (2019).
[Crossref]

H. Gao, L. Sun, and J.-X. Wang, “PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain,” J. Comput. Phys. 428, 110079 (2020).
[Crossref]

Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, “Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data,” J. Comput. Phys. 394, 56–81 (2019).
[Crossref]

F. Meng, X. Huang, and B. Jia, “Bi-directional evolutionary optimization for photonic band gap structures,” J. Comput. Phys. 302, 393–404 (2015).
[Crossref]

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79, 12–49 (1988).
[Crossref]

J. Opt. (1)

G. C. des Francs, J. Barthes, A. Bouhelier, J. C. Weeber, A. Dereux, A. Cuche, and C. Girard, “Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources,” J. Opt. 18, 094005 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. B 41, 074019 (2008).
[Crossref]

J. Phys. D (2)

X. Shi, T. Qiu, J. Wang, X. Zhao, and S. Qu, “Metasurface inverse design using machine learning approaches,” J. Phys. D 53, 275105 (2020).
[Crossref]

A. Mall, A. Patil, D. Tamboli, A. Sethi, and A. Kumar, “Fast design of plasmonic metasurfaces enabled by deep learning,” J. Phys. D 53, 49LT01 (2020).
[Crossref]

Laser Photonics Rev. (3)

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5, 308–321 (2011).
[Crossref]

B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges,” Laser Photonics Rev. 9, 577–603 (2015).
[Crossref]

M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, and P. Genevet, “Numerical optimization methods for metasurfaces,” Laser Photonics Rev. 14, 1900445 (2020).
[Crossref]

Light Sci. Appl. (4)

J. Zhou, B. Huang, Z. Yan, and J.-C. G. Bünzli, “Emerging role of machine learning in light-matter interaction,” Light Sci. Appl. 8, 1 (2019).
[Crossref]

I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via deep learning,” Light Sci. Appl. 7, 60 (2018).
[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydn, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).
[Crossref]

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light Sci. Appl. 7, 69 (2018).
[Crossref]

Mach. Learn. Sci. Technol. (2)

I. C. D. Lenton, G. Volpe, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Machine learning reveals complex behaviours in optically trapped particles,” Mach. Learn. Sci. Technol. 1, 045009 (2020).
[Crossref]

H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. 2, 025013 (2021).
[Crossref]

Nano Lett. (4)

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18, 6570–6576 (2018).
[Crossref]

J. Jiang and J. A. Fan, “Global optimization of dielectric metasurfaces using a physics-driven neural network,” Nano Lett. 19, 5366–5372 (2019).
[Crossref]

P. R. Wiecha and O. L. Muskens, “Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures,” Nano Lett. 20, 329–338 (2020).
[Crossref]

B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick, “Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase,” Nano Lett. 14, 933–938 (2014).
[Crossref]

Nanophotonics (8)

J. N. Kutz and S. L. Brunton, “Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics,” Nanophotonics 4, 459–471 (2015).
[Crossref]

Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine learning assisted global optimization of photonic devices,” Nanophotonics 10, 371–383 (2020).
[Crossref]

K. Yao, R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8, 339–366 (2019).
[Crossref]

S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled inverse design in nanophotonics,” Nanophotonics 9, 1041–1057 (2020).
[Crossref]

J. Jiang and J. A. Fan, “Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks,” Nanophotonics 10, 361–369 (2020).
[Crossref]

C. Yeung, J.-M. Tsai, B. King, B. Pham, J. Liang, D. Ho, M. W. Knight, and A. P. Raman, “Designing multiplexed supercell metasurfaces with tandem neural networks,” Nanophotonics 10, 1133–1143 (2021).
[Crossref]

T. Asano and S. Noda, “Iterative optimization of photonic crystal nanocavity designs by using deep neural networks,” Nanophotonics 8, 2243–2256 (2019).
[Crossref]

S. So and J. Rho, “Designing nanophotonic structures using conditional deep convolutional generative adversarial networks,” Nanophotonics 8, 1255–1261 (2019).
[Crossref]

Nanoscale Adv. (1)

R. S. Hegde, “Deep learning: a new tool for photonic nanostructure design,” Nanoscale Adv. 2, 1007–1023 (2020).
[Crossref]

Nanotechnology (1)

G. M. Sacha and P. Varona, “Artificial intelligence in nanotechnology,” Nanotechnology 24, 452002 (2013).
[Crossref]

Nat. Biotechnol. (1)

W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, “Deep learning massively accelerates super-resolution localization microscopy,” Nat. Biotechnol. 36, 460–468 (2018).
[Crossref]

Nat. Commun. (3)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and L. You, “Massive computational acceleration by using neural networks to emulate mechanism-based biological models,” Nat. Commun. 10, 4354 (2019).
[Crossref]

M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, and G. Genty, “Machine learning analysis of extreme events in optical fibre modulation instability,” Nat. Commun. 9, 4923 (2018).
[Crossref]

Nat. Methods (2)

P. Zhang, S. Liu, A. Chaurasia, D. Ma, M. J. Mlodzianoski, E. Culurciello, and F. Huang, “Analyzing complex single-molecule emission patterns with deep learning,” Nat. Methods 15, 913–916 (2018).
[Crossref]

E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods 17, 734–740 (2020).
[Crossref]

Nat. Nanotechnol. (3)

P. R. Wiecha, A. Lecestre, N. Mallet, and G. Larrieu, “Pushing the limits of optical information storage using deep learning,” Nat. Nanotechnol. 14, 237–244 (2019).
[Crossref]

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12, 163–169 (2017).
[Crossref]

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Nat. Photonics (4)

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, “Deep learning for the design of photonic structures,” Nat. Photonics 15, 77–90 (2020).
[Crossref]

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Nat. Rev. Mater. (1)

F. Zangeneh-Nejad, D. L. Sounas, A. Alù, and R. Fleury, “Analogue computing with metamaterials,” Nat. Rev. Mater. 6, 207–225 (2021).
[Crossref]

Nat. Rev. Phys. (1)

M. Krenn, M. Erhard, and A. Zeilinger, “Computer-inspired quantum experiments,” Nat. Rev. Phys. 2, 649–661 (2020).
[Crossref]

Nature (2)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
[Crossref]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).
[Crossref]

npj Quantum Inf. (1)

A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D. Biamonte, and S. Kulik, “Experimental neural network enhanced quantum tomography,” npj Quantum Inf. 6, 20 (2020).
[Crossref]

Opt Express (1)

Y. Chen, L. Lu, G. E. Karniadakis, and L. D. Negro, “Physics-informed neural networks for inverse problems in nano-optics and metamaterials,” Opt Express 28, 11618–11633 (2020).
[Crossref]

Opt. Express (11)

B. Hu, B. Wu, D. Tan, J. Xu, J. Xu, Y. Chen, and Y. Chen, “Robust inverse-design of scattering spectrum in core-shell structure using modified denoising autoencoder neural network,” Opt. Express 27, 36276–36285 (2019).
[Crossref]

M. D. Hannel, A. Abdulali, M. O’Brien, and D. G. Grier, “Machine-learning techniques for fast and accurate feature localization in holograms of colloidal particles,” Opt. Express 26, 15221–15231 (2018).
[Crossref]

A. Yevick, M. Hannel, and D. G. Grier, “Machine-learning approach to holographic particle characterization,” Opt. Express 22, 26884–26890 (2014).
[Crossref]

Z. Liu, Z. Liu, Z. Zhu, and W. Cai, “Topological encoding method for data-driven photonics inverse design,” Opt. Express 28, 4825–4835 (2020).
[Crossref]

C. C. Nadell, B. Huang, J. M. Malof, and W. J. Padilla, “Deep learning for accelerated all-dielectric metasurface design,” Opt. Express 27, 27523–27535 (2019).
[Crossref]

S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H. Zhang, “Deep learning modeling approach for metasurfaces with high degrees of freedom,” Opt. Express 28, 31932–31942 (2020).
[Crossref]

S. Shao, S. Shao, K. Mallery, K. Mallery, S. S. Kumar, S. S. Kumar, J. Hong, and J. Hong, “Machine learning holography for 3D particle field imaging,” Opt. Express 28, 2987–2999 (2020).
[Crossref]

P. R. Wiecha, P. R. Wiecha, C. Majorel, C. Girard, A. Cuche, V. Paillard, O. L. Muskens, and A. Arbouet, “Design of plasmonic directional antennas via evolutionary optimization,” Opt. Express 27, 29069–29081 (2019).
[Crossref]

R. French, S. Gigan, and O. L. Muskens, “Snapshot fiber spectral imaging using speckle correlations and compressive sensing,” Opt. Express 26, 32302–32316 (2018).
[Crossref]

U. Kürüm, P. R. Wiecha, R. French, and O. L. Muskens, “Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array,” Opt. Express 27, 20965–20979 (2019).
[Crossref]

R. Horisaki, R. Takagi, and J. Tanida, “Learning-based imaging through scattering media,” Opt. Express 24, 13738–13743 (2016).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Opt. Rev. (1)

Y. Nishizaki, R. Horisaki, K. Kitaguchi, M. Saito, and J. Tanida, “Analysis of non-iterative phase retrieval based on machine learning,” Opt. Rev. 27, 136–141 (2020).
[Crossref]

Optica (10)

N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5, 960–966 (2018).
[Crossref]

S. Helgadottir, A. Argun, and G. Volpe, “Digital video microscopy enhanced by deep learning,” Optica 6, 506–513 (2019).
[Crossref]

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]

Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).
[Crossref]

E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-STORM: super-resolution single-molecule microscopy by deep learning,” Optica 5, 458–464 (2018).
[Crossref]

J. Moughames, X. Porte, M. Thiel, G. Ulliac, L. Larger, M. Jacquot, M. Kadic, and D. Brunner, “Three-dimensional waveguide interconnects for scalable integration of photonic neural networks,” Optica 7, 640–646 (2020).
[Crossref]

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3, 1460–1465 (2016).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

L. Yunzhe, X. Yujia, and T. Lei, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” Optica 5, 1181–11819 (2018).
[Crossref]

H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, and L. Waller, “Deep learning for single-shot autofocus microscopy,” Optica 6, 794–797 (2019).
[Crossref]

OSA Contin. (1)

A.-P. Blanchard-Dionne and O. J. F. Martin, “Successive training of a generative adversarial network for the design of an optical cloak,” OSA Contin. 4, 87–95 (2021).
[Crossref]

Photon. Res. (1)

Phys. Chem. Chem. Phys. (1)

T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning,” Phys. Chem. Chem. Phys. 22, 2337–2342 (2020).
[Crossref]

Phys. Rev. A (1)

R. Selle, G. Vogt, T. Brixner, G. Gerber, R. Metzler, and W. Kinzel, “Modeling of light-matter interactions with neural networks,” Phys. Rev. A 76, 023810 (2007).
[Crossref]

Phys. Rev. Appl. (1)

A. Sheverdin, F. Monticone, and C. Valagiannopoulos, “Photonic inverse design with neural networks: the case of invisibility in the visible,” Phys. Rev. Appl. 14, 024054 (2020).
[Crossref]

Phys. Rev. Lett. (4)

R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner, “Discovering physical concepts with neural networks,” Phys. Rev. Lett. 124, 010508 (2020).
[Crossref]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel, “Active learning machine learns to create new quantum experiments,” Proc. Natl. Acad. Sci. USA 115, 1221–1226 (2018).
[Crossref]

J. M. Newby, A. M. Schaefer, P. T. Lee, M. G. Forest, and S. K. Lai, “Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D,” Proc. Natl. Acad. Sci. USA 115, 9026–9031 (2018).
[Crossref]

Proc. SPIE (1)

S. D. Campbell, D. Z. Zhu, E. B. Whiting, J. Nagar, D. H. Werner, and P. L. Werner, “Advanced multi-objective and surrogate-assisted optimization of topologically diverse metasurface architectures,” Proc. SPIE 10719, 107190U (2018).
[Crossref]

Quantum Sci. Technol. (1)

A. Youssry, R. J. Chapman, A. Peruzzo, C. Ferrie, and M. Tomamichel, “Modeling and control of a reconfigurable photonic circuit using deep learning,” Quantum Sci. Technol. 5, 025001 (2020).
[Crossref]

Rep. Prog. Phys. (2)

C. Girard, “Near fields in nanostructures,” Rep. Prog. Phys. 68, 1883–1933 (2005).
[Crossref]

D. Piccinotti, K. F. MacDonald, S. Gregory, I. Youngs, and N. I. Zheludev, “Artificial intelligence for photonics and photonic materials,” Rep. Prog. Phys. 84, 012401 (2020).
[Crossref]

Research (1)

Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li, A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures,” Research 2020, 8757403 (2020).
[Crossref]

Sci. Adv. (3)

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4, eaar4206 (2018).
[Crossref]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).
[Crossref]

T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan, “Wave physics as an analog recurrent neural network,” Sci. Adv. 5, eaay6946 (2019).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

W. Ma and Y. Liu, “A data-efficient self-supervised deep learning model for design and characterization of nanophotonic structures,” Sci. China Phys. Mech. Astron. 63, 284212 (2020).
[Crossref]

Sci. Rep. (3)

I. Sajedian, H. Lee, and J. Rho, “Double-deep Q-learning to increase the efficiency of metasurface holograms,” Sci. Rep. 9, 10899 (2019).
[Crossref]

R. Trivedi, L. Su, J. Lu, M. F. Schubert, and J. Vuckovic, “Data-driven acceleration of photonic simulations,” Sci. Rep. 9, 19728 (2019).
[Crossref]

J. M. Ede and R. Beanland, “Partial scanning transmission electron microscopy with deep learning,” Sci. Rep. 10, 8332 (2020).
[Crossref]

Science (5)

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

N. M. Estakhri, B. Edwards, and N. Engheta, “Inverse-designed metastructures that solve equations,” Science 363, 1333–1338 (2019).
[Crossref]

M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations,” Science 367, 1026–1030 (2020).
[Crossref]

TRAC Trends Anal. Chem. (1)

D. A. Cirovic, “Feed-forward artificial neural networks: applications to spectroscopy,” TRAC Trends Anal. Chem. 16, 148–155 (1997).
[Crossref]

Z. Med. Phys. (1)

A. S. Lundervold and A. Lundervold, “An overview of deep learning in medical imaging focusing on MRI,” Z. Med. Phys. 29, 102–127 (2019).
[Crossref]

Other (23)

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings of Advances in Neural Information Processing System (2020), pp. 1877–1901.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-ResNet and the impact of residual connections on learning,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2016), pp. 4278–4284.

J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evaluation and design of photonic devices,” arXiv:2007.00084 (2020).

L. Huang, L. Xu, and A. E. Miroshnichenko, “Deep learning enabled nanophotonics,” in Advances in Deep Learning (InTech, 2020).
[Crossref]

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).

S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design with a generative adversarial network,” arXiv:1908.04851 (2020).

R. Pestourie, Y. Mroueh, T. V. Nguyen, P. Das, and S. G. Johnson, “Active learning of deep surrogates for PDEs: application to metasurface design,” arXiv:2008.12649 (2020).

T. Chugh, C. Sun, H. Wang, and Y. Jin, “Surrogate-assisted evolutionary optimization of large problems,” in High-Performance Simulation-Based Optimization, T. Bartz-Beielstein, B. Filipič, P. Korošec, and E.-G. Talbi, eds. (Springer, 2020), pp. 165–187.

X. Porte, A. Skalli, N. Haghighi, S. Reitzenstein, J. A. Lott, and D. Brunner, “A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser,” arXiv:2012.11153 (2020).

M. V. Zhelyeznyakov, S. L. Brunton, and A. Majumdar, “Deep learning to accelerate Maxwell’s equations for inverse design of dielectric metasurfaces,” arXiv:2008.10632 (2020).

B. Moseley, A. Markham, and T. Nissen-Meyer, “Solving the wave equation with physics-informed deep learning,” arXiv:2006.11894 (2020).

Y. Kiarashinejad, S. Abdollahramezani, and A. Adibi, “Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures,” arXiv:1902.03865 (2019).

C. Yeung, J.-M. Tsai, Y. Kawagoe, B. King, D. Ho, and A. P. Raman, “Elucidating the design and behavior of nanophotonic structures through explainable convolutional neural networks,” arXiv:2003.06075 (2020).

M. Elzouka, C. Yang, A. Albert, S. Lubner, and R. S. Prasher, “Interpretable inverse design of particle spectral emissivity using machine learning,” arXiv:2002.04223 (2020).

B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou, J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E. Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H. Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J. Kong, “Deep learning enabled fast optical characterization of two-dimensional materials,” arXiv:1906.11220 (2019).

B. Midtvedt, E. Olsén, F. Eklund, F. Höök, C. B. Adiels, G. Volpe, and D. Midtvedt, “Holographic characterisation of subwavelength particles enhanced by deep learning,” arXiv:2006.11154 (2020).

H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer optical design via deep reinforcement learning,” Mach. Learn. Sci. Technol. (2020).

J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neural networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds. (Curran Associates, 2012), Vol. 25, pp. 341–349.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” arXiv:1505.04597 (2015).

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, 2001), Vol. 16.

X. Li, J. Dong, B. Li, Y. Zhang, Y. Zhang, A. Veeraraghavan, and X. Ji, “Fast confocal microscopy imaging based on deep learning,” in IEEE International Conference on Computational Photography (ICCP) (2020), pp. 1–12.

“Google says sorry for racist auto-tag in photo app,” https://www.theguardian.com/technology/2015/jul/01/google-sorry-racist-auto-tag-photo-app (2015).

A. Ghosh, D. J. Roth, L. H. Nicholls, W. P. Wardley, A. V. Zayats, and V. A. Podolskiy, “Machine learning—based diffractive imaging with subwavelength resolution,” arXiv:2005.03595 (2020).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Deep-learning-based forward solvers for ultra-fast physics predictions. (a) Simultaneous electric and magnetic dipole resonance prediction and inverse design in multi-layer nano-spheres. Adapted with permission from [56], copyright (2019) American Chemical Society. (b) Nano-optics solver network, which predicts the optical response of a grating based on multiple Lorentz oscillators. As shown in the right panel, the physics-based data representation allows the network to generalize well outside the range of the training data (blue points). Adapted with permission from [57], copyright (2020) Optical Society of America. (c) Internal electric polarization density predictor network. The results can be used in a coupled dipole approximation framework to calculate a large number of secondary near- and far-field effects. Adapted with permission from [58], copyright (2020) American Chemical Society.
Fig. 2.
Fig. 2. Examples of devices inverse designed by ML algorithms. (a) Encoder–decoder type tandem inverse network used to design perturbation patterns for 3×3 MMIs as arbitrary transmission matrix elements. The light routing behavior of the second and the third input channels is interchanged between cases (i) and (ii), while the first input channel keeps routing light to the second output. Adapted with permission from [84], copyright (2021) American Chemical Society. (b) Double-focus flat lens designed by a conditional WGAN inverse network. (i) shows the dielectric metasurface, (ii) the corresponding amplitude, and (iii) the phase mask. (iv) shows a numerical simulation of the field intensity to test the ANN design. Adapted with permission from [73].
Fig. 3.
Fig. 3. Concepts to improve common shortcomings of inverse design ANNs. (a) Iterative training data generation, in which a network learns from its own errors, here applied to the inverse design of an invisibility cloak device. Adapted from [89], copyright (2021) Optical Society of America. (b) Comparison of the Q-factors for photonic crystal cavities in a random dataset (left) and in an iteratively generated dataset after the first iteration (right). Adapted from [94], copyright (2019) de Gruyter. (c) Together with the training data, the network complexity can be progressively growing, allowing even better performance by successive learning of smaller features. Reprinted with permission from [95], copyright (2020) American Chemical Society. (d) Mixture density ANN which represents multiple solutions with Gaussian probability distributions to find several non-unique solutions to ambiguous problems. The shown example deals with the spectral design of a multi-layer stack. Adapted with permission from [100], copyright (2020) American Chemical Society. (e) De-noising inverse ANN as robust approach for training on noisy data (noise parameter a increasing from top to bottom). Adapted from [101], copyright (2019) Optical Society of America. (f) “GLOnet”: inverse design ANN using a transfer-matrix model loss for reflectivity and transmission spectra optimization of multi-layer stacks. Adapted from [97], copyright (2020) de Gruyter.
Fig. 4.
Fig. 4. Examples of input data pre-processing for optimized physics domain representation. (a),(b) Deep learning on irregular grids via coordinate transform (a) which is implemented within the deep learning toolkit to allow fast gradient calculations through the coordinate system transformation. (b) The transformation allows to efficiently train networks on complex-shaped physical domains. Adapted with permission from [109], copyright (2020) Elsevier. (c) Data encoding and compression using a topology description based on low-frequency Fourier components, which allows data-efficient treatment of complex shapes, here for example a free-form metagrating. Adapted from [110], copyright (2020) Optical Society of America.
Fig. 5.
Fig. 5. Physics-informed neural networks (PINNs) for nano-optics. (a) PINN for solving the wave equation in the time domain. Adapted with permission from [116]. (b) Top: solving the Helmholtz equation (frequency domain); bottom: using the PINN for inverse design of the permittivity distribution in domain Ω1 for an invisibility cloak application. Adapted with permission from [102], copyright (2020) IEEE.
Fig. 6.
Fig. 6. Examples of “knowledge discovery” through machine learning. (a) The feasibility of a physical response by a defined geometric model can be assessed by a dimensionality reduction through an autoencoder neural network and subsequent non-convex hull determination. Adapted from [121], copyright (2019) the authors. (b) Study of the impact of the number of bottleneck neurons N (left spectra) as well as of nano-structure design variations on the activation of the bottleneck neurons (W1–W4 in case N=4, yellow neurons in the top right panel). This analysis allows to assess the physical importance of individual design parameters and reveals information about the complexity of the optical response. Adapted with permission from [117], copyright (2019) John Wiley and Sons. (c), (d) By mimicking the human approach of interpreting and modeling physical observations (c), a conditional encoder–decoder network (d) can be used to discover implicit physics concepts from data. Reprinted with permission from [120], copyright (2020) APS. (e) Exploiting the high speed of a physics predictor network permits a systematic analysis of the achievable phase and intensity variations in metasurface constituent design. Adapted from [122], copyright (2020) Optical Society of America.
Fig. 7.
Fig. 7. Examples of ML applications in experimental data interpretation. (a)–(c) ANN used to decode information from optical information storage via a spectral scattering analysis from sub-diffraction small nano-structures. (a) Each bit sequence is encoded by a specific geometry which is designed such that it possesses a unique scattering spectrum. (b) A neural network is trained on a large amount of spectra such that it learns to decode noisy spectra of formerly not seen structures. (c) Even if only few wavelengths are probed, the readout accuracy of the network is excellent. Adapted with permission from [130], copyright (2019) Springer Nature. (d), (e) Holographic anthrax spore classification via holography microscopy. A machine learning algorithm is trained on phase images of different spore species, as depicted in (d). The neural network is capable to classify five different anthrax species with a very high accuracy. Adapted from [131], copyright (2017) the authors. (f) Microscopy force field calibration (top left, green line: trapping potential; dots: reconstructed potential). Evaluation of U(x) via ANN-based analysis of Brownian motion from undersampled statistical data (top right). Comparison of reconstruction fidelity of ANN (bottom left) and conventional method (bottom right). Ground truth is indicated by a black dashed line. Adapted from [134], copyright (2020) the authors. (g) ANN enabled real-time hyper-spectral image reconstruction from speckle patterns produced by a multi-core multi-mode fiber bundle (MCMMF). The technique exploits the wavelength dependence of the speckle patterns. Adapted from [152], copyright (2019) Optical Society of America. (h) Scheme depicting the use of machine learning for statistics reconstruction of few-shot data acquisitions. Reprinted from [160], with the permission of AIP Publishing.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L(wi,bj)=1Nl=1N[ytrain,lyANN(xtrain,l)]2,

Metrics

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved