Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-order sideband optical properties of a DNA–quantum dot hybrid system [Invited]

Open Access Open Access

Abstract

High-order sideband nonlinear optical properties in a DNA–quantum dot coupled system are investigated theoretically here. In this paper, we demonstrate the significant enhancement of the third- and fifth-order optical nonlinear properties of the system by applying the pump-probe technique with pump-exciton detuning tuned to zero. It is shown clearly that these phenomena cannot occur without the DNA–quantum dot coupling, implying some potential applications like DNA detection. We can also obtain and tune the significantly amplified sideband beams at frequencies ωp±2ωD. This research could provide people a deeper insight into the nonlinear optical behaviors in coupled DNA–quantum dot systems.

© 2013 Chinese Laser Press

1. INTRODUCTION

Numerous investigations on high-order nonlinear optical properties, theoretically or experimentally, have been performed. High-order optical nonlinearities in various materials, such as nanoparticles [13], InN thin films [4], chalcogenide glasses [5], chalcone and its derivatives [6], BSO and BGO crystals [7], and C60- and C70- toluene solutions [810] have been exhibited. Among the wide varieties of materials, biomaterials are some of the most attractive, since they repeatedly present special properties that are not easily detected in inorganic or even organic materials and are usually biodegradable. A type of biomaterial, namely DNA, always appeals to the attention of researchers as an optoelectronic material. With its large dielectric constant and large bandgap [11], a thin film of DNA-cetyltrimethylammonium is utilized in applications as a cladding and host material in nonlinear optical devices, organic light-emitting diodes, and organic field-effect transistors. DNA-based polymers are employed in optically pumped organic solid-state lasers [12]. A more profound comprehension of the high-order nonlinear optical features of DNA will offer more probabilities for new applications. Therefore, voluminous explorations on nonlinear optical properties of DNA materials have been carried out. Samoc et al. have considered the nonlinear refractive index and the two-photon absorption coefficient of native (sodium salt) DNA [13]. Krupka et al. examined the third-order nonlinear optical properties of thin films of DNA-based complexes with an optical third-harmonic generation technique [14]. Nonlinear optical properties of different materials based on DNA are underway currently.

In this article, we intend to analyze some high-order nonlinear optical properties in a DNA–quantum dot (DNA-QD) coupled system theoretically, which have remained unexplored to date. Since quantum-dot-assisted DNA detection is a promising method for rapid and highly sensitive detection of DNA [15] and even more interesting applications could be exploited, it is important to gain a deeper insight into the high-order nonlinearities of a DNA-QD system. DNA molecules coupled to the peptide quantum dot are driven by pump and probe beams. Several groups have realized a pump-probe technique [1620], indicating the probability for experimental implementation.

Since metallic quantum dots applied in biological assays are always noxious, the peptide quantum dot, which has no noxiousness to the environment and biological tissues, is a better choice [21,22]. Most recently, the coherent optical spectrum in such a DNA-QD system has been discussed by Li and Zhu [23].

In the present system, the vibration mode of DNA molecules makes such a great contribution that the high-order optical properties could be enhanced significantly. These properties would also be switched by altering the intensity of the pump beam, and the other parameters remain unchanged. In sight of these novel features, we state briefly a potential approach to measure the frequency of the vibration mode of DNA molecules.

2. THEORY

We investigate one of the large amounts of DNA-QDs in an actual reagent, which is displayed in Fig. 1. A strong pump field and a weak probe field act on the DNA-QD system. The Hamiltonian of this system in a rotating frame at ωp can be expressed as [23]

H=Δpsz+i=1n(pi22mi+12miωi2qi2)Ωp(s++s)+ϑszμ[Ess+exp(iδt)+Es*sexp(iδt)],
where sz, s+, and s describe pseudo-1/2 spin (representing the two-level quantum dot), Δp=ωegωp, ϑ=j=1nκjqj, Ωp=μEp/ is the Rabi frequency, and δ=ωsωc is the probe-pump detuning.

 figure: Fig. 1.

Fig. 1. DNA and peptide quantum dot coupling system: a peptide quantum dot coupled to DNA molecules in the simultaneous presence of two optical fields. The energy level structure of the quantum dot dressed by the vibrational modes of DNA molecules is also shown.

Download Full Size | PPT Slide | PDF

Then we can obtain the equations of motion for sz, s, and ϑ via the Heisenberg equation and introduce some damping parameters (Γ1, Γ2 and τD [24]) just as we usually do. Γ1 is the exciton relaxation rate, and Γ2 is the dephasing rate. τD is the vibrational lifetime of DNA. According to [2528], Γ1 and Γ2 could be expressed as Γ1=ν1[1+2N(ωeg)]/ and Γ2=ν1[1+2N(ωeg)]/2+2ν2[1+2N(0)]/, where ν1=2πDx(ωeg), ν2=2πDz(0), Dx and Dz are the spectral densities of the respective environments coupled through sx and sz to the exciton, and N(ω)=1/[exp(ω/kBT)1] is the Boltzman–Einstein distribution of the thermal equilibrium environments. Provided the pure dephasing coupling term is neglected (ν2=0), Γ1 and Γ2 have the relation Γ1=2Γ2, which we adopt in this report. Introducing the corresponding damping and noise terms [29,30], then the equations are as follows:

dszdt=Γ1(sz+1/2)+iΩp(s+s)+iμEsexp(iδt)s+iμEs*exp(iδt)s,
dsdt=(iΔp+iϑ+Γ2)s2iΩpsz2iμEsexp(iδt)sz+Fn,
d2ϑdt2+dϑτDdt+ωD2ϑ=λωD2sz+ξn,
where λ=j=1n(κj2)/(mjωD2) is the coupling strength of DNA molecules and the quantum dot. In the relatively small volume of aqueous solution here, the longitudinal vibration modes of DNA decay much slower than the other vibration modes [31]. Furthermore, the only longitudinal vibration modes with high frequency should remain since longitudinal vibration modes with low frequency attenuate much more quickly [32]. So, only relatively high-frequency modes should be taken into consideration. We ignore the small difference of ωi of high-frequency longitudinal modes and replace them with an averaged frequency ωD for simplification, which should not affect our results. The δ-correlated Langevin noise operator Fn represents the coupling between ϑ and σ, the main cause of the decay of vibration mode. Fn has zero mean value Fn=0 and the correlation relation Fn(t)Fn+(t)δ(tt). The operator ξn stands for the Brownian stochastic force, since the thermal bath of Brownian and non-Markovian processes will affect the vibration mode of DNA molecules [29,33]. The quantum effects on the DNA are only observed in the case ωDτD1. The Brownian noise operator can be modeled as Markovian with the decay rate 1/τD of the vibration mode. Therefore, the Brownian stochastic force has zero mean value ξn=0 and can be expressed as [33]
ξ+(t)ξ(t)=1τDωDω+ωcoth(ω2kBT)2πeiω(tt)dω.
With the standard methods of quantum optics, the steady-state solutions of Eqs. (2) through (4) read as follows when setting all the time derivatives to zero:
s0=2iΩpsz0iλsz0Γ2iΔp,ϑ0=λsz0,
where sz0 is determined by Eq. (7), which is
12Γ1Γ22+12Γ1Δp2=(Γ1λ2)sz03+(Γ1λ22+2Γ1λΔp)sz02+(Γ1Δp2Γ1Γ22+Γ1λΔp4Γ2Ωp2)sz0.
To extend this formalism beyond weak coupling, we can always rewrite each Heisenberg operator as the sum of its steady-state mean value and a small fluctuation with zero mean value as follows: s=s0+δs, sz=sz0+δsz, ϑ=ϑ0+δϑ, which should be substituted into Eqs. (2) through (4). Since the optical drives are weak and classical, we will identify all the operators with their expectation values and omit the quantum and thermal noise terms [16]. Then the linearized Langevin equations can be written as
δ˙sz=iΩp(δs*δs)Γ1δsz+iμEsexp(iδt)(s0*+δs*)iμEs*exp(iδt)(s0+δs),
δ˙s=(iΔp+Γ2)δs2iΩpδszi(ϑ0δs+δϑs0+δsδϑ)2iμEsexp(iδt)(sz0+δsz),
δ¨ϑ+δ˙ϑτD+ωD2δϑ=λωD2δsz.
With the ansatz δsz=sz+exp(iδt)+szexp(iδt)+sz+2exp(i2δt)+sz2exp(i2δt), δs=s+exp(iδt)+sexp(iδt)+s+2exp(i2δt)+s2exp(i2δt), and δϑ=ϑ+exp(iδt)+ϑexp(iδt)+ϑ+2exp(i2δt)+ϑ2exp(i2δt) [34], all of the equations can then be solved completely. We just list expressions for the higher-order sidebands, with which we are concerned now, as follows:
s2=Msz2+A,
s+2=M+sz+2+A++M0sz+Es,
where M=(2iΩpis0MQ*)/(Γ2+iΔp+2iδ+iϑ0), M+=(2iΩpis0MQ)/(Γ2+iΔp2iδ+iϑ0), A=iϑs/(Γ2+iΔp+2iδ+iϑ0), A+=iϑ+s+/(Γ2+iΔp2iδ+iϑ0), M0=(2iμ)/[(Γ2+iΔp2iδ+iϑ0)], MQ=λωD2/(ωD24δ22iδ/τD), and sz+2=[iΩp(A*A+)iΩpM0sz+Es+iμs*Es/]/[Γ12iδ+iΩp(M+M*)]. The lower-order terms, that is, exp(±iδt) terms, can be obtained with almost the same method.

Finally, we reach to the higher-order nonlinear optical susceptibilities as follows:

χ(ωp2ωs)eff(3)=Nμ2s+23ε0ΩpEs2=Σ3χ(3),
χ(3ωp+2ωs)eff(5)=Nμ4s25ε03Ωp3Es*2=Σ5χ(5),
where N is the number density of DNA-QDs, Σ3=(Nμ4)/(3ε03Γ23) and Σ5=(Nμ6)/(5ε05Γ25).

We can see that the electric displacement can be described by

Pall=Nμδs=ε0j=1εjEj=j=1Pj,
where j indicates beams with different frequencies. To show the generation of the sideband beams more clearly, we utilize a method similar to [34] to define
ζ3100=Im(Pωp2ωs)ωegz2cε0|Es|=NμIm(s+2)ωegz2cε0|Es|,
ζ5100=Im(P3ωp+2ωs)ωegz2cε0|Es|=NμIm(s2)ωegz2cε0|Es|,
which imply that the third-order and the fifth-order generated sideband are ζ3% and ζ5% of the amplitude of the signal beam, respectively. As we know, the imaginary part results from the damping effect, positive for absorption and negative for generation, which is just what the negative sign in the definitions of ζ3 and ζ5 refers to. To verify our method, we investigate an input–output amplitude change of a beam propagating through a kind of material whose dielectric constant is ε. The amplitude of output beam should be
Eo=Eiexp(Im(ε)ωz/2c),
where Ei, ω, z, and c are input amplitude, frequency of the beam, propagation distance, and light velocity in the vacuum, respectively. Then we have
EoEi(1Im(ε)ωz/2c).
Therefore, it is proper to regard EiIm(ε)ωz/2c as the generated (or absorbed) part. Since the differences of frequencies from exciton frequency ωeg of sideband beams are so small, they can just be presented with ωeg in our case. If ζ3(ζ5) is positive, it indicates generation, and if ζ3(ζ5) is negative, it indicates absorption.

3. RESULTS AND DISCUSSIONS

To illustrate the numerical results, we select the realistic DNA-QD system, in which a peptide quantum dot is linked with several DNA molecules as demonstrated in Fig. 1. Although DNA molecules in solution form can be distorted, we can extend these molecules into linear form with electromagnetic field or fluid force [35]. In our theoretical calculation, we choose ωD=40GHz and τD=5ns as the vibration frequency and lifetime of DNA molecules [3639]. We can safely pick Γ1=16GHz as the decay rate of the peptide quantum dot for any practical purpose [40]. As to the number density of DNA-QDs N, we can choose N=1×1016m3 [41], which is fairly enough to show our results. The exciton frequency is ωeg=2.4×105GHz [21] and propagation distance is z=0.5m. We set the amplitude of the probe beam to be 1% of the pump beam.

Figure 2(a) [2(c)] plots the third-order (fifth-order) optical dispersion Reχ(3) (Reχ(5)) and third-order (fifth-order) nonlinear absorption Imχ(3) (Imχ(5)) as functions of probe-exciton detuning Δs=ωsωeg with Δp=0 and λ=0, while Fig. 2(b) [2(d)] shows the third-order (fifth-order) optical dispersion Reχ(3) (Reχ(5)) and third-order (fifth-order) nonlinear absorption Imχ(3) (Imχ(5)) as functions of probe-exciton detuning Δs=ωsωeg with Δp=0 but λ=2GHz. This reveals that if we fix the pump beam on-resonance with the exciton and scan through the frequency spectrum, we could obtain large strengthened higher-order optical nonlinear effects at frequencies ωs=ωeg±(ωD/2) and ωs=ωeg±ωD. This phenomenon stems from the quantum interference between the vibration mode of DNA molecules and the beat of the two optical fields via the exciton when probe-pump detuning δ is adjusted equal to (or half) the frequency of the vibration mode of DNA molecules. If we ignore the coupling, then λ=0, and the enhancement of high-order optical features will disappear completely as has been demonstrated in Figs. 2(a) and 2(c). Therefore, the importance of the coupling between the quantum dot and DNA molecules is evident since the enhancement of high-order optical properties could not occur in such a system when λ=0. Furthermore, we can propose a scheme to measure the frequency of the vibration mode of DNA molecules by exploiting the phenomenon above. From Figs. 2(b) and 2(d), we can clearly see that as the frequency of the vibration mode is ωD=40GHz, the four sharp peaks appear at ±20GHz and ±40GHz, which have certain relations with the mode frequency. This means that if we first adapt the pump beam appropriately and scan the probe frequency across the exciton frequency in the spectrum, we could straightforwardly acquire the accurate vibration frequency of DNA, which suggests some potential future applications. Here is an instance. A sort of DNA molecule that experienced a mutation should have a difference in weight or length from those of original DNA, leading to a shift of the mode frequency of DNA. Then the spectrum should also be modified, that is, the four peaks or dips would drift. Since there exist four peaks and dips and their frequencies are considerably distinguished from those of pump and probe beams, they should be relieved from the disturbance of input beams and could be detected easily. This means small alterations of DNA molecules could be detected. If a normal gene of the DNA turns into a cancer genes giving rise to a shift of the frequency of DNA vibration mode, the mutation will be recognized just by scanning the spectrum.

 figure: Fig. 2.

Fig. 2. Optical dispersions and nonlinear absorptions (in units of Σ3 and Σ5 for χ(ωp2ωs)eff(3) and χ(3ωp+2ωs)eff(5), respectively) with pump beam on-resonance (Δp=0). (a) Third-order optical dispersion and nonlinear absorption as functions of probe-exciton detuning Δs in the case λ=0. (b) Third-order optical dispersion and nonlinear absorption as functions of probe-exciton detuning Δs in the case λ=2GHz. (c) Fifth-order optical dispersion and nonlinear absorption as functions of probe-exciton detuning Δs in the case λ=0. (d) Fifth-order optical dispersion and nonlinear absorption as functions of probe-exciton detuning Δs in the case λ=2GHz.

Download Full Size | PPT Slide | PDF

Figure 3 shows that the ζ3 value caused by the third-order nonlinearity (ωp2ωs term) varies with δ around two points. We choose Ωp=5GHz as the Rabi frequency of the pump beam. The only different parameter between Figs. 3(a) and 3(b) is exciton-pump detuning Δp, that is, Δp=ωD for Fig. 3(a) and Δp=1.25ωD for Fig. 3(b). We see that there are transparent windows near, though not exactly at, the points δ=ωD and δ=ωD in Figs. 3(a) and 3(b), respectively. The ζ3 value at δ/ωD=1(δ/ωD=1) in Fig. 3(a) [3(b)] is apparently larger than zero, implying that the sideband beam, whose frequency is ωp2ωD (ωp+2ωD), is amplified. The phenomenon can be understood in the point of view of parametric process, which leaves the quantum state of the material unchanged. As an example, we take the Fig. 3(a) condition into consideration. At the point δ/ωD=1 in Fig. 3(a), we can see that the transitions between the virtual levels [dashed levels in Fig. 3(c)] and the real level [solid level in Fig. 3(c)] lead to the generation of sideband beam ωp2ωD. The final quantum state of the system remains the same as the initial, as has been shown in the process. Actually, in a parametric process, population resides in the virtual levels only for a significantly short interval of the order /ΔE, where ΔE is the difference between the virtual level and the nearest real level. Intervals of those two virtual levels in the middle of the condition we analyze here is relatively large, providing sufficient time to realize the emission. This can also throw light on the dip of Fig. 4(b). The sideband generation (or absorption) effect can also be a potential approach to DNA detection.

 figure: Fig. 3.

Fig. 3. ζ3 value caused by third-order nonlinearity with pump beam off-resonance. (a) ζ3 value as a function of probe-pump detuning in the case Δp=ωD. (b) ζ3 value as a function of probe-pump detuning in the case Δp=1.25ωD. (c) Parametric process of point δ/ωD=1 in Fig. 3(a), where ωsd=ωp2ωD is the frequency of the sideband beam.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. ζ3 value by third-order nonlinearity with different Rabi frequency and exciton-pump detuning. (a) ζ3 value as a function of Rabi frequency in the case Δp=ωD and δ=ωD. (b) ζ3 value as a function of exciton-pump detuning Δp in the case δ=ωD and Ωp=5GHz.

Download Full Size | PPT Slide | PDF

The generation of the sideband beam at ωp±2ωD can be tuned by adjusting the power of the pump beam (or Rabi frequency Ωp) and exciton-pump detuning Δp, as has been shown in Fig. 4, for instance. Figure 4(a) demonstrates the ζ3 value as a function of Rabi frequency with Δp=δ=ωD, while Fig. 4(b) shows the ζ3 value as a function of exciton-pump detuning with Ωp=5GHz and δ=ωD. In Fig. 4(a), the ωp2ωD sideband beam is amplified for the most part and reaches its maximum at about 5 GHz. However, there is a suppressive window around 6 GHz. A transparent window appears in Fig. 4(b) near the point Δp=ωD, just as what we can see in Fig. 3. A more elaborative observation on Fig. 4(a) is needed. The physics origin of the dip should also be that of the Fano-like asymmetric lineshape. The vibration mode of DNA could be regarded as the supplier of a stack of levels to the quantum dot (see Fig. 1). This level stack proffers the probability of the quantum interference between the two transition processes (a part of the parametric process), namely the direct transition from |g to the stack and the indirect transition from |g through |e and the coupling to the stack. When the intensity of the pump beam is adjusted properly and a constructive or destructive interference of the two transition paths is realized, a peak or dip should come into being. The Fano-like asymmetric lineshape, which also stems from the quantum interference, is now a natural consequence.

In fact, sideband beams can also come from fifth-order nonlinearity, though much smaller than third-order. We just figure out some main properties as shown in Fig. 5. In Fig. 5(a) [Fig. 5(b)], we choose Δp=ωD and δ=ωD (δ=ωD) as the main parameters to show the ζ5 value as a function of Rabi frequency. We can see that if the pump beam is weak, sideband beams ωp±2ωD experience no generation or absorption. Only a transparent window around the Rabi frequency 6 GHz is proper if one expects to get sideband beams. The physics of Fig. 5 should have no more contents than those of Fig. 4(a).

 figure: Fig. 5.

Fig. 5. ζ5 value caused by fifth-order nonlinearity with exciton-pump detuning Δp=ωD and different δ. (a) ζ5 value as a function of Rabi frequency in the case δ=ωD. (b) ζ5 value as a function of Rabi frequency in the case δ=ωD.

Download Full Size | PPT Slide | PDF

4. CONCLUSION

In conclusion, we have proposed a theoretical model for a DNA-QD hybrid system in the presence of a strong pump beam and a weak probe beam. The coupling leads to great enhancement of higher-order susceptibilities at four points, namely Δs=±20GHz and Δs=±40GHz, which may be of potential use in frequency measurement. Furthermore, sideband beams at ωp±2ωD can be generated and tuned by adjusting some parameters properly. We believe that such a phenomenon may lead people to more knowledge of nonlinear optical properties of the coupling quantum dot-DNA system. We hope our results can be checked experimentally in the near future.

ACKNOWLEDGMENTS

This study was supported by the National Natural Science Foundation of China (Nos. 10974133 and 11274230) and the Ministry of Education Program for Ph.D.

REFERENCES

1. E. L. Falcao-Filho, B. de Araujo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007). [CrossRef]  

2. D. Rativa, R. E. de Araujo, and A. S. L. Gomes, “Nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution,” Opt. Express 16, 19244–19252 (2008). [CrossRef]  

3. R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008). [CrossRef]  

4. Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007). [CrossRef]  

5. F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000). [CrossRef]  

6. B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, “Nonlinear optical properties of 2,4,5-trimethoxy-4-nitrochalcone: observation of two-photon-induced excited-state nonlinearities,” Opt. Express 17, 1126–1135 (2009). [CrossRef]  

7. R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004). [CrossRef]  

8. E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997). [CrossRef]  

9. E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996). [CrossRef]  

10. R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011). [CrossRef]  

11. S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).

12. Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46, 1507–1513 (2007). [CrossRef]  

13. M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006). [CrossRef]  

14. O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008). [CrossRef]  

15. C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005). [CrossRef]  

16. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef]  

17. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011). [CrossRef]  

18. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011). [CrossRef]  

19. J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system,” Appl. Phys. Lett. 94, 063116 (2009). [CrossRef]  

20. W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiation pressure-induced normal mode splitting in cavity optomechanical systems,” Opt. Lett. 35, 339–341 (2010). [CrossRef]  

21. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009). [CrossRef]  

22. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010). [CrossRef]  

23. J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nano. Res. Lett. 7, 1–7 (2012). [CrossRef]  

24. C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006). [CrossRef]  

25. C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).

26. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

27. H. Carmichael, Statistical Methods in Quantum Optics (Springer, 1999).

28. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).

29. C. W. Gardiner and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phy. Rev. A 61, 033601 (2000). [CrossRef]  

30. G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994). [CrossRef]  

31. B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert. Abstr. Int. 45, 2213 (1984).

32. B. H. Dorfman and L. L. Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).

33. V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phy. Rev. A 63, 023812 (2001). [CrossRef]  

34. H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012). [CrossRef]  

35. J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995). [CrossRef]  

36. G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985). [CrossRef]  

37. C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008). [CrossRef]  

38. R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005). [CrossRef]  

39. B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002). [CrossRef]  

40. M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007). [CrossRef]  

41. Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012). [CrossRef]  

References

  • View by:

  1. E. L. Falcao-Filho, B. de Araujo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).
    [Crossref]
  2. D. Rativa, R. E. de Araujo, and A. S. L. Gomes, “Nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution,” Opt. Express 16, 19244–19252 (2008).
    [Crossref]
  3. R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
    [Crossref]
  4. Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
    [Crossref]
  5. F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
    [Crossref]
  6. B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, “Nonlinear optical properties of 2,4,5-trimethoxy-4-nitrochalcone: observation of two-photon-induced excited-state nonlinearities,” Opt. Express 17, 1126–1135 (2009).
    [Crossref]
  7. R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004).
    [Crossref]
  8. E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
    [Crossref]
  9. E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
    [Crossref]
  10. R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
    [Crossref]
  11. S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).
  12. Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46, 1507–1513 (2007).
    [Crossref]
  13. M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006).
    [Crossref]
  14. O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
    [Crossref]
  15. C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
    [Crossref]
  16. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [Crossref]
  17. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
    [Crossref]
  18. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [Crossref]
  19. J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system,” Appl. Phys. Lett. 94, 063116 (2009).
    [Crossref]
  20. W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiation pressure-induced normal mode splitting in cavity optomechanical systems,” Opt. Lett. 35, 339–341 (2010).
    [Crossref]
  21. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
    [Crossref]
  22. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
    [Crossref]
  23. J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nano. Res. Lett. 7, 1–7 (2012).
    [Crossref]
  24. C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006).
    [Crossref]
  25. C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).
  26. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
  27. H. Carmichael, Statistical Methods in Quantum Optics (Springer, 1999).
  28. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).
  29. C. W. Gardiner and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phy. Rev. A 61, 033601 (2000).
    [Crossref]
  30. G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994).
    [Crossref]
  31. B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert. Abstr. Int. 45, 2213 (1984).
  32. B. H. Dorfman and L. L. Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).
  33. V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phy. Rev. A 63, 023812 (2001).
    [Crossref]
  34. H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
    [Crossref]
  35. J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
    [Crossref]
  36. G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
    [Crossref]
  37. C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
    [Crossref]
  38. R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
    [Crossref]
  39. B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002).
    [Crossref]
  40. M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
    [Crossref]
  41. Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
    [Crossref]

2012 (3)

J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nano. Res. Lett. 7, 1–7 (2012).
[Crossref]

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[Crossref]

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[Crossref]

2011 (3)

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[Crossref]

2010 (4)

S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiation pressure-induced normal mode splitting in cavity optomechanical systems,” Opt. Lett. 35, 339–341 (2010).
[Crossref]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[Crossref]

2009 (3)

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[Crossref]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system,” Appl. Phys. Lett. 94, 063116 (2009).
[Crossref]

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, “Nonlinear optical properties of 2,4,5-trimethoxy-4-nitrochalcone: observation of two-photon-induced excited-state nonlinearities,” Opt. Express 17, 1126–1135 (2009).
[Crossref]

2008 (4)

D. Rativa, R. E. de Araujo, and A. S. L. Gomes, “Nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution,” Opt. Express 16, 19244–19252 (2008).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[Crossref]

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[Crossref]

2007 (4)

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[Crossref]

E. L. Falcao-Filho, B. de Araujo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).
[Crossref]

Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46, 1507–1513 (2007).
[Crossref]

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[Crossref]

2006 (2)

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006).
[Crossref]

C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006).
[Crossref]

2005 (2)

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[Crossref]

C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[Crossref]

2004 (1)

R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004).
[Crossref]

2002 (1)

B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002).
[Crossref]

2001 (1)

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phy. Rev. A 63, 023812 (2001).
[Crossref]

2000 (2)

C. W. Gardiner and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phy. Rev. A 61, 033601 (2000).
[Crossref]

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
[Crossref]

1997 (1)

E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
[Crossref]

1996 (1)

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[Crossref]

1995 (1)

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[Crossref]

1994 (1)

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994).
[Crossref]

1985 (1)

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[Crossref]

1984 (1)

B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert. Abstr. Int. 45, 2213 (1984).

1983 (1)

B. H. Dorfman and L. L. Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).

Adai, B. K.

B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002).
[Crossref]

Alegre, T. P. M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Allman, M. S.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[Crossref]

Amdursky, N.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[Crossref]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[Crossref]

Archer, L. A.

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[Crossref]

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Baba, M.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

Banin, U.

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[Crossref]

Barthelemy, A.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
[Crossref]

Birendra, S. T.

S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).

Bode, M.

C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006).
[Crossref]

Boltaev, G. S.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[Crossref]

Breuer, H. P.

H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).

Carmichael, H.

H. Carmichael, Statistical Methods in Quantum Optics (Springer, 1999).

Chan, J.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Chen, H. M.

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[Crossref]

Chen, Y. H.

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[Crossref]

Cicak, K.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[Crossref]

Couderc, V.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
[Crossref]

Couris, S.

E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
[Crossref]

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[Crossref]

Davis, C. C.

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[Crossref]

de Araujo, B.

de Araujo, R. E.

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Dharmaprakash, S. M.

Donega, C. M.

C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006).
[Crossref]

Dong, F.

E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
[Crossref]

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[Crossref]

Dorfman, B. H.

B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert. Abstr. Int. 45, 2213 (1984).

B. H. Dorfman and L. L. Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).

Edwards, G. S.

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[Crossref]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Falcao-Filho, E. L.

Ganeev, R. A.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004).
[Crossref]

Gardiner, C. W.

C. W. Gardiner and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phy. Rev. A 61, 033601 (2000).
[Crossref]

C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Gazit, E.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[Crossref]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[Crossref]

Ghayoury, A. E.

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[Crossref]

Gill, R.

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[Crossref]

Giovannetti, V.

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phy. Rev. A 63, 023812 (2001).
[Crossref]

Gomes, A. S. L.

Grote, J. G.

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[Crossref]

Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46, 1507–1513 (2007).
[Crossref]

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006).
[Crossref]

Gu, B.

Gu, C. M.

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[Crossref]

Guo, Q. X.

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[Crossref]

Hagen, J. A.

He, W.

He, W. Q.

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[Crossref]

Hill, J. T.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Huang, X. Q.

Ichihara, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

Jacobs, K.

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994).
[Crossref]

James, G. G.

S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).

Ji, W.

Jiang, W.

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[Crossref]

Jung, E. M.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[Crossref]

Kajzar, F.

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[Crossref]

Kipperberg, T. J.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Klotzkin, D.

Kong, X. X.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[Crossref]

Koudoumas, E.

E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
[Crossref]

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[Crossref]

Krupka, O.

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[Crossref]

Kuroda, H.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

Kuroki, M. T.

C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[Crossref]

Leach, S.

E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
[Crossref]

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[Crossref]

Li, D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[Crossref]

Li, J. J.

J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nano. Res. Lett. 7, 1–7 (2012).
[Crossref]

W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiation pressure-induced normal mode splitting in cavity optomechanical systems,” Opt. Lett. 35, 339–341 (2010).
[Crossref]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system,” Appl. Phys. Lett. 94, 063116 (2009).
[Crossref]

Li, W.

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Lou, X. W.

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[Crossref]

Marko, J. F.

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[Crossref]

Meijerink, A.

C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006).
[Crossref]

Milburn, G. J.

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994).
[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

Molotskii, M.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[Crossref]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[Crossref]

Ogawa, H.

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[Crossref]

Painter, O.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Patil, P. S.

Petruccione, F.

H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).

Quemard, C.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
[Crossref]

Rativa, D.

Rau, I.

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[Crossref]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Rodrigues, J. J.

Rosenman, G.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[Crossref]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[Crossref]

Ryasnyanskii, A. I.

R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Saffer, J. D.

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[Crossref]

Sahraoui, B.

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[Crossref]

Samoc, A.

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006).
[Crossref]

Samoc, M.

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006).
[Crossref]

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Selke, M.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[Crossref]

Serdar, S. N.

S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).

Shen, W. Z.

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[Crossref]

Shi, L. X.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[Crossref]

Shweky, I.

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[Crossref]

Si, L. G.

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[Crossref]

Siggia, E. D.

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[Crossref]

Simmonds, R. W.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[Crossref]

Sirois, A. J.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[Crossref]

Smektala, F.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
[Crossref]

Steckl, A. J.

Suzuki, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

Swicord, M. L.

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[Crossref]

Teufel, J. D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[Crossref]

Trzoss, M.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[Crossref]

Tsay, M. J.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[Crossref]

Tugushev, R. I.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[Crossref]

R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004).
[Crossref]

Tzatzadaki, M. D.

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[Crossref]

Usmanov, T.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[Crossref]

Vitali, D.

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phy. Rev. A 63, 023812 (2001).
[Crossref]

Walls, D. F.

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994).
[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

Wang, L.

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[Crossref]

Wang, T. H.

C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[Crossref]

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Weiss, S.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[Crossref]

Whittaker, J. D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[Crossref]

Willner, I.

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[Crossref]

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Wu, Y.

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[Crossref]

Xiong, H.

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[Crossref]

Yang, X. X.

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[Crossref]

Yeh, H. C.

C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[Crossref]

Yu, Z.

Yuan, C. L.

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[Crossref]

Zandt, L. L.

B. H. Dorfman and L. L. Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).

Zhang, C. Y.

C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[Crossref]

Zhang, Z. Q.

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[Crossref]

Zheng, A. S.

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[Crossref]

Zhou, Y.

Zhu, K. D.

J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nano. Res. Lett. 7, 1–7 (2012).
[Crossref]

W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiation pressure-induced normal mode splitting in cavity optomechanical systems,” Opt. Lett. 35, 339–341 (2010).
[Crossref]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system,” Appl. Phys. Lett. 94, 063116 (2009).
[Crossref]

Zoller, P.

C. W. Gardiner and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phy. Rev. A 61, 033601 (2000).
[Crossref]

C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).

Adv. Polym. Sci. (1)

S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[Crossref]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[Crossref]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system,” Appl. Phys. Lett. 94, 063116 (2009).
[Crossref]

Biophys. J. (2)

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[Crossref]

B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002).
[Crossref]

Biopolymers (1)

B. H. Dorfman and L. L. Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).

Chem. Phys. Lett. (1)

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006).
[Crossref]

Dissert. Abstr. Int. (1)

B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert. Abstr. Int. 45, 2213 (1984).

Eur. Phys. J. D (1)

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[Crossref]

J. Am. Chem. Soc. (2)

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[Crossref]

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[Crossref]

J. Appl. Phys. (1)

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[Crossref]

J. Non-Cryst. Solids (1)

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[Crossref]

J. Phys. Chem. B (1)

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[Crossref]

Macromolecules (1)

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[Crossref]

Nano. Res. Lett. (1)

J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nano. Res. Lett. 7, 1–7 (2012).
[Crossref]

Nat. Mater. (1)

C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[Crossref]

Nature (2)

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Opt. Commun. (1)

E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Spectrosc. (1)

R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004).
[Crossref]

Phy. Rev. A (3)

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phy. Rev. A 63, 023812 (2001).
[Crossref]

C. W. Gardiner and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phy. Rev. A 61, 033601 (2000).
[Crossref]

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994).
[Crossref]

Phys. Rev. A (1)

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[Crossref]

Phys. Rev. B (1)

C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006).
[Crossref]

Phys. Rev. Lett. (1)

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[Crossref]

Science (1)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Talanta (1)

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[Crossref]

Thin Solid Films (1)

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[Crossref]

Other (4)

C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

H. Carmichael, Statistical Methods in Quantum Optics (Springer, 1999).

H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. DNA and peptide quantum dot coupling system: a peptide quantum dot coupled to DNA molecules in the simultaneous presence of two optical fields. The energy level structure of the quantum dot dressed by the vibrational modes of DNA molecules is also shown.
Fig. 2.
Fig. 2. Optical dispersions and nonlinear absorptions (in units of Σ 3 and Σ 5 for χ ( ω p 2 ω s ) eff ( 3 ) and χ ( 3 ω p + 2 ω s ) eff ( 5 ) , respectively) with pump beam on-resonance ( Δ p = 0 ). (a) Third-order optical dispersion and nonlinear absorption as functions of probe-exciton detuning Δ s in the case λ = 0 . (b) Third-order optical dispersion and nonlinear absorption as functions of probe-exciton detuning Δ s in the case λ = 2 GHz . (c) Fifth-order optical dispersion and nonlinear absorption as functions of probe-exciton detuning Δ s in the case λ = 0 . (d) Fifth-order optical dispersion and nonlinear absorption as functions of probe-exciton detuning Δ s in the case λ = 2 GHz .
Fig. 3.
Fig. 3. ζ 3 value caused by third-order nonlinearity with pump beam off-resonance. (a)  ζ 3 value as a function of probe-pump detuning in the case Δ p = ω D . (b)  ζ 3 value as a function of probe-pump detuning in the case Δ p = 1.25 ω D . (c) Parametric process of point δ / ω D = 1 in Fig. 3(a), where ω sd = ω p 2 ω D is the frequency of the sideband beam.
Fig. 4.
Fig. 4. ζ 3 value by third-order nonlinearity with different Rabi frequency and exciton-pump detuning. (a)  ζ 3 value as a function of Rabi frequency in the case Δ p = ω D and δ = ω D . (b)  ζ 3 value as a function of exciton-pump detuning Δ p in the case δ = ω D and Ω p = 5 GHz .
Fig. 5.
Fig. 5. ζ 5 value caused by fifth-order nonlinearity with exciton-pump detuning Δ p = ω D and different δ . (a)  ζ 5 value as a function of Rabi frequency in the case δ = ω D . (b)  ζ 5 value as a function of Rabi frequency in the case δ = ω D .

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

H = Δ p s z + i = 1 n ( p i 2 2 m i + 1 2 m i ω i 2 q i 2 ) Ω p ( s + + s ) + ϑ s z μ [ E s s + exp ( i δ t ) + E s * s exp ( i δ t ) ] ,
d s z d t = Γ 1 ( s z + 1 / 2 ) + i Ω p ( s + s ) + i μ E s exp ( i δ t ) s + i μ E s * exp ( i δ t ) s ,
d s d t = ( i Δ p + i ϑ + Γ 2 ) s 2 i Ω p s z 2 i μ E s exp ( i δ t ) s z + F n ,
d 2 ϑ d t 2 + d ϑ τ D d t + ω D 2 ϑ = λ ω D 2 s z + ξ n ,
ξ + ( t ) ξ ( t ) = 1 τ D ω D ω + ω coth ( ω 2 k B T ) 2 π e i ω ( t t ) d ω .
s 0 = 2 i Ω p s z 0 i λ s z 0 Γ 2 i Δ p , ϑ 0 = λ s z 0 ,
1 2 Γ 1 Γ 2 2 + 1 2 Γ 1 Δ p 2 = ( Γ 1 λ 2 ) s z 0 3 + ( Γ 1 λ 2 2 + 2 Γ 1 λ Δ p ) s z 0 2 + ( Γ 1 Δ p 2 Γ 1 Γ 2 2 + Γ 1 λ Δ p 4 Γ 2 Ω p 2 ) s z 0 .
δ ˙ s z = i Ω p ( δ s * δ s ) Γ 1 δ s z + i μ E s exp ( i δ t ) ( s 0 * + δ s * ) i μ E s * exp ( i δ t ) ( s 0 + δ s ) ,
δ ˙ s = ( i Δ p + Γ 2 ) δ s 2 i Ω p δ s z i ( ϑ 0 δ s + δ ϑ s 0 + δ s δ ϑ ) 2 i μ E s exp ( i δ t ) ( s z 0 + δ s z ) ,
δ ¨ ϑ + δ ˙ ϑ τ D + ω D 2 δ ϑ = λ ω D 2 δ s z .
s 2 = M s z 2 + A ,
s + 2 = M + s z + 2 + A + + M 0 s z + E s ,
χ ( ω p 2 ω s ) eff ( 3 ) = N μ 2 s + 2 3 ε 0 Ω p E s 2 = Σ 3 χ ( 3 ) ,
χ ( 3 ω p + 2 ω s ) eff ( 5 ) = N μ 4 s 2 5 ε 0 3 Ω p 3 E s * 2 = Σ 5 χ ( 5 ) ,
P all = N μ δ s = ε 0 j = 1 ε j E j = j = 1 P j ,
ζ 3 100 = Im ( P ω p 2 ω s ) ω e g z 2 c ε 0 | E s | = N μ Im ( s + 2 ) ω e g z 2 c ε 0 | E s | ,
ζ 5 100 = Im ( P 3 ω p + 2 ω s ) ω e g z 2 c ε 0 | E s | = N μ Im ( s 2 ) ω e g z 2 c ε 0 | E s | ,
E o = E i exp ( Im ( ε ) ω z / 2 c ) ,
E o E i ( 1 Im ( ε ) ω z / 2 c ) .

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved