Q. Zou, K. Merghem, S. Azouigui, A. Martinez, A. Accard, N. Chimot, F. Lelarge, and A. Ramdane, “Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55 μm,” Appl. Phys. Lett. 97, 231115 (2010).
[Crossref]
M.-C. Amann and M. Ortsiefer, “Long-wavelength (λ≥1.3 μm) InGaAlAs–InP vertical-cavity surface-emitting lasers for applications in optical communication and sensing,” Phys. Status Solidi A 203, 3538–3544 (2006).
[Crossref]
Y. He, H. An, J. Cai, C. Galstad, S. Macomber, and M. Kanskar, “808 nm broad area DFB laser for solid-state laser pumping application,” Electron. Lett. 45, 163–164 (2009).
[Crossref]
K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47, 206–208 (2011).
[Crossref]
T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.
M. Matsuda, N. Yasuoka, K. Nishi, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Low-noise characteristics on 1.3-μm-wavelength quantum-dot DFB lasers under external optical feedback,” in IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.
M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed-feedback lasers based on 1.3 μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
[Crossref]
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
Q. Zou, K. Merghem, S. Azouigui, A. Martinez, A. Accard, N. Chimot, F. Lelarge, and A. Ramdane, “Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55 μm,” Appl. Phys. Lett. 97, 231115 (2010).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, and D. Poitras, “Quantum dot semiconductor lasers for 5G and beyond wireless networks,” Proc. SPIE 11690, 116900N (2021).
[Crossref]
T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, and G. Eisenstein, “Large linewidth reduction in semiconductor lasers based on atom-like gain material,” Optica 6, 1071–1077 (2019).
[Crossref]
A. Liu, P. Wolf, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for data communication and sensing,” Photon. Res. 7, 121–136 (2019).
[Crossref]
M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed-feedback lasers based on 1.3 μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
[Crossref]
A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Express 15, 5388–5393 (2007).
[Crossref]
T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, and G. Eisenstein, “Large linewidth reduction in semiconductor lasers based on atom-like gain material,” Optica 6, 1071–1077 (2019).
[Crossref]
D. Botez and G. J. Herskowitz, “Components for optical communications systems: a review,” Proc. IEEE 68, 689–731 (1980).
[Crossref]
J. C. Norman, R. P. Mirin, and J. E. Bowers, “Quantum dot lasers—history and future prospects,” J. Vac. Sci. Technol. A 39, 020802 (2021).
[Crossref]
B. Dong, J.-D. Chen, F.-Y. Lin, J. C. Norman, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long- and short-cavity feedback conditions for photonic integrated circuits,” Phys. Rev. A 103, 033509 (2021).
[Crossref]
B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, and F. Grillot, “Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch,” Photon. Res. 9, 1550–1558 (2021).
[Crossref]
Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, and J. E. Bowers, “High speed evanescent quantum-dot lasers on Si,” Laser Photon. Rev. 15, 210057 (2021).
[Crossref]
H. Huang, J. Duan, B. Dong, J. Norman, D. Jung, J. E. Bowers, and F. Grillot, “Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback,” APL Photon. 5, 016103 (2020).
[Crossref]
Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si,” Laser Photon. Rev. 14, 2000037 (2020).
[Crossref]
J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]
J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration,” Photon. Res. 7, 1222–1228 (2019).
[Crossref]
J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]
D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]
V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[Crossref]
S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
[Crossref]
O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810 nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]
O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810 nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]
W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” IEEE J. Quantum Electron. 11, 867–873 (1975).
[Crossref]
Y. He, H. An, J. Cai, C. Galstad, S. Macomber, and M. Kanskar, “808 nm broad area DFB laser for solid-state laser pumping application,” Electron. Lett. 45, 163–164 (2009).
[Crossref]
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
C. P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, and V. Donzella, “A review and perspective on optical phased array for automotive LiDAR,” IEEE J. Sel. Top. Quantum Electron. 27, 8300416 (2021).
[Crossref]
Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, and J. E. Bowers, “High speed evanescent quantum-dot lasers on Si,” Laser Photon. Rev. 15, 210057 (2021).
[Crossref]
Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes,” ACS Photon. 5, 1084–1093 (2018).
[Crossref]
W.-Y. Choi, J. C. Chen, and C. G. Fonstad, “Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers,” Jpn. J. Appl. Phys. 35, 4654–4659 (1996).
[Crossref]
B. Dong, J.-D. Chen, F.-Y. Lin, J. C. Norman, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long- and short-cavity feedback conditions for photonic integrated circuits,” Phys. Rev. A 103, 033509 (2021).
[Crossref]
C. Hantschmann, Z. Liu, M. Tang, S. Chen, A. J. Seeds, H. Liu, I. H. White, and R. V. Penty, “Theoretical study on the effects of dislocations in monolithic III-V lasers on silicon,” J. Lightwave Technol. 38, 4801–4807 (2020).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]
Q. Zou, K. Merghem, S. Azouigui, A. Martinez, A. Accard, N. Chimot, F. Lelarge, and A. Ramdane, “Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55 μm,” Appl. Phys. Lett. 97, 231115 (2010).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
W.-Y. Choi, J. C. Chen, and C. G. Fonstad, “Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers,” Jpn. J. Appl. Phys. 35, 4654–4659 (1996).
[Crossref]
J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]
G. C. Desalvo, W. F. Tseng, and J. Comas, “ChemInform abstract: etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” ChemInform 23, 309 (1992).
[Crossref]
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
C. B. Cooper, S. Salimian, and H. F. Macmillan, “Reactive ion etch characteristics of thin InGaAs and AlGaAs stop-etch layers,” J. Electron. Mater. 18, 619–622 (1989).
[Crossref]
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, and G. Roelkens, “1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding,” Opt. Express 26, 18302–18309 (2018).
[Crossref]
G. C. Desalvo, W. F. Tseng, and J. Comas, “ChemInform abstract: etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” ChemInform 23, 309 (1992).
[Crossref]
B. Dong, J.-D. Chen, F.-Y. Lin, J. C. Norman, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long- and short-cavity feedback conditions for photonic integrated circuits,” Phys. Rev. A 103, 033509 (2021).
[Crossref]
B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, and F. Grillot, “Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch,” Photon. Res. 9, 1550–1558 (2021).
[Crossref]
H. Huang, J. Duan, B. Dong, J. Norman, D. Jung, J. E. Bowers, and F. Grillot, “Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback,” APL Photon. 5, 016103 (2020).
[Crossref]
J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration,” Photon. Res. 7, 1222–1228 (2019).
[Crossref]
C. P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, and V. Donzella, “A review and perspective on optical phased array for automotive LiDAR,” IEEE J. Sel. Top. Quantum Electron. 27, 8300416 (2021).
[Crossref]
V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[Crossref]
D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]
B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, and F. Grillot, “Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch,” Photon. Res. 9, 1550–1558 (2021).
[Crossref]
H. Huang, J. Duan, B. Dong, J. Norman, D. Jung, J. E. Bowers, and F. Grillot, “Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback,” APL Photon. 5, 016103 (2020).
[Crossref]
J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration,” Photon. Res. 7, 1222–1228 (2019).
[Crossref]
A. Laakso, J. Karinen, and M. Dumitrescu, “Modeling and design particularities for distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings,” Proc. SPIE 7933, 79332K (2011).
[Crossref]
Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si,” Laser Photon. Rev. 14, 2000037 (2020).
[Crossref]
T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, and G. Eisenstein, “Large linewidth reduction in semiconductor lasers based on atom-like gain material,” Optica 6, 1071–1077 (2019).
[Crossref]
A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Express 15, 5388–5393 (2007).
[Crossref]
K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47, 206–208 (2011).
[Crossref]
S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]
O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810 nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]
D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]
D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
W.-Y. Choi, J. C. Chen, and C. G. Fonstad, “Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers,” Jpn. J. Appl. Phys. 35, 4654–4659 (1996).
[Crossref]
S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
[Crossref]
S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
[Crossref]
S. Stephan, D. Frederic, and A. Markus-Christian, “Novel InP- and GaSb-based light sources for the near to far infrared,” Semicond. Sci. Technol. 31, 113005 (2016).
[Crossref]
S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
[Crossref]
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
Y. He, H. An, J. Cai, C. Galstad, S. Macomber, and M. Kanskar, “808 nm broad area DFB laser for solid-state laser pumping application,” Electron. Lett. 45, 163–164 (2009).
[Crossref]
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
C. P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, and V. Donzella, “A review and perspective on optical phased array for automotive LiDAR,” IEEE J. Sel. Top. Quantum Electron. 27, 8300416 (2021).
[Crossref]
T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, and G. Eisenstein, “Large linewidth reduction in semiconductor lasers based on atom-like gain material,” Optica 6, 1071–1077 (2019).
[Crossref]
Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, and J. E. Bowers, “High speed evanescent quantum-dot lasers on Si,” Laser Photon. Rev. 15, 210057 (2021).
[Crossref]
Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si,” Laser Photon. Rev. 14, 2000037 (2020).
[Crossref]
J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]
D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]
H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 1504–1506 (2003).
[Crossref]
B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, and F. Grillot, “Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch,” Photon. Res. 9, 1550–1558 (2021).
[Crossref]
B. Dong, J.-D. Chen, F.-Y. Lin, J. C. Norman, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long- and short-cavity feedback conditions for photonic integrated circuits,” Phys. Rev. A 103, 033509 (2021).
[Crossref]
H. Huang, J. Duan, B. Dong, J. Norman, D. Jung, J. E. Bowers, and F. Grillot, “Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback,” APL Photon. 5, 016103 (2020).
[Crossref]
J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration,” Photon. Res. 7, 1222–1228 (2019).
[Crossref]
F. Grillot, B. Thedrez, and D. Guang-Hua, “Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures,” IEEE J. Quantum Electron. 40, 231–240 (2004).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[Crossref]
F. Grillot, B. Thedrez, and D. Guang-Hua, “Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures,” IEEE J. Quantum Electron. 40, 231–240 (2004).
[Crossref]
Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, and J. E. Bowers, “High speed evanescent quantum-dot lasers on Si,” Laser Photon. Rev. 15, 210057 (2021).
[Crossref]
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
C. Hantschmann, Z. Liu, M. Tang, S. Chen, A. J. Seeds, H. Liu, I. H. White, and R. V. Penty, “Theoretical study on the effects of dislocations in monolithic III-V lasers on silicon,” J. Lightwave Technol. 38, 4801–4807 (2020).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si,” Laser Photon. Rev. 14, 2000037 (2020).
[Crossref]
Y. He, H. An, J. Cai, C. Galstad, S. Macomber, and M. Kanskar, “808 nm broad area DFB laser for solid-state laser pumping application,” Electron. Lett. 45, 163–164 (2009).
[Crossref]
D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]
V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[Crossref]
D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]
J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]
D. Botez and G. J. Herskowitz, “Components for optical communications systems: a review,” Proc. IEEE 68, 689–731 (1980).
[Crossref]
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes,” ACS Photon. 5, 1084–1093 (2018).
[Crossref]
C. P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, and V. Donzella, “A review and perspective on optical phased array for automotive LiDAR,” IEEE J. Sel. Top. Quantum Electron. 27, 8300416 (2021).
[Crossref]
Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, and J. E. Bowers, “High speed evanescent quantum-dot lasers on Si,” Laser Photon. Rev. 15, 210057 (2021).
[Crossref]
B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, and F. Grillot, “Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch,” Photon. Res. 9, 1550–1558 (2021).
[Crossref]
H. Huang, J. Duan, B. Dong, J. Norman, D. Jung, J. E. Bowers, and F. Grillot, “Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback,” APL Photon. 5, 016103 (2020).
[Crossref]
J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration,” Photon. Res. 7, 1222–1228 (2019).
[Crossref]
C. A. Yang, S. W. Xie, Y. Zhang, J. M. Shang, S. S. Huang, Y. Yuan, F. H. Shao, Y. Zhang, Y. Q. Xu, and Z. C. Niu, “High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm,” Appl. Phys. Lett. 114, 021102 (2019).
[Crossref]
Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes,” ACS Photon. 5, 1084–1093 (2018).
[Crossref]
D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]
S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]
Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, and D. Poitras, “Quantum dot semiconductor lasers for 5G and beyond wireless networks,” Proc. SPIE 11690, 116900N (2021).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
H. Huang, J. Duan, B. Dong, J. Norman, D. Jung, J. E. Bowers, and F. Grillot, “Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback,” APL Photon. 5, 016103 (2020).
[Crossref]
J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]
J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]
D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]
T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
Y. He, H. An, J. Cai, C. Galstad, S. Macomber, and M. Kanskar, “808 nm broad area DFB laser for solid-state laser pumping application,” Electron. Lett. 45, 163–164 (2009).
[Crossref]
A. Laakso, J. Karinen, and M. Dumitrescu, “Modeling and design particularities for distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings,” Proc. SPIE 7933, 79332K (2011).
[Crossref]
Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, and J. E. Bowers, “High speed evanescent quantum-dot lasers on Si,” Laser Photon. Rev. 15, 210057 (2021).
[Crossref]
Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si,” Laser Photon. Rev. 14, 2000037 (2020).
[Crossref]
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[Crossref]
Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, and J. E. Bowers, “High speed evanescent quantum-dot lasers on Si,” Laser Photon. Rev. 15, 210057 (2021).
[Crossref]
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama, and T. Mukai, “CW operation of the first-order AlInGaN 405 nm distributed feedback laser diodes,” Jpn. J. Appl. Phys. 45, L1223–L1225 (2006).
[Crossref]
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[Crossref]
S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
[Crossref]
D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]
S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, and G. Roelkens, “1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding,” Opt. Express 26, 18302–18309 (2018).
[Crossref]
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
A. Laakso, J. Karinen, and M. Dumitrescu, “Modeling and design particularities for distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings,” Proc. SPIE 7933, 79332K (2011).
[Crossref]
Q. Zou, K. Merghem, S. Azouigui, A. Martinez, A. Accard, N. Chimot, F. Lelarge, and A. Ramdane, “Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55 μm,” Appl. Phys. Lett. 97, 231115 (2010).
[Crossref]
S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, and G. Roelkens, “1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding,” Opt. Express 26, 18302–18309 (2018).
[Crossref]
H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112–2118 (2005).
[Crossref]
H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 1504–1506 (2003).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
C. P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, and V. Donzella, “A review and perspective on optical phased array for automotive LiDAR,” IEEE J. Sel. Top. Quantum Electron. 27, 8300416 (2021).
[Crossref]
Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes,” ACS Photon. 5, 1084–1093 (2018).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
B. Dong, J.-D. Chen, F.-Y. Lin, J. C. Norman, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long- and short-cavity feedback conditions for photonic integrated circuits,” Phys. Rev. A 103, 033509 (2021).
[Crossref]
Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, and D. Poitras, “Quantum dot semiconductor lasers for 5G and beyond wireless networks,” Proc. SPIE 11690, 116900N (2021).
[Crossref]
C. Hantschmann, Z. Liu, M. Tang, S. Chen, A. J. Seeds, H. Liu, I. H. White, and R. V. Penty, “Theoretical study on the effects of dislocations in monolithic III-V lasers on silicon,” J. Lightwave Technol. 38, 4801–4807 (2020).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, and D. Poitras, “Quantum dot semiconductor lasers for 5G and beyond wireless networks,” Proc. SPIE 11690, 116900N (2021).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]
C. Hantschmann, Z. Liu, M. Tang, S. Chen, A. J. Seeds, H. Liu, I. H. White, and R. V. Penty, “Theoretical study on the effects of dislocations in monolithic III-V lasers on silicon,” J. Lightwave Technol. 38, 4801–4807 (2020).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, and D. Poitras, “Quantum dot semiconductor lasers for 5G and beyond wireless networks,” Proc. SPIE 11690, 116900N (2021).
[Crossref]
O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810 nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
C. B. Cooper, S. Salimian, and H. F. Macmillan, “Reactive ion etch characteristics of thin InGaAs and AlGaAs stop-etch layers,” J. Electron. Mater. 18, 619–622 (1989).
[Crossref]
Y. He, H. An, J. Cai, C. Galstad, S. Macomber, and M. Kanskar, “808 nm broad area DFB laser for solid-state laser pumping application,” Electron. Lett. 45, 163–164 (2009).
[Crossref]
T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.
Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si,” Laser Photon. Rev. 14, 2000037 (2020).
[Crossref]
H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 1504–1506 (2003).
[Crossref]
Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, and D. Poitras, “Quantum dot semiconductor lasers for 5G and beyond wireless networks,” Proc. SPIE 11690, 116900N (2021).
[Crossref]
S. Stephan, D. Frederic, and A. Markus-Christian, “Novel InP- and GaSb-based light sources for the near to far infrared,” Semicond. Sci. Technol. 31, 113005 (2016).
[Crossref]
D. A. I. Marpaung, “High dynamic range analog photonic links,” PhD Thesis (Twente University, 2009).
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
Q. Zou, K. Merghem, S. Azouigui, A. Martinez, A. Accard, N. Chimot, F. Lelarge, and A. Ramdane, “Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55 μm,” Appl. Phys. Lett. 97, 231115 (2010).
[Crossref]
S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama, and T. Mukai, “CW operation of the first-order AlInGaN 405 nm distributed feedback laser diodes,” Jpn. J. Appl. Phys. 45, L1223–L1225 (2006).
[Crossref]
M. Matsuda, N. Yasuoka, K. Nishi, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Low-noise characteristics on 1.3-μm-wavelength quantum-dot DFB lasers under external optical feedback,” in IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47, 206–208 (2011).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
Q. Zou, K. Merghem, S. Azouigui, A. Martinez, A. Accard, N. Chimot, F. Lelarge, and A. Ramdane, “Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55 μm,” Appl. Phys. Lett. 97, 231115 (2010).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes,” ACS Photon. 5, 1084–1093 (2018).
[Crossref]
J. C. Norman, R. P. Mirin, and J. E. Bowers, “Quantum dot lasers—history and future prospects,” J. Vac. Sci. Technol. A 39, 020802 (2021).
[Crossref]
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.
O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810 nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]
C. P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, and V. Donzella, “A review and perspective on optical phased array for automotive LiDAR,” IEEE J. Sel. Top. Quantum Electron. 27, 8300416 (2021).
[Crossref]
S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, and G. Roelkens, “1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding,” Opt. Express 26, 18302–18309 (2018).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama, and T. Mukai, “CW operation of the first-order AlInGaN 405 nm distributed feedback laser diodes,” Jpn. J. Appl. Phys. 45, L1223–L1225 (2006).
[Crossref]
S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama, and T. Mukai, “CW operation of the first-order AlInGaN 405 nm distributed feedback laser diodes,” Jpn. J. Appl. Phys. 45, L1223–L1225 (2006).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47, 206–208 (2011).
[Crossref]
H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 1504–1506 (2003).
[Crossref]
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes,” ACS Photon. 5, 1084–1093 (2018).
[Crossref]
B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, and F. Grillot, “Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch,” Photon. Res. 9, 1550–1558 (2021).
[Crossref]
K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47, 206–208 (2011).
[Crossref]
T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.
M. Matsuda, N. Yasuoka, K. Nishi, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Low-noise characteristics on 1.3-μm-wavelength quantum-dot DFB lasers under external optical feedback,” in IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.
C. A. Yang, S. W. Xie, Y. Zhang, J. M. Shang, S. S. Huang, Y. Yuan, F. H. Shao, Y. Zhang, Y. Q. Xu, and Z. C. Niu, “High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm,” Appl. Phys. Lett. 114, 021102 (2019).
[Crossref]
H. Huang, J. Duan, B. Dong, J. Norman, D. Jung, J. E. Bowers, and F. Grillot, “Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback,” APL Photon. 5, 016103 (2020).
[Crossref]
D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]
J. C. Norman, R. P. Mirin, and J. E. Bowers, “Quantum dot lasers—history and future prospects,” J. Vac. Sci. Technol. A 39, 020802 (2021).
[Crossref]
B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, and F. Grillot, “Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch,” Photon. Res. 9, 1550–1558 (2021).
[Crossref]
B. Dong, J.-D. Chen, F.-Y. Lin, J. C. Norman, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long- and short-cavity feedback conditions for photonic integrated circuits,” Phys. Rev. A 103, 033509 (2021).
[Crossref]
Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si,” Laser Photon. Rev. 14, 2000037 (2020).
[Crossref]
J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]
J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration,” Photon. Res. 7, 1222–1228 (2019).
[Crossref]
J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]
M.-C. Amann and M. Ortsiefer, “Long-wavelength (λ≥1.3 μm) InGaAlAs–InP vertical-cavity surface-emitting lasers for applications in optical communication and sensing,” Phys. Status Solidi A 203, 3538–3544 (2006).
[Crossref]
Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, and D. Poitras, “Quantum dot semiconductor lasers for 5G and beyond wireless networks,” Proc. SPIE 11690, 116900N (2021).
[Crossref]
J. C. Palais, Fiber Optic Communications (Prentice Hall, 1988).
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
C. Hantschmann, Z. Liu, M. Tang, S. Chen, A. J. Seeds, H. Liu, I. H. White, and R. V. Penty, “Theoretical study on the effects of dislocations in monolithic III-V lasers on silicon,” J. Lightwave Technol. 38, 4801–4807 (2020).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[Crossref]
D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]
Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, and D. Poitras, “Quantum dot semiconductor lasers for 5G and beyond wireless networks,” Proc. SPIE 11690, 116900N (2021).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, and D. Poitras, “Quantum dot semiconductor lasers for 5G and beyond wireless networks,” Proc. SPIE 11690, 116900N (2021).
[Crossref]
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, and D. Poitras, “Quantum dot semiconductor lasers for 5G and beyond wireless networks,” Proc. SPIE 11690, 116900N (2021).
[Crossref]
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
Q. Zou, K. Merghem, S. Azouigui, A. Martinez, A. Accard, N. Chimot, F. Lelarge, and A. Ramdane, “Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55 μm,” Appl. Phys. Lett. 97, 231115 (2010).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, and G. Eisenstein, “Large linewidth reduction in semiconductor lasers based on atom-like gain material,” Optica 6, 1071–1077 (2019).
[Crossref]
S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, and G. Roelkens, “1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding,” Opt. Express 26, 18302–18309 (2018).
[Crossref]
D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
C. B. Cooper, S. Salimian, and H. F. Macmillan, “Reactive ion etch characteristics of thin InGaAs and AlGaAs stop-etch layers,” J. Electron. Mater. 18, 619–622 (1989).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[Crossref]
T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, and G. Eisenstein, “Large linewidth reduction in semiconductor lasers based on atom-like gain material,” Optica 6, 1071–1077 (2019).
[Crossref]
W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” IEEE J. Quantum Electron. 11, 867–873 (1975).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
C. Hantschmann, Z. Liu, M. Tang, S. Chen, A. J. Seeds, H. Liu, I. H. White, and R. V. Penty, “Theoretical study on the effects of dislocations in monolithic III-V lasers on silicon,” J. Lightwave Technol. 38, 4801–4807 (2020).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]
Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, and J. E. Bowers, “High speed evanescent quantum-dot lasers on Si,” Laser Photon. Rev. 15, 210057 (2021).
[Crossref]
Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si,” Laser Photon. Rev. 14, 2000037 (2020).
[Crossref]
V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[Crossref]
T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, and G. Eisenstein, “Large linewidth reduction in semiconductor lasers based on atom-like gain material,” Optica 6, 1071–1077 (2019).
[Crossref]
T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, and G. Eisenstein, “Large linewidth reduction in semiconductor lasers based on atom-like gain material,” Optica 6, 1071–1077 (2019).
[Crossref]
Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si,” Laser Photon. Rev. 14, 2000037 (2020).
[Crossref]
J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]
C. A. Yang, S. W. Xie, Y. Zhang, J. M. Shang, S. S. Huang, Y. Yuan, F. H. Shao, Y. Zhang, Y. Q. Xu, and Z. C. Niu, “High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm,” Appl. Phys. Lett. 114, 021102 (2019).
[Crossref]
C. A. Yang, S. W. Xie, Y. Zhang, J. M. Shang, S. S. Huang, Y. Yuan, F. H. Shao, Y. Zhang, Y. Q. Xu, and Z. C. Niu, “High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm,” Appl. Phys. Lett. 114, 021102 (2019).
[Crossref]
T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, and G. Eisenstein, “Large linewidth reduction in semiconductor lasers based on atom-like gain material,” Optica 6, 1071–1077 (2019).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]
T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, and G. Eisenstein, “Large linewidth reduction in semiconductor lasers based on atom-like gain material,” Optica 6, 1071–1077 (2019).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]
S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]
C. P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, and V. Donzella, “A review and perspective on optical phased array for automotive LiDAR,” IEEE J. Sel. Top. Quantum Electron. 27, 8300416 (2021).
[Crossref]
K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47, 206–208 (2011).
[Crossref]
S. Stephan, D. Frederic, and A. Markus-Christian, “Novel InP- and GaSb-based light sources for the near to far infrared,” Semicond. Sci. Technol. 31, 113005 (2016).
[Crossref]
H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[Crossref]
M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed-feedback lasers based on 1.3 μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
[Crossref]
W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” IEEE J. Quantum Electron. 11, 867–873 (1975).
[Crossref]
M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed-feedback lasers based on 1.3 μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
[Crossref]
M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed-feedback lasers based on 1.3 μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
[Crossref]
H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112–2118 (2005).
[Crossref]
H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 1504–1506 (2003).
[Crossref]
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, and F. Grillot, “Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch,” Photon. Res. 9, 1550–1558 (2021).
[Crossref]
K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47, 206–208 (2011).
[Crossref]
T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.
M. Matsuda, N. Yasuoka, K. Nishi, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Low-noise characteristics on 1.3-μm-wavelength quantum-dot DFB lasers under external optical feedback,” in IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.
G. Liu, G. Zhao, J. Sun, D. Gao, Q. Lu, and W. Guo, “Experimental demonstration of DFB lasers with active distributed reflector,” Opt. Express 26, 29784–29795 (2018).
[Crossref]
D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]
K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47, 206–208 (2011).
[Crossref]
B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, and F. Grillot, “Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch,” Photon. Res. 9, 1550–1558 (2021).
[Crossref]
T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.
M. Matsuda, N. Yasuoka, K. Nishi, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Low-noise characteristics on 1.3-μm-wavelength quantum-dot DFB lasers under external optical feedback,” in IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47, 206–208 (2011).
[Crossref]
T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.
C. Hantschmann, Z. Liu, M. Tang, S. Chen, A. J. Seeds, H. Liu, I. H. White, and R. V. Penty, “Theoretical study on the effects of dislocations in monolithic III-V lasers on silicon,” J. Lightwave Technol. 38, 4801–4807 (2020).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
F. Grillot, B. Thedrez, and D. Guang-Hua, “Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures,” IEEE J. Quantum Electron. 40, 231–240 (2004).
[Crossref]
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si,” Laser Photon. Rev. 14, 2000037 (2020).
[Crossref]
Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si,” Laser Photon. Rev. 14, 2000037 (2020).
[Crossref]
G. C. Desalvo, W. F. Tseng, and J. Comas, “ChemInform abstract: etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” ChemInform 23, 309 (1992).
[Crossref]
S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama, and T. Mukai, “CW operation of the first-order AlInGaN 405 nm distributed feedback laser diodes,” Jpn. J. Appl. Phys. 45, L1223–L1225 (2006).
[Crossref]
D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, and G. Roelkens, “1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding,” Opt. Express 26, 18302–18309 (2018).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, and G. Roelkens, “1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding,” Opt. Express 26, 18302–18309 (2018).
[Crossref]
S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, and G. Roelkens, “1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding,” Opt. Express 26, 18302–18309 (2018).
[Crossref]
S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, and G. Roelkens, “1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding,” Opt. Express 26, 18302–18309 (2018).
[Crossref]
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, and G. Roelkens, “1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding,” Opt. Express 26, 18302–18309 (2018).
[Crossref]
Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, and J. E. Bowers, “High speed evanescent quantum-dot lasers on Si,” Laser Photon. Rev. 15, 210057 (2021).
[Crossref]
Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si,” Laser Photon. Rev. 14, 2000037 (2020).
[Crossref]
J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]
J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes,” ACS Photon. 5, 1084–1093 (2018).
[Crossref]
H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 1504–1506 (2003).
[Crossref]
Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes,” ACS Photon. 5, 1084–1093 (2018).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810 nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]
V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[Crossref]
C. Hantschmann, Z. Liu, M. Tang, S. Chen, A. J. Seeds, H. Liu, I. H. White, and R. V. Penty, “Theoretical study on the effects of dislocations in monolithic III-V lasers on silicon,” J. Lightwave Technol. 38, 4801–4807 (2020).
[Crossref]
V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[Crossref]
O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810 nm range and epitaxial grating design,” Semicond. Sci. Technol. 29, 095018 (2014).
[Crossref]
V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[Crossref]
T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, and G. Eisenstein, “Large linewidth reduction in semiconductor lasers based on atom-like gain material,” Optica 6, 1071–1077 (2019).
[Crossref]
S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, and W. Mimnagh, “A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer,” Proc. SPIE 9328, 932809 (2015).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]
Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, and J. E. Bowers, “High speed evanescent quantum-dot lasers on Si,” Laser Photon. Rev. 15, 210057 (2021).
[Crossref]
C. A. Yang, S. W. Xie, Y. Zhang, J. M. Shang, S. S. Huang, Y. Yuan, F. H. Shao, Y. Zhang, Y. Q. Xu, and Z. C. Niu, “High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm,” Appl. Phys. Lett. 114, 021102 (2019).
[Crossref]
Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, and J. E. Bowers, “High speed evanescent quantum-dot lasers on Si,” Laser Photon. Rev. 15, 210057 (2021).
[Crossref]
C. A. Yang, S. W. Xie, Y. Zhang, J. M. Shang, S. S. Huang, Y. Yuan, F. H. Shao, Y. Zhang, Y. Q. Xu, and Z. C. Niu, “High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm,” Appl. Phys. Lett. 114, 021102 (2019).
[Crossref]
K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47, 206–208 (2011).
[Crossref]
T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.
K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47, 206–208 (2011).
[Crossref]
T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.
M. Matsuda, N. Yasuoka, K. Nishi, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Low-noise characteristics on 1.3-μm-wavelength quantum-dot DFB lasers under external optical feedback,” in IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.
S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama, and T. Mukai, “CW operation of the first-order AlInGaN 405 nm distributed feedback laser diodes,” Jpn. J. Appl. Phys. 45, L1223–L1225 (2006).
[Crossref]
T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys.: Condens. Matter 13, 7099 (2001).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
C. A. Yang, S. W. Xie, Y. Zhang, J. M. Shang, S. S. Huang, Y. Yuan, F. H. Shao, Y. Zhang, Y. Q. Xu, and Z. C. Niu, “High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm,” Appl. Phys. Lett. 114, 021102 (2019).
[Crossref]
M. Matsuda, N. Yasuoka, K. Nishi, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Low-noise characteristics on 1.3-μm-wavelength quantum-dot DFB lasers under external optical feedback,” in IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
C. A. Yang, S. W. Xie, Y. Zhang, J. M. Shang, S. S. Huang, Y. Yuan, F. H. Shao, Y. Zhang, Y. Q. Xu, and Z. C. Niu, “High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm,” Appl. Phys. Lett. 114, 021102 (2019).
[Crossref]
Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, and D. Poitras, “Quantum dot semiconductor lasers for 5G and beyond wireless networks,” Proc. SPIE 11690, 116900N (2021).
[Crossref]
T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5G networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2021), pp. 1–3.
H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 1504–1506 (2003).
[Crossref]
Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes,” ACS Photon. 5, 1084–1093 (2018).
[Crossref]
C. A. Yang, S. W. Xie, Y. Zhang, J. M. Shang, S. S. Huang, Y. Yuan, F. H. Shao, Y. Zhang, Y. Q. Xu, and Z. C. Niu, “High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm,” Appl. Phys. Lett. 114, 021102 (2019).
[Crossref]
C. A. Yang, S. W. Xie, Y. Zhang, J. M. Shang, S. S. Huang, Y. Yuan, F. H. Shao, Y. Zhang, Y. Q. Xu, and Z. C. Niu, “High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm,” Appl. Phys. Lett. 114, 021102 (2019).
[Crossref]
Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, and J. E. Bowers, “High speed evanescent quantum-dot lasers on Si,” Laser Photon. Rev. 15, 210057 (2021).
[Crossref]
J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration,” Photon. Res. 7, 1222–1228 (2019).
[Crossref]
J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]
Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes,” ACS Photon. 5, 1084–1093 (2018).
[Crossref]
Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes,” ACS Photon. 5, 1084–1093 (2018).
[Crossref]
Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]
M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]
S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3 μm DFB quantum-dot lasers,” IEEE Photon. Technol. Lett. 23, 582–584 (2011).
[Crossref]
Q. Zou, K. Merghem, S. Azouigui, A. Martinez, A. Accard, N. Chimot, F. Lelarge, and A. Ramdane, “Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55 μm,” Appl. Phys. Lett. 97, 231115 (2010).
[Crossref]