Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantum dots assisted in vivo two-photon microscopy with NIR-II emission

Open Access Open Access

Abstract

With the advantages of high resolution and deep penetration depth, two-photon excited NIR-II (900–1880 nm) fluorescence (2PF) microscopic bioimaging is promising. However, due to the lack of imaging systems and suitable probes, few such works, to our best knowledge, were demonstrated utilizing NIR-II excitation and NIR-II fluorescence simultaneously. Herein, we used aqueously dispersible PbS/CdS quantum dots with bright NIR-II fluorescence as the contrast agents. Under the excitation of a 1550 nm femtosecond (fs) laser, they emitted bright 2PF in the NIR-II region. Moreover, a 2PF lifetime imaging microscopic (2PFLIM) system was implemented, and in vivo 2PFLIM images of mouse brain blood vessels were obtained for the first time to our best knowledge. To improve imaging speed, an in vivo two-photon fluorescence microscopy (2PFM) system based on an InGaAs camera was implemented, and in vivo 2PFM images of QDs-stained mouse brain blood vessels were obtained.

© 2021 Chinese Laser Press

1. INTRODUCTION

Bioimaging is an indispensable method in medical research, clinical diagnosis, and treatment. Various biological imaging technologies are widely used, such as magnetic resonance imaging (MRI), computed tomography (CT), and Doppler ultrasonography. Nevertheless, due to the limited spatial resolution or biological damage caused by ionizing radiation, their application is constrained. With the virtue of high resolution, fast response, and good biocompatibility, fluorescence imaging is a promising alternative [1,2]. Due to the attenuation of light in biological tissues, the depth of fluorescence imaging is limited (<1mm). To improve effective imaging depth, light in the second near-infrared (NIR-II, 900–1880 nm) optical transparence window for biological tissues is utilized, as it is scattered less than light in the visible or first near-infrared (NIR-I, 700900nm) window [312]. Recently, many works about the NIR-II region have been reported [1315], and the imaging depth has been apparently improved. As most of them describe only NIR-II excitation or NIR-II emission, the potential of the NIR-II region for optical bioimaging can be further developed.

As a powerful tool to explore biological structures and functions, two-photon fluorescence (2PF) imaging is widely used [1618]. In a 2PF process, the fluorophore simultaneously absorbs two photons with low energy and emits a single photon with high energy. Besides, as a third-order nonlinear optical process, 2PF is confined to the focus, thus increasing the signal-to-background ratio (SBR). There are a lot of works on 2PF imaging, while most of them concentrate on the 2PF signals in the visible light region. Considering the effective attenuation length of light in the NIR-II region [7], the exploration of 2PF in the NIR-II region would be promising.

The exploration of 2PF imaging in the NIR-II region would suffer from the lack of appropriate probes. Most of the fluorophores exhibit small absorption cross-section and low quantum yield efficiency in the NIR-II region, and the emission would be faint. As an alternative, PbS QDs have strong and tunable emission covering the NIR-II region [1921] and would be a promising candidate. Based on this, a kind of novel aqueously dispersible core/shell lead sulfide (PbS)/cadmium sulfide (CdS) QDs was synthesized, with good photochemical stability and biocompatibility [21]. Thus, with the help of PbS/CdS QDs, 2PF imaging in the NIR-II region could be anticipated.

To enhance the detection of weak fluorescence, time-correlated single-photon counting (TCSPC) technology was introduced [22,23]. It measures the fluorescence lifetime, and the noise can be greatly reduced by filtering [24]. Combined with multiphoton fluorescence microscopy (MPFM), multiphoton fluorescence lifetime imaging microscopy (MPFLIM) is obtained and able to capture weak signals. Compared with traditional fluorescence intensity-based microscopic imaging methods, MPFLIM imaging can provide more precise imaging on weak signals, and it would be more suitable to detect weak 2PF signals in the NIR-II region. In addition, due to the small detection area of commonly used detectors (e.g.,  InGaAs photomultiplier tube) in the NIR-II region, an infrared (900–1700 nm) sensitive InGaAs camera with large detection area and high quantum efficiency can also be adopted as the detector in the MPFM system.

In this work, the chemical and optical properties of aqueously dispersible PbS/CdS QDs were studied. Under the 1550 nm fs laser excitation, PbS/CdS QDs emit fluorescence in the NIR-II region, centered at 1270 nm. The power-dependence relationship was further studied, and the 2PF process was verified. Furthermore, PbS/CdS QDs were utilized for in vivo 2PF cerebral vasculature imaging in a mouse brain. With a photomultiplier tube (PMT) as the detector, a 2PFM system with a TCSPC module was built. For the first time, 2PF lifetime microscopy (2PFLIM) with excitation and emission in the NIR-II region was obtained, with a penetration depth of 220 μm and good contrast. Furthermore, to improve the fluorescence collection efficiency, an InGaAs camera was introduced to take the place of PMT in the 2PFLIM system. In this case, imaging speed was significantly improved, out-of-focus fluorescence suppression effect could be observed directly, and through-skull 2PF imaging of brain blood vessels with a penetration depth of 110 μm was obtained. This work shows the possibility of two-photon microscopy with excitation and emission in the NIR-II region for biological imaging applications.

2. EXPERIMENT

One-photon fluorescence (1PF) and 2PF spectra of QDs were measured by a homemade spectral measurement system. The QDs solution was placed into a quartz cuvette with transparent walls. The excitation light, whose parameters were dependent on the requirement of spectrum measurement [in this work, a continuous wave (CW) laser (MXL-III-665, CNI, China)] with a center wavelength of 665 nm was for 1PF, and a femtosecond laser (FLCPA-01C, Calmar Laser, 400 fs, 1 MHz) with a center wavelength of 1550 nm was for 2PF and focused through a lens. To reduce the self-absorption of the solution, the focus was adjusted as close to the inner surface of the cuvette as possible. Then, the fluorescence signals were collected by an objective (XLPLN25XWMP2, Olympus, 25×, working distance = 2.0 mm, NA = 1.05) in the perpendicular direction of the incident light. The fluorescence signals were recorded by a spectrometer (NIR-2500, Ideaoptics Instruments, China). The relationship of 1550 nm femtosecond excitation power and fluorescence intensity from QDs was obtained by the same spectral measurement system. For a nonlinear process based on multiphoton excitation, FL=Pk (FL represents the fluorescence intensity; P represents the power of the laser; k represents the order); lgFL=k·lgP is obtained through logarithmic transformation. By measuring the fluorescence intensity at different powers, the k value can be calculated.

The 2PFLIM system (Fig. 1) in the NIR-II region was composed of a scanning microscope (FV1200 & BX61, Olympus), a TCSPC board card (SPC-150, Becker & Hickl GmbH), and a NIR PMT (H12397-75, Hamamatsu), under 1550 nm fs laser excitation. The beam whose polarization state has been adjusted by the half-wave plate was divided into two vertical directions by the polarization beam splitter (PBS) and used as excitation light and synchronization signal, respectively. The excitation light was introduced into a scanning microscope (FV1200&BX61, Olympus), reflected by a 1500 nm short-pass dichroic mirror (DM) and focused at different depths of the sample through a Z-axis adjustable objective (XLPLN25XWMP2, Olympus, 25×, working distance = 2.0 mm, NA = 1.05) to excite fluorescence. The fluorescence signal collected by the same objective passed through the aforementioned DM, and it was coupled into the optical fiber by the tube lens and large beam collimator. Finally, the fluorescence signal was captured by the PMT. According to the fluorescence signal and the synchronization signal, the fluorescence lifetime microscopic image was obtained by the TCSPC board.

 figure: Fig. 1.

Fig. 1. Schematic illustration of 2PFLIM system (PMT as the detector) in the NIR-II region. 0) 1550 nm fs laser; 1) half-wave plate; 2) polarization beam splitter (PBS); 3) photodiode; 4,5) reflector; 6) scanning galvanometer; 7,8,11) lens; 9) dichroic mirror; 10) objective; 12) large beam collimator; 13) PMT; 14) TCSPC board; 15) computer. Dashed box is the scanning microscope.

Download Full Size | PPT Slide | PDF

The 2PFM system in the NIR-II region was similar to the 2PFLIM system, while the signal-collection module replaced by the InGaAs camera (SD640, Tekwin, China) was greatly simplified.

3. RESULTS AND DISCUSSION

A. Characterization of QDs

Aqueously dispersible PbS/CdS QDs were synthesized according to our previously reported work [21]. Quantum yield (QYQDs=17.6% in H2O) and two-photon absorption cross-section (σQDs,2P,1550=530 GM in H2O) of QDs were measured by using a standard organic dye ICG as reference [2527]. The fluorescence lifetime (τ=501ns in H2O) of PbS/CdS QDs was measured by the home-built 2PFLIM system (Fig. 1). The morphology of PbS/CdS QDs was characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The TEM image revealed that PbS/CdS QDs were well dispersed, with a spherical shape [Fig. 2(a)]. The DLS profile showed that the average size of QDs was about 32.34 nm [Fig. 2(b)], which was proper for bioimaging. Figure 2(c) shows the 1PF and 2PF spectra of PbS/CdS QDs. A 1300 nm short-pass filter was used to filter out the 1550 nm fs laser in the measurement, and only part of the 2PF spectrum was recorded. The 1PF and 2PF emissions of PbS/CdS QDs were in the NIR-II region, centered at 1276 and 1270 nm, respectively, with full width at half maximum of about 200 nm. The power-dependence relationship is shown in Fig. 2(d). The logarithm of the fluorescence intensity of PbS/CdS QDs had good linear proportion to the logarithm of the excitation power, with a slope of 1.72, which was close to 2. It indicated that near-infrared anti-Stokes photoluminescence from PbS QDs has taken place [28], but 2PF was dominant.

 figure: Fig. 2.

Fig. 2. Morphological characterization and optical properties of PbS/CdS quantum dots (PbS QDs). (a) Transmission electron microscopy (TEM) image of PbS QDs. (b) Dynamic light scattering (DLS) profile of PbS QDs. (c) One-photon and multiphoton fluorescence spectra of PbS QDs. (d) Relationship of 1550 nm fs excitation power and fluorescence intensity from QDs.

Download Full Size | PPT Slide | PDF

B. PMT-Based 2PFLIM Imaging in the NIR-II Region

In vivo 2PFLIM was further conducted. Aqueously dispersible PbS/CdS QDs centered at 1270 nm were used as probes to label mouse brain vessels via intravenous injection. An eight-week-old male mouse with craniotomy was anesthetized and then intravenously injected with 200 μL aqueous QDs (2 mg/mL, PBS, 1×). The brain vessels were imaged by the aforementioned 2PFLIM imaging system (Fig. 1) equipped with a 1550 nm fs laser as excitation. Under the condition of an integration time of 40 s per frame, the 2PFLIM images of cerebral vasculatures and fluorescence lifetime information of various vertical depths (from 0 to 220 μm) were obtained (Fig. 3). Cerebral blood vessels at various depths were clearly visible [Figs. 3(f)–3(i)], and small blood vessels could be easily distinguished with the help of fluorescence lifetime information [Fig. 3(d)]. In addition, the NIR-II fluorescence lifetime of each position was obtained at the same time [Figs. 3(c) and 3(e)]. The fluorescence lifetimes are 520 ns (at 60 μm) and 300 ns (at 220 μm), respectively. Due to the low overall photon counts, a difference of 320 ns was found in lifetime, while they should be the same in theory. For weak signals, the signal intensity can be enhanced by long time integration in TCSPC, while it is still difficult to accurately obtain the lifetime values. Although some vessels can be seen within the 220 μm penetration depth in our built 2PFLIM imaging system, deeper penetration depth is of great need in in vivo imaging. Besides, in most multiphoton fluorescence microscopes, a penetration depth of 400 μm could be obtained. Currently, compared with visible/NIR-I PMT (H7422-40/50, φ=5mm, η>10%), the detection area and quantum efficiency of InGaAs PMT (H12397-75, φ=1.6mm, η<2%) are much smaller, which causes such detectors to rely on optical fibers to collect fluorescence. In the process of coupling, most parts of the fluorescence were lost (more than 50%). Therefore, the performance of the imaging system, mainly limited by the immature NIR-II detector, is not good enough to meet the needs of in vivo imaging and is inferior to ordinary multiphoton fluorescence imaging whose fluorescence is in the visible region and the excitation light is in the near-infrared region.

 figure: Fig. 3.

Fig. 3. In vivo 2PFLIM images of QDs-stained mouse brain blood vessels with PMT. (a) 2PF intensity images of brain blood vessels at different vertical penetration depths: from 0 to 220 μm. Scale bar: 50 μm. (b) 2PF lifetime image at 60 μm. (c) Time-resolved decay curve at the arrow in (b). (d) 2PFLIM image at 220 μm. (e) Time-resolved decay curve at the arrow in (d). (f)–(i) Plots of each FWHM of blood vessels at depth of 100, 140, 180, and 220 μm, as indicated by the yellow lines in (a), respectively.

Download Full Size | PPT Slide | PDF

C. InGaAs Camera-Based 2PFM Imaging in the NIR-II Region

From the perspective of increasing the area of the detector, an InGaAs camera was chosen as the detector for 2PFM. Both of the excitation and emission are in the NIR-II region, which can minimize the scattering of light by biological tissues [29]. Real information can be obtained with little distortion by camera detection, which has been confirmed by wide-field microscopic imaging works in the NIR-II region [30,31]. This means the NIR-II fluorescence signal on the focus can reach the camera’s detection area without much aberration (mainly caused by tissue scattering), and each point of the sample corresponds to a pixel of the camera. Each pixel is working until the laser has scanned all points; further, the information of each pixel forms a complete image eventually. Besides, it is not necessary to perform a complex image program to reconstruct the fluorescence image in vivo.

Because TCSPC is not applicable in fast bioimaging, an InGaAs camera with large detection area (16mm×12.8mm) and high quantum efficiency (η=70%) was used. The 2PFM system in the NIR-II region was further realized by using an InGaAs camera as a detector instead of PMT [Fig. 4(a)]. The excitation light path was basically the same; however, the components related to the synchronization signal were removed. Besides, the fluorescence was focused on the InGaAs camera via a tube lens, avoiding losses in the coupling process. Ultimately, a 2PFM image was obtained by camera image.

 figure: Fig. 4.

Fig. 4. (a) Schematic illustration of 2PFM system (InGaAs camera as the detector) in the NIR-II region. 0) 1550 nm fs laser; 1) half-wave plate; 2) polarization beam splitter (PBS); 3,4) reflector; 5) scanning galvanometer; 6,7,10) lens; 8) dichroic mirror; 9) objective; 11) InGaAs camera; 12) computer. Dashed box is the scanning microscope. (b) 3D reconstructed image of fluorescence spots when laser is focused at different depths. (c) Statistics of fluorescence area at various depths.

Download Full Size | PPT Slide | PDF

A flat cuvette filled with aqueous dispersion of QDs was placed under the objective, and the fluorescence images were obtained when laser was focused at different depths by adjusting the Z axis of the objective [Fig. 4(b)]. The area of the fluorescence spot at each depth was measured [Fig. 4(c)]. This confirmed that fluorescence was only excited at the focal point. Due to the absorption of water, the laser power density and fluorescence spot area decreased as the depth increased when incident light power remained constant, which meant only the central area with higher power density than threshold produced fluorescence, and the fluorescence from QDs under 1550 nm fs laser excitation was mainly multiphoton fluorescence. In addition, water also has some absorption on NIR-II fluorescence; it removes the scattered fluorescence signals and reduces the side lobes of fluorescence.

The cranial window may cause inflammation and damage to the brain and affect its functional structure [32]. Therefore, skull optical clearing was used in 2PFM imaging to reduce optical scattering caused by skull and biological damage, when fluorescence collection efficiency was improved significantly by the InGaAs camera. An eight-week-old male mouse with skull optical clearing window was anesthetized and then intravenously injected with 200 μL aqueous dispersion of QDs (2 mg/mL, PBS, 1X) [33]. The cerebral vasculatures were imaged by the 2PFM system [Fig. 4(a)] equipped with a 1550 nm fs laser. Due to limitations of exposure time (50 ms) of the camera, about 50 frames of the camera’s images were directly superimposed to obtain a complete 2PFM image, and the temporal resolution of each frame was 0.4Hz. As shown in the diagram, a local blood vessel image in the blue box was superimposed by the other 15 frames (Fig. 5).

 figure: Fig. 5.

Fig. 5. Schematic diagram of image overlay: the blood vessel image in the blue box is superimposed by the other 15 frames. Scale bar: 50 μm.

Download Full Size | PPT Slide | PDF

At a scanning speed of 10 μs/pixel, 2PFM images of cerebral vasculatures, via skull optical clearing process, at various vertical depths (from 0 to 110 μm) were obtained [Fig. 6(a)]. The whole process of the appearance and disappearance of blood vessels in different layers could be observed clearly, confirming that InGaAs cameras with large detection areas can be used for 2PF microscopy imaging. The InGaAs camera with high quantum efficiency solves the problem of fluorescence collection. However, the raw data [Figs. 6(b)–6(d)] are not smooth, and the noise of InGaAs camera caused by dark current cannot be ignored. A lot of noise accumulates during the imaging process, which makes it impossible to detect deep information and images of small blood vessels. This problem may be solved by using high-performance InGaAs cameras with deep cooling to suppress noise as much as possible.

 figure: Fig. 6.

Fig. 6. In vivo 2PFM images of QDs-stained mouse brain blood vessels with InGaAs camera. (a) 2PFM images of brain blood vessels at different vertical penetration depths: from 0 to 110 μm. Scale bar: 50 μm. (b)–(d) Plots of each FWHM of blood vessels at depths of 40, 60, and 80 μm as indicated by the yellow lines in (a), respectively.

Download Full Size | PPT Slide | PDF

4. CONCLUSIONS AND OUTLOOK

In summary, aqueously dispersible PbS/CdS QDs with bright NIR-II fluorescence, good photochemical stability, and biocompatibility were obtained. Moreover, NIR-II 2PFLIM was achieved with TCSPC, NIR-II PMT, and a scanning microscope for the first time. Due to low fluorescence collection efficiency, its time resolution was not high (40 s per frame). For the low scattering of NIR-II light in biological tissues, the NIR-II fluorescence signal will not be distorted after passing through the biological tissue, and an InGaAs camera could replace PMT for big detection areas and high quantum efficiency. To improve time resolution, an InGaAs camera was introduced as the detector, and the fluorescence signal was collected directly without the guidance of optical fibers in point-scanning multiphoton microscopy for the first time. This means fluorescence microscopy in the NIR-II region with the method of point-scanning and area-detecting is feasible due to the less scattering of NIR-II fluorescence. Compared with temporal focusing multiphoton microscopy in the NIR-II region [34], 2PFM with the InGaAs camera is able to reduce the requirement of pulse power, when NIR-II probes rely on a certain degree of excitation power. It can be anticipated that the InGaAs camera can directly obtain a complete NIR-II region fluorescence image during point-scanning without restructuring, when the integration time is long enough, the noise is relatively small, and the scanning speed is fast enough.

Funding

Natural Science Foundation of Zhejiang Province (LR17F050001); Fundamental Research Funds for the Central Universities (2020-KYY-511108-0007); National Natural Science Foundation of China (21974104, 61975172, 82001874).

Disclosures

The authors declare no competing financial interests.

REFERENCES

1. N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19, 1154–1164 (2016). [CrossRef]  

2. X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater. 2101043 (2021). [CrossRef]  

3. Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021). [CrossRef]  

4. H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021). [CrossRef]  

5. Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021). [CrossRef]  

6. X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019). [CrossRef]  

7. L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014). [CrossRef]  

8. S. Golovynskyi, L. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophoton. 11, e201800141 (2018). [CrossRef]  

9. A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009). [CrossRef]  

10. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005). [CrossRef]  

11. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005). [CrossRef]  

12. M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9, 3534–3543 (2018). [CrossRef]  

13. Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021). [CrossRef]  

14. W. Liu, Y. Zhang, J. Qi, J. Qian, and B. Tang, “NIR-II excitation and NIR-I emission based two-photon fluorescence lifetime microscopic imaging using aggregation-induced emission dots,” Chem. Res. Chin. U 37, 171–176 (2021). [CrossRef]  

15. N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020). [CrossRef]  

16. Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015). [CrossRef]  

17. K. Wang, A. Majewska, J. Schummers, B. Farley, C. Hu, M. Sur, and S. Tonegawa, “In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex,” Cell 126, 389–402 (2006). [CrossRef]  

18. E. Garmire, “Nonlinear optics in daily life,” Opt. Express 21, 30532–30544 (2013). [CrossRef]  

19. K. D. Wegner and N. Hildebrandt, “Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors,” Chem. Soc. Rev. 44, 4792–4832 (2015). [CrossRef]  

20. X. Shi, S. Chen, M. Luo, B. Huang, G. Zhang, R. Cui, and M. Zhang, “Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window,” Nano Res. 13, 2239–2245 (2020). [CrossRef]  

21. M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018). [CrossRef]  

22. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641–2684 (2010). [CrossRef]  

23. L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7, 2614–2620 (2011). [CrossRef]  

24. W. Becker, A. Bergmann, C. Biskup, L. Kelbauskas, T. Zimmer, N. Klocker, and K. Benndorf, “High resolution TCSPC lifetime imaging,” Proc. SPIE 4963, 175–184 (2003).

25. L. Cheng, K. Wang, and C. Xu, “Measurements of two-, three-, and four-photon excitation action cross sections,” in CLEO (OSA, 2014), paper ATh3P.4.

26. M. Y. Berezin, C. Zhan, H. Lee, C. Joo, W. J. Akers, S. Yazdanfar, and S. Achilefu, “Two-photon optical properties of near-infrared dyes at 1.55 μm excitation,” J. Phys. Chem. B 115, 11530–11535 (2011). [CrossRef]  

27. Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019). [CrossRef]  

28. Y. Xiong, C. Liu, J. Wang, J. Han, and X. Zhao, “Near-infrared anti-Stokes photoluminescence of PbS QDs embedded in glasses,” Opt. Express 25, 6874–6882 (2017). [CrossRef]  

29. T. Wang and C. Xu, “Three-photon neuronal imaging in deep mouse brain,” Optica 7, 947–960 (2020). [CrossRef]  

30. X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021). [CrossRef]  

31. X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021). [CrossRef]  

32. J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 6801112 (2014).

33. C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8, 2696–2708 (2018). [CrossRef]  

34. C. J. Rowlands, O. T. Bruns, D. Franke, D. Fukamura, R. K. Jain, M. G. Bawendi, and P. T. C. So, “Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications,” J. Phys. D 52, 264001 (2019). [CrossRef]  

References

  • View by:

  1. N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19, 1154–1164 (2016).
    [Crossref]
  2. X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
    [Crossref]
  3. Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
    [Crossref]
  4. H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
    [Crossref]
  5. Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
    [Crossref]
  6. X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
    [Crossref]
  7. L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
    [Crossref]
  8. S. Golovynskyi, L. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophoton. 11, e201800141 (2018).
    [Crossref]
  9. A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
    [Crossref]
  10. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
    [Crossref]
  11. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
    [Crossref]
  12. M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9, 3534–3543 (2018).
    [Crossref]
  13. Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
    [Crossref]
  14. W. Liu, Y. Zhang, J. Qi, J. Qian, and B. Tang, “NIR-II excitation and NIR-I emission based two-photon fluorescence lifetime microscopic imaging using aggregation-induced emission dots,” Chem. Res. Chin. U 37, 171–176 (2021).
    [Crossref]
  15. N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
    [Crossref]
  16. Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
    [Crossref]
  17. K. Wang, A. Majewska, J. Schummers, B. Farley, C. Hu, M. Sur, and S. Tonegawa, “In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex,” Cell 126, 389–402 (2006).
    [Crossref]
  18. E. Garmire, “Nonlinear optics in daily life,” Opt. Express 21, 30532–30544 (2013).
    [Crossref]
  19. K. D. Wegner and N. Hildebrandt, “Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors,” Chem. Soc. Rev. 44, 4792–4832 (2015).
    [Crossref]
  20. X. Shi, S. Chen, M. Luo, B. Huang, G. Zhang, R. Cui, and M. Zhang, “Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window,” Nano Res. 13, 2239–2245 (2020).
    [Crossref]
  21. M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
    [Crossref]
  22. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641–2684 (2010).
    [Crossref]
  23. L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7, 2614–2620 (2011).
    [Crossref]
  24. W. Becker, A. Bergmann, C. Biskup, L. Kelbauskas, T. Zimmer, N. Klocker, and K. Benndorf, “High resolution TCSPC lifetime imaging,” Proc. SPIE 4963, 175–184 (2003).
  25. L. Cheng, K. Wang, and C. Xu, “Measurements of two-, three-, and four-photon excitation action cross sections,” in CLEO (OSA, 2014), paper ATh3P.4.
  26. M. Y. Berezin, C. Zhan, H. Lee, C. Joo, W. J. Akers, S. Yazdanfar, and S. Achilefu, “Two-photon optical properties of near-infrared dyes at 1.55 μm excitation,” J. Phys. Chem. B 115, 11530–11535 (2011).
    [Crossref]
  27. Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019).
    [Crossref]
  28. Y. Xiong, C. Liu, J. Wang, J. Han, and X. Zhao, “Near-infrared anti-Stokes photoluminescence of PbS QDs embedded in glasses,” Opt. Express 25, 6874–6882 (2017).
    [Crossref]
  29. T. Wang and C. Xu, “Three-photon neuronal imaging in deep mouse brain,” Optica 7, 947–960 (2020).
    [Crossref]
  30. X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
    [Crossref]
  31. X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
    [Crossref]
  32. J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 6801112 (2014).
  33. C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8, 2696–2708 (2018).
    [Crossref]
  34. C. J. Rowlands, O. T. Bruns, D. Franke, D. Fukamura, R. K. Jain, M. G. Bawendi, and P. T. C. So, “Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications,” J. Phys. D 52, 264001 (2019).
    [Crossref]

2021 (8)

X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
[Crossref]

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
[Crossref]

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

W. Liu, Y. Zhang, J. Qi, J. Qian, and B. Tang, “NIR-II excitation and NIR-I emission based two-photon fluorescence lifetime microscopic imaging using aggregation-induced emission dots,” Chem. Res. Chin. U 37, 171–176 (2021).
[Crossref]

X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
[Crossref]

X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
[Crossref]

2020 (3)

X. Shi, S. Chen, M. Luo, B. Huang, G. Zhang, R. Cui, and M. Zhang, “Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window,” Nano Res. 13, 2239–2245 (2020).
[Crossref]

T. Wang and C. Xu, “Three-photon neuronal imaging in deep mouse brain,” Optica 7, 947–960 (2020).
[Crossref]

N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
[Crossref]

2019 (3)

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019).
[Crossref]

C. J. Rowlands, O. T. Bruns, D. Franke, D. Fukamura, R. K. Jain, M. G. Bawendi, and P. T. C. So, “Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications,” J. Phys. D 52, 264001 (2019).
[Crossref]

2018 (4)

C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8, 2696–2708 (2018).
[Crossref]

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

S. Golovynskyi, L. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophoton. 11, e201800141 (2018).
[Crossref]

M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9, 3534–3543 (2018).
[Crossref]

2017 (1)

2016 (1)

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19, 1154–1164 (2016).
[Crossref]

2015 (2)

K. D. Wegner and N. Hildebrandt, “Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors,” Chem. Soc. Rev. 44, 4792–4832 (2015).
[Crossref]

Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
[Crossref]

2014 (2)

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 6801112 (2014).

2013 (1)

2011 (2)

M. Y. Berezin, C. Zhan, H. Lee, C. Joo, W. J. Akers, S. Yazdanfar, and S. Achilefu, “Two-photon optical properties of near-infrared dyes at 1.55 μm excitation,” J. Phys. Chem. B 115, 11530–11535 (2011).
[Crossref]

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7, 2614–2620 (2011).
[Crossref]

2010 (1)

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641–2684 (2010).
[Crossref]

2009 (1)

A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

2006 (1)

K. Wang, A. Majewska, J. Schummers, B. Farley, C. Hu, M. Sur, and S. Tonegawa, “In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex,” Cell 126, 389–402 (2006).
[Crossref]

2005 (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
[Crossref]

2003 (1)

W. Becker, A. Bergmann, C. Biskup, L. Kelbauskas, T. Zimmer, N. Klocker, and K. Benndorf, “High resolution TCSPC lifetime imaging,” Proc. SPIE 4963, 175–184 (2003).

Achilefu, S.

M. Y. Berezin, C. Zhan, H. Lee, C. Joo, W. J. Akers, S. Yazdanfar, and S. Achilefu, “Two-photon optical properties of near-infrared dyes at 1.55 μm excitation,” J. Phys. Chem. B 115, 11530–11535 (2011).
[Crossref]

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641–2684 (2010).
[Crossref]

Akers, W. J.

M. Y. Berezin, C. Zhan, H. Lee, C. Joo, W. J. Akers, S. Yazdanfar, and S. Achilefu, “Two-photon optical properties of near-infrared dyes at 1.55 μm excitation,” J. Phys. Chem. B 115, 11530–11535 (2011).
[Crossref]

Alfano, R. R.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Alifu, N.

N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
[Crossref]

Azadfar, N.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7, 2614–2620 (2011).
[Crossref]

Bai, S.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
[Crossref]

Bawendi, M. G.

C. J. Rowlands, O. T. Bruns, D. Franke, D. Fukamura, R. K. Jain, M. G. Bawendi, and P. T. C. So, “Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications,” J. Phys. D 52, 264001 (2019).
[Crossref]

Becker, W.

W. Becker, A. Bergmann, C. Biskup, L. Kelbauskas, T. Zimmer, N. Klocker, and K. Benndorf, “High resolution TCSPC lifetime imaging,” Proc. SPIE 4963, 175–184 (2003).

Benndorf, K.

W. Becker, A. Bergmann, C. Biskup, L. Kelbauskas, T. Zimmer, N. Klocker, and K. Benndorf, “High resolution TCSPC lifetime imaging,” Proc. SPIE 4963, 175–184 (2003).

Berezin, M. Y.

M. Y. Berezin, C. Zhan, H. Lee, C. Joo, W. J. Akers, S. Yazdanfar, and S. Achilefu, “Two-photon optical properties of near-infrared dyes at 1.55 μm excitation,” J. Phys. Chem. B 115, 11530–11535 (2011).
[Crossref]

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641–2684 (2010).
[Crossref]

Bergmann, A.

W. Becker, A. Bergmann, C. Biskup, L. Kelbauskas, T. Zimmer, N. Klocker, and K. Benndorf, “High resolution TCSPC lifetime imaging,” Proc. SPIE 4963, 175–184 (2003).

Biskup, C.

W. Becker, A. Bergmann, C. Biskup, L. Kelbauskas, T. Zimmer, N. Klocker, and K. Benndorf, “High resolution TCSPC lifetime imaging,” Proc. SPIE 4963, 175–184 (2003).

Bruns, M.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7, 2614–2620 (2011).
[Crossref]

Bruns, O. T.

C. J. Rowlands, O. T. Bruns, D. Franke, D. Fukamura, R. K. Jain, M. G. Bawendi, and P. T. C. So, “Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications,” J. Phys. D 52, 264001 (2019).
[Crossref]

Budansky, Y.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Cai, Z.

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Chen, G.

X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
[Crossref]

Chen, M.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

Chen, S.

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

X. Shi, S. Chen, M. Luo, B. Huang, G. Zhang, R. Cui, and M. Zhang, “Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window,” Nano Res. 13, 2239–2245 (2020).
[Crossref]

Chen, X.

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Cheng, L.

L. Cheng, K. Wang, and C. Xu, “Measurements of two-, three-, and four-photon excitation action cross sections,” in CLEO (OSA, 2014), paper ATh3P.4.

Cui, R.

X. Shi, S. Chen, M. Luo, B. Huang, G. Zhang, R. Cui, and M. Zhang, “Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window,” Nano Res. 13, 2239–2245 (2020).
[Crossref]

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Dai, H.

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Dai, Y.

Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
[Crossref]

Datsenko, O. I.

S. Golovynskyi, L. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophoton. 11, e201800141 (2018).
[Crossref]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[Crossref]

Fan, X.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
[Crossref]

X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
[Crossref]

Fan, Y.

Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
[Crossref]

Farley, B.

K. Wang, A. Majewska, J. Schummers, B. Farley, C. Hu, M. Sur, and S. Tonegawa, “In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex,” Cell 126, 389–402 (2006).
[Crossref]

Feng, W.

C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8, 2696–2708 (2018).
[Crossref]

Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
[Crossref]

Feng, Z.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
[Crossref]

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
[Crossref]

X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
[Crossref]

Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019).
[Crossref]

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Franke, D.

C. J. Rowlands, O. T. Bruns, D. Franke, D. Fukamura, R. K. Jain, M. G. Bawendi, and P. T. C. So, “Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications,” J. Phys. D 52, 264001 (2019).
[Crossref]

Freeman, J.

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19, 1154–1164 (2016).
[Crossref]

Fukamura, D.

C. J. Rowlands, O. T. Bruns, D. Franke, D. Fukamura, R. K. Jain, M. G. Bawendi, and P. T. C. So, “Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications,” J. Phys. D 52, 264001 (2019).
[Crossref]

Gao, L.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

Garmire, E.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
[Crossref]

Gerthsen, D.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7, 2614–2620 (2011).
[Crossref]

Golovynska, L.

S. Golovynskyi, L. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophoton. 11, e201800141 (2018).
[Crossref]

Golovynskyi, S.

S. Golovynskyi, L. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophoton. 11, e201800141 (2018).
[Crossref]

Gong, J.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

Han, C.

Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
[Crossref]

Han, J.

He, H.

Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
[Crossref]

He, M.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
[Crossref]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[Crossref]

Hildebrandt, N.

K. D. Wegner and N. Hildebrandt, “Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors,” Chem. Soc. Rev. 44, 4792–4832 (2015).
[Crossref]

Hu, C.

K. Wang, A. Majewska, J. Schummers, B. Farley, C. Hu, M. Sur, and S. Tonegawa, “In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex,” Cell 126, 389–402 (2006).
[Crossref]

Huang, B.

X. Shi, S. Chen, M. Luo, B. Huang, G. Zhang, R. Cui, and M. Zhang, “Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window,” Nano Res. 13, 2239–2245 (2020).
[Crossref]

Jacky, J. K. Y.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

Jain, R. K.

C. J. Rowlands, O. T. Bruns, D. Franke, D. Fukamura, R. K. Jain, M. G. Bawendi, and P. T. C. So, “Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications,” J. Phys. D 52, 264001 (2019).
[Crossref]

Ji, N.

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19, 1154–1164 (2016).
[Crossref]

Jiang, M.

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019).
[Crossref]

Joo, C.

M. Y. Berezin, C. Zhan, H. Lee, C. Joo, W. J. Akers, S. Yazdanfar, and S. Achilefu, “Two-photon optical properties of near-infrared dyes at 1.55 μm excitation,” J. Phys. Chem. B 115, 11530–11535 (2011).
[Crossref]

Kelbauskas, L.

W. Becker, A. Bergmann, C. Biskup, L. Kelbauskas, T. Zimmer, N. Klocker, and K. Benndorf, “High resolution TCSPC lifetime imaging,” Proc. SPIE 4963, 175–184 (2003).

Klocker, N.

W. Becker, A. Bergmann, C. Biskup, L. Kelbauskas, T. Zimmer, N. Klocker, and K. Benndorf, “High resolution TCSPC lifetime imaging,” Proc. SPIE 4963, 175–184 (2003).

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
[Crossref]

Kuang, Y.

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Lee, H.

M. Y. Berezin, C. Zhan, H. Lee, C. Joo, W. J. Akers, S. Yazdanfar, and S. Achilefu, “Two-photon optical properties of near-infrared dyes at 1.55 μm excitation,” J. Phys. Chem. B 115, 11530–11535 (2011).
[Crossref]

Li, B.

Li, F.

Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
[Crossref]

Li, G.

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019).
[Crossref]

Li, J.

Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
[Crossref]

Li, P.

C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8, 2696–2708 (2018).
[Crossref]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 6801112 (2014).

Li, R.

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Li, S.

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
[Crossref]

Li, X.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

Li, Y.

X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
[Crossref]

X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
[Crossref]

Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
[Crossref]

Lin, H.

X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
[Crossref]

X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
[Crossref]

Liu, C.

Liu, J.

X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
[Crossref]

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Liu, L.

S. Golovynskyi, L. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophoton. 11, e201800141 (2018).
[Crossref]

Liu, S.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

Liu, W.

W. Liu, Y. Zhang, J. Qi, J. Qian, and B. Tang, “NIR-II excitation and NIR-I emission based two-photon fluorescence lifetime microscopic imaging using aggregation-induced emission dots,” Chem. Res. Chin. U 37, 171–176 (2021).
[Crossref]

Liu, X.

Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
[Crossref]

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Lu, L.

Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
[Crossref]

Luo, M.

X. Shi, S. Chen, M. Luo, B. Huang, G. Zhang, R. Cui, and M. Zhang, “Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window,” Nano Res. 13, 2239–2245 (2020).
[Crossref]

Luo, Q.

C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8, 2696–2708 (2018).
[Crossref]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 6801112 (2014).

Ma, Z.

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Majewska, A.

K. Wang, A. Majewska, J. Schummers, B. Farley, C. Hu, M. Sur, and S. Tonegawa, “In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex,” Cell 126, 389–402 (2006).
[Crossref]

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

Ni, H.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
[Crossref]

Nie, S. M.

A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

Nienhaus, G. U.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7, 2614–2620 (2011).
[Crossref]

Ohulchanskyy, T. Y.

S. Golovynskyi, L. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophoton. 11, e201800141 (2018).
[Crossref]

Pang, D.

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Pratavieira, S.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Pu, Y.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Qi, J.

X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
[Crossref]

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

W. Liu, Y. Zhang, J. Qi, J. Qian, and B. Tang, “NIR-II excitation and NIR-I emission based two-photon fluorescence lifetime microscopic imaging using aggregation-induced emission dots,” Chem. Res. Chin. U 37, 171–176 (2021).
[Crossref]

X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
[Crossref]

Qian, J.

X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
[Crossref]

X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
[Crossref]

W. Liu, Y. Zhang, J. Qi, J. Qian, and B. Tang, “NIR-II excitation and NIR-I emission based two-photon fluorescence lifetime microscopic imaging using aggregation-induced emission dots,” Chem. Res. Chin. U 37, 171–176 (2021).
[Crossref]

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
[Crossref]

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
[Crossref]

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019).
[Crossref]

Qu, J.

S. Golovynskyi, L. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophoton. 11, e201800141 (2018).
[Crossref]

Que, B.

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Rowlands, C. J.

C. J. Rowlands, O. T. Bruns, D. Franke, D. Fukamura, R. K. Jain, M. G. Bawendi, and P. T. C. So, “Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications,” J. Phys. D 52, 264001 (2019).
[Crossref]

Schummers, J.

K. Wang, A. Majewska, J. Schummers, B. Farley, C. Hu, M. Sur, and S. Tonegawa, “In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex,” Cell 126, 389–402 (2006).
[Crossref]

Send, W.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7, 2614–2620 (2011).
[Crossref]

Shang, L.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7, 2614–2620 (2011).
[Crossref]

Shi, X.

X. Shi, S. Chen, M. Luo, B. Huang, G. Zhang, R. Cui, and M. Zhang, “Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window,” Nano Res. 13, 2239–2245 (2020).
[Crossref]

Sinefeld, D.

Smith, A. M.

A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

Smith, S. L.

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19, 1154–1164 (2016).
[Crossref]

So, P. T. C.

C. J. Rowlands, O. T. Bruns, D. Franke, D. Fukamura, R. K. Jain, M. G. Bawendi, and P. T. C. So, “Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications,” J. Phys. D 52, 264001 (2019).
[Crossref]

Sordillo, L. A.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Stepanova, L. I.

S. Golovynskyi, L. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophoton. 11, e201800141 (2018).
[Crossref]

Stockmar, F.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7, 2614–2620 (2011).
[Crossref]

Su, Q.

Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
[Crossref]

Sun, C.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
[Crossref]

Sun, Y.

Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
[Crossref]

Sun, Z.

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Sur, M.

K. Wang, A. Majewska, J. Schummers, B. Farley, C. Hu, M. Sur, and S. Tonegawa, “In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex,” Cell 126, 389–402 (2006).
[Crossref]

Tang, B.

W. Liu, Y. Zhang, J. Qi, J. Qian, and B. Tang, “NIR-II excitation and NIR-I emission based two-photon fluorescence lifetime microscopic imaging using aggregation-induced emission dots,” Chem. Res. Chin. U 37, 171–176 (2021).
[Crossref]

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
[Crossref]

X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
[Crossref]

Tang, T.

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

Tonegawa, S.

K. Wang, A. Majewska, J. Schummers, B. Farley, C. Hu, M. Sur, and S. Tonegawa, “In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex,” Cell 126, 389–402 (2006).
[Crossref]

Trouillet, V.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7, 2614–2620 (2011).
[Crossref]

Tu, D.

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
[Crossref]

Wan, H.

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Wang, F.

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Wang, J.

Y. Xiong, C. Liu, J. Wang, J. Han, and X. Zhao, “Near-infrared anti-Stokes photoluminescence of PbS QDs embedded in glasses,” Opt. Express 25, 6874–6882 (2017).
[Crossref]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 6801112 (2014).

Wang, K.

K. Wang, A. Majewska, J. Schummers, B. Farley, C. Hu, M. Sur, and S. Tonegawa, “In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex,” Cell 126, 389–402 (2006).
[Crossref]

L. Cheng, K. Wang, and C. Xu, “Measurements of two-, three-, and four-photon excitation action cross sections,” in CLEO (OSA, 2014), paper ATh3P.4.

Wang, M.

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9, 3534–3543 (2018).
[Crossref]

Wang, Q.

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
[Crossref]

Wang, T.

Wang, Y.

N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
[Crossref]

Wang, Z.

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Wegner, K. D.

K. D. Wegner and N. Hildebrandt, “Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors,” Chem. Soc. Rev. 44, 4792–4832 (2015).
[Crossref]

Wei, P.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

Wu, C.

N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
[Crossref]

M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9, 3534–3543 (2018).
[Crossref]

Wu, D.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

Wu, L.

X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
[Crossref]

Wu, T.

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

Xi, W.

N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
[Crossref]

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019).
[Crossref]

Xia, F.

Xia, Q.

X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
[Crossref]

Xiong, Y.

Xu, C.

Xu, T.

C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8, 2696–2708 (2018).
[Crossref]

Xue, D.

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Yamg, W.

Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019).
[Crossref]

Yang, H.

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Yang, W.

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Yazdanfar, S.

M. Y. Berezin, C. Zhan, H. Lee, C. Joo, W. J. Akers, S. Yazdanfar, and S. Achilefu, “Two-photon optical properties of near-infrared dyes at 1.55 μm excitation,” J. Phys. Chem. B 115, 11530–11535 (2011).
[Crossref]

Ying, Y.

X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
[Crossref]

You, W.

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Yu, M.

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Yu, P.

Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
[Crossref]

Yu, T.

C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8, 2696–2708 (2018).
[Crossref]

Yu, X.

X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
[Crossref]

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019).
[Crossref]

Yuan, W.

Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
[Crossref]

Yue, J.

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Yun, Y.

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

Zebibula, A.

N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
[Crossref]

Zhan, C.

M. Y. Berezin, C. Zhan, H. Lee, C. Joo, W. J. Akers, S. Yazdanfar, and S. Achilefu, “Two-photon optical properties of near-infrared dyes at 1.55 μm excitation,” J. Phys. Chem. B 115, 11530–11535 (2011).
[Crossref]

Zhang, C.

C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8, 2696–2708 (2018).
[Crossref]

Zhang, D.

X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
[Crossref]

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Zhang, F.

Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
[Crossref]

Zhang, G.

X. Shi, S. Chen, M. Luo, B. Huang, G. Zhang, R. Cui, and M. Zhang, “Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window,” Nano Res. 13, 2239–2245 (2020).
[Crossref]

Zhang, H.

Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
[Crossref]

N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
[Crossref]

Zhang, M.

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

X. Shi, S. Chen, M. Luo, B. Huang, G. Zhang, R. Cui, and M. Zhang, “Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window,” Nano Res. 13, 2239–2245 (2020).
[Crossref]

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Zhang, Q.

Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
[Crossref]

Zhang, R.

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Zhang, X.

N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
[Crossref]

Zhang, Y.

W. Liu, Y. Zhang, J. Qi, J. Qian, and B. Tang, “NIR-II excitation and NIR-I emission based two-photon fluorescence lifetime microscopic imaging using aggregation-induced emission dots,” Chem. Res. Chin. U 37, 171–176 (2021).
[Crossref]

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
[Crossref]

X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
[Crossref]

Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019).
[Crossref]

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 6801112 (2014).

Zhao, M.

Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
[Crossref]

Zhao, X.

Zhao, Y.

C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8, 2696–2708 (2018).
[Crossref]

Zheng, J.

X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
[Crossref]

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

Zhong, Y.

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Zhou, J.

X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
[Crossref]

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
[Crossref]

Zhou, Y.

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Zhu, D.

C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8, 2696–2708 (2018).
[Crossref]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 6801112 (2014).

Zhu, L.

N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
[Crossref]

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019).
[Crossref]

Zhu, S.

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Zimmer, T.

W. Becker, A. Bergmann, C. Biskup, L. Kelbauskas, T. Zimmer, N. Klocker, and K. Benndorf, “High resolution TCSPC lifetime imaging,” Proc. SPIE 4963, 175–184 (2003).

Adv. Healthcare. Mater. (1)

X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Tang, J. Qian, and H. Lin, “Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD),” Adv. Healthcare. Mater.2101043 (2021).
[Crossref]

Adv. Mater. (1)

Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. K. Y. Jacky, X. Li, B. Tang, L. Gao, and J. Qian, “Biologically excretable AIE dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine,” Adv. Mater. 33, 2008123 (2021).
[Crossref]

Adv. Sci. (1)

X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, and H. Lin, “Nanoprobes-assisted multi-channel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes,” Adv. Sci. 8, 2003972 (2021).
[Crossref]

Angew. Chem. (1)

Q. Zhang, P. Yu, Y. Fan, C. Sun, H. He, X. Liu, L. Lu, M. Zhao, H. Zhang, and F. Zhang, “Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging,” Angew. Chem. 60, 3967–3973 (2021).
[Crossref]

Biomed. Opt. Express (1)

Cell (1)

K. Wang, A. Majewska, J. Schummers, B. Farley, C. Hu, M. Sur, and S. Tonegawa, “In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex,” Cell 126, 389–402 (2006).
[Crossref]

Chem. Res. Chin. U (1)

W. Liu, Y. Zhang, J. Qi, J. Qian, and B. Tang, “NIR-II excitation and NIR-I emission based two-photon fluorescence lifetime microscopic imaging using aggregation-induced emission dots,” Chem. Res. Chin. U 37, 171–176 (2021).
[Crossref]

Chem. Rev. (1)

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641–2684 (2010).
[Crossref]

Chem. Soc. Rev. (1)

K. D. Wegner and N. Hildebrandt, “Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors,” Chem. Soc. Rev. 44, 4792–4832 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 6801112 (2014).

J. Am. Chem. Soc. (2)

Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li, “Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging,” J. Am. Chem. Soc. 137, 6407–6416 (2015).
[Crossref]

H. Yang, R. Li, Y. Zhang, M. Yu, Z. Wang, X. Liu, W. You, D. Tu, Z. Sun, R. Zhang, X. Chen, and Q. Wang, “Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window,” J. Am. Chem. Soc. 143, 2601–2607 (2021).
[Crossref]

J. Biomed. Opt. (1)

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

J. Biophoton. (1)

S. Golovynskyi, L. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophoton. 11, e201800141 (2018).
[Crossref]

J. Mater. Chem. B (1)

X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, and G. Li, “Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy,” J. Mater. Chem. B 7, 6623–6629 (2019).
[Crossref]

J. Phys. Chem. B (1)

M. Y. Berezin, C. Zhan, H. Lee, C. Joo, W. J. Akers, S. Yazdanfar, and S. Achilefu, “Two-photon optical properties of near-infrared dyes at 1.55 μm excitation,” J. Phys. Chem. B 115, 11530–11535 (2011).
[Crossref]

J. Phys. D (2)

C. J. Rowlands, O. T. Bruns, D. Franke, D. Fukamura, R. K. Jain, M. G. Bawendi, and P. T. C. So, “Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications,” J. Phys. D 52, 264001 (2019).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
[Crossref]

Light Sci. Appl. (1)

Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Yun, S. Chen, J. Zhou, X. Fan, S. Li, M. Zhang, and J. Qian, “Perfecting and extending the near-infrared biological window,” Light Sci. Appl. 10, 197 (2021).
[Crossref]

Nano Res. (2)

N. Alifu, A. Zebibula, H. Zhang, H. Ni, L. Zhu, W. Xi, Y. Wang, X. Zhang, C. Wu, and J. Qian, “NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging,” Nano Res. 13, 2632–2640 (2020).
[Crossref]

X. Shi, S. Chen, M. Luo, B. Huang, G. Zhang, R. Cui, and M. Zhang, “Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window,” Nano Res. 13, 2239–2245 (2020).
[Crossref]

Nano Today (1)

X. Yu, Y. Ying, Z. Feng, J. Qi, J. Zheng, Y. Zhang, J. Liu, J. Qian, B. Tang, and D. Zhang, “Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window,” Nano Today 39, 101235 (2021).
[Crossref]

Nat. Methods (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[Crossref]

Nat. Nanotechnol. (1)

A. M. Smith, M. C. Mancini, and S. M. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

Nat. Neurosci. (1)

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19, 1154–1164 (2016).
[Crossref]

Opt. Express (2)

Optica (1)

Proc. Natl. Acad. Sci. USA (1)

M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, and H. Dai, “Bright quantum dots emitting at similar to 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging,” Proc. Natl. Acad. Sci. USA 115, 6590–6595 (2018).
[Crossref]

Proc. SPIE (1)

W. Becker, A. Bergmann, C. Biskup, L. Kelbauskas, T. Zimmer, N. Klocker, and K. Benndorf, “High resolution TCSPC lifetime imaging,” Proc. SPIE 4963, 175–184 (2003).

Small (1)

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7, 2614–2620 (2011).
[Crossref]

Theranostics (2)

Z. Feng, X. Yu, M. Jiang, L. Zhu, Y. Zhang, W. Yamg, W. Xi, G. Li, and J. Qian, “Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor,” Theranostics 9, 5706–5719 (2019).
[Crossref]

C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8, 2696–2708 (2018).
[Crossref]

Other (1)

L. Cheng, K. Wang, and C. Xu, “Measurements of two-, three-, and four-photon excitation action cross sections,” in CLEO (OSA, 2014), paper ATh3P.4.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic illustration of 2PFLIM system (PMT as the detector) in the NIR-II region. 0) 1550 nm fs laser; 1) half-wave plate; 2) polarization beam splitter (PBS); 3) photodiode; 4,5) reflector; 6) scanning galvanometer; 7,8,11) lens; 9) dichroic mirror; 10) objective; 12) large beam collimator; 13) PMT; 14) TCSPC board; 15) computer. Dashed box is the scanning microscope.
Fig. 2.
Fig. 2. Morphological characterization and optical properties of PbS/CdS quantum dots (PbS QDs). (a) Transmission electron microscopy (TEM) image of PbS QDs. (b) Dynamic light scattering (DLS) profile of PbS QDs. (c) One-photon and multiphoton fluorescence spectra of PbS QDs. (d) Relationship of 1550 nm fs excitation power and fluorescence intensity from QDs.
Fig. 3.
Fig. 3. In vivo 2PFLIM images of QDs-stained mouse brain blood vessels with PMT. (a) 2PF intensity images of brain blood vessels at different vertical penetration depths: from 0 to 220 μm. Scale bar: 50 μm. (b) 2PF lifetime image at 60 μm. (c) Time-resolved decay curve at the arrow in (b). (d) 2PFLIM image at 220 μm. (e) Time-resolved decay curve at the arrow in (d). (f)–(i) Plots of each FWHM of blood vessels at depth of 100, 140, 180, and 220 μm, as indicated by the yellow lines in (a), respectively.
Fig. 4.
Fig. 4. (a) Schematic illustration of 2PFM system (InGaAs camera as the detector) in the NIR-II region. 0) 1550 nm fs laser; 1) half-wave plate; 2) polarization beam splitter (PBS); 3,4) reflector; 5) scanning galvanometer; 6,7,10) lens; 8) dichroic mirror; 9) objective; 11) InGaAs camera; 12) computer. Dashed box is the scanning microscope. (b) 3D reconstructed image of fluorescence spots when laser is focused at different depths. (c) Statistics of fluorescence area at various depths.
Fig. 5.
Fig. 5. Schematic diagram of image overlay: the blood vessel image in the blue box is superimposed by the other 15 frames. Scale bar: 50 μm.
Fig. 6.
Fig. 6. In vivo 2PFM images of QDs-stained mouse brain blood vessels with InGaAs camera. (a) 2PFM images of brain blood vessels at different vertical penetration depths: from 0 to 110 μm. Scale bar: 50 μm. (b)–(d) Plots of each FWHM of blood vessels at depths of 40, 60, and 80 μm as indicated by the yellow lines in (a), respectively.

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved