Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Source coherence-induced control of spatiotemporal coherency vortices

Open Access Open Access

Abstract

A novel method to achieve the coherence control of spatiotemporal coherency vortices of spatially and temporally partially coherent pulsed vortex (STPCPV) beams is proposed. The influence of spatial and temporal coherence of the source on the phase distributions and the positions of spatiotemporal coherency vortices of the STPCPV beams propagating through fused silica is investigated in detail, for the first time to our knowledge. It is found that the coherence width and the coherence time of the incident beam can be regarded as a perfect tool for controlling the phase distribution and position of a spatiotemporal coherency vortex. The results obtained in this paper will benefit a number of applications relating to light-matter interaction, quantum entanglement, quantum imaging, optical trapping and spatiotemporal spin-orbit angular momentum coupling.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In the past three decades, vortex beams with phase singularity and the orbital angular momentum (OAM) have gained a great deal of attention due to their extensive applications in microparticle manipulation [13], optical detection [4], optical communications in free space [5] and optical fibers [6], quantum information processing [7] and quantum imaging [8], super-resolution imaging [9], human face recognition [10], etc. Significant theoretical, experimental and applied research results related to vortex beams are obtained [1119]. During this period, the research on vortices has been extended rapidly from scalar light field to vector one [20], from an integer topological charge to a fractional one [21,22], from an individual vortex to vortex lattices [23], from a classical vortex to a perfect vortex [24]. In particular, the conventional optical vortex in the spatial domain is extended into the space-time dimension, and termed a spatiotemporal optical vortex (STOV), see the seminal work of Sukhorukov et al. in 2005 [25]. It is well known that the common vortex beams with the OAM possess a spatial spiral phase front, where the OAM is longitudinal to the light propagation direction. Whereas the STOV’s OAM is perpendicular to the light propagation direction, being a transverse OAM. Recently, Bliokh and Nori have predicted that the STOV with a transverse OAM can be formed by introducing the temporal variations of phase [26] and Huang et al. demonstrated theoretically the generation of a transverse OAM step by step basing their approach on the diffraction theory [27]. Afterwards, the STOV with a transverse OAM was verified experimentally by the Zhan’s group [2833] and the Milchberg’s group [3437], respectively. More recently, Bliokh has performed the accurate theoretical analysis of the STOV’s angular-momentum properties [38]. However, in the aforementioned investigations, partial spatial and temporal coherence of vortex beams have not been considered appropriately.

On the other hand, with the rapid development of the optical coherence theory in the recent two decades [39,40], many researchers pay more and more attention to the design and implementation of the spatial coherence of the light sources. Consequently, the investigation on the optical field vortices was extended to coherency vortices, being the phase singularities of the second-order correlation functions [4149]. It has been verified that the spatially partially coherent vortex beams possess many unique advantages in optical trapping [50], optical communications [51], information encryption [52], etc [53,54], as compared with their fully coherent counterparts. In addition to the spatial coherence effect, the non-stationary stochastic optical pulses with partial spectral or temporal coherence, representing a more general class of the partially coherent fields, have attracted researchers’ widespread attention due to their potential applications in laser micromachining, ghost imaging, pulse shaping and medical diagnosis [5568]. Importantly, such optical pulses are radiated by some realistic laser sources, such as random lasers, excimer lasers, free-electron lasers and supercontinuum sources in micro structured fibers [69]. Up to now, the partial spatial and temporal coherence states of the STOVs have not been investigated thoroughly. There are only two papers considering the coherence of the STOVs. The first one is concerned with generation and propagation of specific (twisted) partially coherent sources in the space-frequency and space-time domains [70]. The other one only treats partially temporally coherent STOVs, both theoretically and experimentally, suggesting a convenient and cost-effective setup instead of the traditional use of mode-locked laser sources [71]. Thus, a systematic, simultaneous analysis of temporal and spatial coherence affecting propagation properties of the STOVs is required.

Inspired by the remarkable properties of the STOV [2636,70,71] we have explored the influence of the spatial and temporal coherence states on the spatiotemporal coherency vortices of the STPCPV beams. In section 2, we have developed the basic theory showing how the source spatial and temporal coherence result in the changes of spatiotemporal coherency vortices of the STPCPV beams propagating through fused silica. In section 3, detailed numerical results regarding the STPCPV beam evolution are presented. In Section 4, the main results of the paper are summarized.

2. Theory

The mutual coherence function (MCF) of a spatially and temporally partially coherent pulsed vortex (STPCPV) beam with a spatiotemporal optical vortex across a source plane has form [34,39]

$$\begin{aligned} \mathrm{\Gamma }_m^{(0)}\textrm{(}{{\boldsymbol r}_1}\textrm{,}{{\boldsymbol r}_2}\textrm{,}{\tau _1}\textrm{,}{\tau _2}\textrm{)} &= \textrm{exp}\left( { - \frac{{{\boldsymbol r}_1^2 + {\boldsymbol r}_2^2}}{{4w_0^2}}} \right)\textrm{exp}\left[ { - \frac{{{{({{{\boldsymbol r}_2} - {{\boldsymbol r}_1}} )}^2}}}{{2\delta_{}^2}}} \right]\textrm{exp}\left( { - \frac{{\tau_1^2 + \tau_2^2}}{{T_0^2}}} \right)\textrm{exp}\left[ { - \frac{{{{({\tau_2^{} - \tau_1^{}} )}^2}}}{{2T_c^2}}} \right]\\ \textrm{ } &\times {\left[ {\frac{{{\tau_1}}}{{{\tau_s}}} - i\textrm{sgn}(m) \cdot \frac{{x_1^{}}}{{x_s^{}}}} \right]^{|m |}} \cdot {\left[ {\frac{{{\tau_2}}}{{{\tau_s}}} + i\textrm{sgn}(m) \cdot \frac{{x_2^{}}}{{x_s^{}}}} \right]^{|m |}}\textrm{exp}[{ - i{\omega_0}(\tau_2^{} - \tau_1^{})} ]\textrm{,} \end{aligned}$$
where r1 = (x1, y1), r2 = (x2, y2) are the two-dimensional, transverse position vectors, τ1 and τ2 are a pair of time instants, sgn (•) is the signum function, m is the topological charge, τs and xs are the temporal and the spatial characteristic widths of the STOV. Further, ω0 is the pulse’s carrier frequency, while w0 and δ denote the beam’s waist width and its spatial coherence width, respectively. Also, T0 and Tc represent the average pulse duration and its coherence time.

We will now consider propagation of such a pulse from the source plane z = 0 to a plane z > 0. The general relation between the MCFs of the pulse in these planes is well known [39,72,73]:

$$\begin{aligned} \Gamma ({{\boldsymbol \rho }_1}{,}{{\boldsymbol \rho }_2},{t_1},{t_2},z) &= {\left[ {\frac{{{k_0}}}{{2\pi {B_S}}}} \right]^2}\frac{{{\omega _0}}}{{2\pi {B_T}}}\int {\int {\int {\int_{ - \infty }^\infty {\Gamma _m^{(0)}({{\boldsymbol r}_1},{{\boldsymbol r}_2},{\tau _1},{\tau _2})} } } } \\ \textrm{ } &\times \textrm{exp}\left\{ { - \frac{{i{k_0}}}{{2{B_S}}}[{{A_S}({\boldsymbol r}_1^2 - {\boldsymbol r}_2^2) - 2({{\boldsymbol r}_1} \cdot {{\boldsymbol \rho }_1} - {{\boldsymbol r}_2} \cdot {{\boldsymbol \rho }_2}) + {D_S}({\boldsymbol \rho }_1^2 - {\boldsymbol \rho }_2^2)} ]} \right\}d{{\boldsymbol r}_1}d{{\boldsymbol r}_2}\\ \textrm{ } &\times \textrm{exp}\left\{ { - \frac{{i{\omega_0}}}{{2{B_T}}}[{{A_T}(\tau_1^2 - \tau_2^2) - 2({\tau_1}{t_1} - {\tau_2}{t_2}) + {D_T}(t_1^2 - t_2^2)} ]} \right\}d{\tau _1}d{\tau _2}. \end{aligned}$$

Here ρ1 = (u1, v1), ρ2 = (u2, v2), are the two-dimensional transverse position vectors in plane z > 0, k0 = n(ω0)ω0/c denotes the wave number, with c being the speed of light in vacuum, n(ω0) is the refractive index of the medium at carrier frequency ω0, t1 and t2 are two time instants. Further, AS, BS and DS are the ABCD transfer matrix elements of the optical system in the spatial domain, while AT, BT and DT are those in the temporal domain. These transfer matrices are

$$\left( {\begin{array}{{cc}} {{A_S}}&{{B_S}}\\ {{C_S}}&{{D_S}} \end{array}} \right) = \left( {\begin{array}{{cc}} 1&z\\ 0&1 \end{array}} \right),$$
and
$$\left( {\begin{array}{{cc}} {{A_T}}&{{B_T}}\\ {{C_T}}&{{D_T}} \end{array}} \right) = \left( {\begin{array}{{cc}} 1&{{\omega_0}{\beta_2}z}\\ 0&1 \end{array}} \right),$$
where β2 denotes the group velocity dispersion coefficient. Without loss of generality, we restrict our attention to one-dimensional case, the two-dimensional extension being straightforward. We set the topological charge to m = ±1. In this case, the MCF in Eq. (1) reduces to expression
$$\begin{aligned} \Gamma _{ {\pm} 1}^{(0)}({x_1},{x_2},{\tau _1},{\tau _2}) &= \textrm{exp}\left( { - \frac{{x_1^2 + x_2^2}}{{4w_0^2}}} \right)\textrm{exp}\left[ { - \frac{{{{({x_2} - {x_1})}^2}}}{{2\delta_{}^2}}} \right]\textrm{exp}\left( { - \frac{{\tau_1^2 + \tau_2^2}}{{T_0^2}}} \right)\exp \left[ { - \frac{{{{(\tau_2^{} - \tau_1^{})}^2}}}{{2T_c^2}}} \right]\\ \textrm{ } &\times \left[ {\frac{{{x_1}{x_2}}}{{x_s^2}} + \frac{{{\tau_1}{\tau_2}}}{{\tau_s^2}} \mp \frac{i}{{x_s^{}\tau_s^{}}}({{x_1}\tau_2^{} - {x_2}\tau_1^{}} )} \right]\exp [{ - i{\omega_0}(\tau_2^{} - \tau_1^{})} ], \end{aligned}$$
where the symbol ∓’corresponds to charges m = ±1. Also, the propagating MCF in Eq. (2) can be simplified as
$$\begin{aligned} \Gamma ({u_1},{u_2},{t_1},{t_2},z) &= \frac{{{k_0}}}{{2\pi {B_S}}}\frac{{{\omega _0}}}{{2\pi {B_T}}}\int {\int {\int {\int_{ - \infty }^\infty {\Gamma _{ {\pm} 1}^{(0)}({x_1},{x_2},{\tau _1},{\tau _2})} } } } \\ \textrm{ } &\times \textrm{exp}\left\{ { - \frac{{i{k_0}}}{{2{B_S}}}[{{A_S}(x_1^2 - x_2^2) - 2({x_1} \cdot {u_1} - {x_2} \cdot {u_2}) + {D_S}(u_1^2 - u_2^2)} ]} \right\}d{x_1}d{x_2}\\ &\textrm{ } \times \textrm{exp}\left\{ { - \frac{{i{\omega_0}}}{{2{B_T}}}[{{A_T}(\tau_1^2 - \tau_2^2) - 2({\tau_1}{t_1} - {\tau_2}{t_2}) + {D_T}(t_1^2 - t_2^2)} ]} \right\}d{\tau _1}d{\tau _2}. \end{aligned}$$

On substituting from Eq. (5) into Eq. (6), we obtain for the MCF of a STPCPV beam at plane z the formula

$$\Gamma ({u_1},{u_2},{t_1},{t_2},z) = {\Gamma _1}({u_1},{u_2},{t_1},{t_2},z) + {\Gamma _2}({u_1},{u_2},{t_1},{t_2},z) + {\Gamma _3}({u_1},{u_2},{t_1},{t_2},z)\textrm{,}$$
where
$$\begin{aligned} {\Gamma _1}({u_1},{u_2},{t_1},{t_2},z) &= \frac{{{k_0}}}{{2\pi {B_S}}}\frac{{{\omega _0}}}{{2\pi {B_T}}}\int {\int {\int {\int_{ - \infty }^\infty {\frac{{{x_1}{x_2}}}{{x_s^2}}\textrm{exp}\left( { - \frac{{x_1^2 + x_2^2}}{{4w_0^2}}} \right)\textrm{exp}\left[ { - \frac{{{{({x_2} - {x_1})}^2}}}{{2\delta_{}^2}}} \right]} } } } \\ \textrm{ } &\times \textrm{exp}\left\{ { - \frac{{i{k_0}}}{{2{B_S}}}[{{A_S}(x_1^2 - x_2^2) - 2({x_1} \cdot {u_1} - {x_2} \cdot {u_2}) + {D_S}(u_1^2 - u_2^2)} ]} \right\}d{x_1}d{x_2}\\ \textrm{ } &\times \textrm{exp}\left( { - \frac{{\tau_1^2 + \tau_2^2}}{{T_0^2}}} \right)\exp \left[ { - \frac{{{{(\tau_2^{} - \tau_1^{})}^2}}}{{2T_c^2}}} \right]\textrm{exp}[{ - i{\omega_0}(\tau_2^{} - \tau_1^{})} ]\\ \textrm{ } &\times \textrm{exp}\left\{ { - \frac{{i{\omega_0}}}{{2{B_T}}}[{{A_T}(\tau_1^2 - \tau_2^2) - 2({\tau_1}{t_1} - {\tau_2}{t_2}) + {D_T}(t_1^2 - t_2^2)} ]} \right\}d{\tau _1}d{\tau _2}, \end{aligned}$$
$$\begin{aligned}{\Gamma _2}({u_1},{u_2},{t_1},{t_2},z) &= \frac{{{k_0}}}{{2\pi {B_S}}}\frac{{{\omega _0}}}{{2\pi {B_T}}}\int {\int {\int {\int_{ - \infty }^\infty {\textrm{exp}\left( { - \frac{{x_1^2 + x_2^2}}{{4w_0^2}}} \right)\textrm{exp}\left[ { - \frac{{{{({x_2} - {x_1})}^2}}}{{2\delta_{}^2}}} \right]} } } } \\ \textrm{ } &\times \textrm{exp}\left\{ { - \frac{{i{k_0}}}{{2{B_S}}}[{{A_S}(x_1^2 - x_2^2) - 2({x_1} \cdot {u_1} - {x_2} \cdot {u_2}) + {D_S}(u_1^2 - u_2^2)} ]} \right\}d{x_1}d{x_2}\\ \textrm{ } &\times \frac{{{\tau _1}{\tau _2}}}{{\tau _s^2}}\textrm{exp}\left( { - \frac{{\tau_1^2 + \tau_2^2}}{{T_0^2}}} \right)\exp \left[ { - \frac{{{{(\tau_2^{} - \tau_1^{})}^2}}}{{2T_c^2}}} \right]\textrm{exp}[{ - i{\omega_0}(\tau_2^{} - \tau_1^{})} ]\\ \textrm{ } &\times \textrm{exp}\left\{ { - \frac{{i{\omega_0}}}{{2{B_T}}}[{{A_T}(\tau_1^2 - \tau_2^2) - 2({\tau_1}{t_1} - {\tau_2}{t_2}) + {D_T}(t_1^2 - t_2^2)} ]} \right\}d{\tau _1}d{\tau _2}, \end{aligned}$$
$${0.9}{$\begin{aligned} {\Gamma _3}({u_1},{u_2},{t_1},{t_2},z) &= \frac{{{k_0}}}{{2\pi {B_S}}}\frac{{{\omega _0}}}{{2\pi {B_T}}}\int {\int {\int {\int_{ - \infty }^\infty {\left[ { \mp \frac{i}{{x_s^{}\tau_s^{}}}({{x_1}\tau_2^{} - {x_2}\tau_1^{}} )} \right]\textrm{exp}\left( { - \frac{{x_1^2 + x_2^2}}{{4w_0^2}}} \right)\textrm{exp}\left[ { - \frac{{{{({x_2} - {x_1})}^2}}}{{2\delta_{}^2}}} \right]} } } } \\ \textrm{ } &\times \textrm{exp}\left\{ { - \frac{{i{k_0}}}{{2{B_S}}}[{{A_S}(x_1^2 - x_2^2) - 2({x_1} \cdot {u_1} - {x_2} \cdot {u_2}) + {D_S}(u_1^2 - u_2^2)} ]} \right\}d{x_1}d{x_2}\\ \textrm{ } &\times \textrm{exp}\left( { - \frac{{\tau_1^2 + \tau_2^2}}{{T_0^2}}} \right)\exp \left[ { - \frac{{{{(\tau_2^{} - \tau_1^{})}^2}}}{{2T_c^2}}} \right]\textrm{exp}[{ - i{\omega_0}(\tau_2^{} - \tau_1^{})} ]\\ \textrm{ } &\times \textrm{exp}\left\{ { - \frac{{i{\omega_0}}}{{2{B_T}}}[{{A_T}(\tau_1^2 - \tau_2^2) - 2({\tau_1}{t_1} - {\tau_2}{t_2}) + {D_T}(t_1^2 - t_2^2)} ]} \right\}d{\tau _1}d{\tau _2}. \end{aligned}$}$$

We assume that the medium is linearly dispersive [74], whose refractive index is given by expression n(ω) = naω + nb, where na = β2c/2 and nb = c/vgβ2ω0c. Here vg is the group velocity of the pulse and β2 is the group velocity dispersion coefficient at the central frequency of the pulse (it was already defined in Eq. (4)). Further, we set the time coordinate as being measured in the reference frame moving at the group velocity of the pulse, and for computational convenience we introduce the following average and difference coordinates:

$$\bar{t} = ({t_1} + {t_2})/2\textrm{, }\Delta t = {t_2} - {t_1},\bar{\tau } = ({\tau _1} + {\tau _2})/2\textrm{, }\Delta \tau = {\tau _2} - {\tau _1},$$
$$\bar{u} = ({u_1} + {u_2})/2\textrm{, }\Delta u = {u_2} - {u_1},\bar{x} = ({x_1} + {x_2})/2\textrm{, }\Delta x = {x_2} - {x_1}.$$

With the help of Eqs. (11) and (12), Eq. (6) can be expressed as

$$\begin{aligned} {\Gamma _1}({u_1},{u_2},{t_1},{t_2},z) &= \frac{{{k_0}}}{{2\pi {B_S}x_s^2}}\textrm{exp}\left( {\frac{{i{k_0}{D_S}}}{{B_S^{}}}\Delta u \cdot \bar{u}} \right)\\ \textrm{ } &\times \int {\int_{ - \infty }^\infty {\left( {{{\bar{x}}^2} - \frac{1}{4}\Delta {x^2}} \right)\textrm{exp}\left( { - \frac{1}{{2w_0^2}}{{\bar{x}}^2}} \right)\textrm{exp}\left[ {\frac{{i{k_0}}}{{{B_S}}}({{A_S}\Delta x - \Delta u} )\bar{x}} \right]} } d\bar{x}\\ \textrm{ } &\times \textrm{exp}\left[ { - \left( {\frac{1}{{8w_0^2}} + \frac{1}{{2\delta_{}^2}}} \right)\Delta {x^2}} \right]\textrm{exp}\left( { - \frac{{ik}}{{B_S^{}}}\bar{y}\Delta x} \right)d\Delta x\\ \textrm{ } &\times \frac{{{\omega _0}}}{{2\pi {B_T}}}\textrm{exp}\left( {\frac{{i{\omega_0}{D_T}}}{{B_T^{}}}\Delta t \cdot \bar{t}} \right)\int {\int_{ - \infty }^\infty {\textrm{exp}\left( { - \frac{2}{{T_0^2}}{{\bar{\tau }}^2}} \right)\exp \left[ {\frac{{i{\omega_0}}}{{{B_T}}}({{A_T}\Delta \tau - \Delta t} )\bar{\tau }} \right]\textrm{d}\bar{\tau }} } \\ \textrm{ } &\times \textrm{exp}\left[ { - \left( {\frac{1}{{2T_0^2}} + \frac{1}{{2T_c^2}}} \right)\Delta {\tau^2}} \right]\textrm{exp}\left( { - \frac{{i{\omega_0}}}{{B_T^{}}}\bar{t}\Delta \tau } \right)d\Delta \tau . \end{aligned}$$

Performing integrations in Eq. (13) yields

$$\begin{aligned} {\Gamma _1}({u_1},{u_2},{t_1},{t_2},z) &= \frac{{{k_0}w_0^3}}{{{B_S}x_s^2}}\textrm{exp}\left( {\frac{{i{k_0}{D_S}}}{{B_S^{}}}\Delta u \cdot \bar{u}} \right)\textrm{exp}\left( { - \frac{{k_0^2w_0^2}}{{2B_S^2}}\Delta {u^2}} \right)\\ \textrm{ } &\times \frac{1}{{\sqrt a }}\exp \left( { - \frac{{{b^2}}}{{2a}}} \right)\left[ {\frac{1}{a}\left( {\frac{1}{{\delta_{}^2}} + \frac{1}{{4w_0^2}}\frac{{{b^2}}}{a}} \right) + \frac{{k_0^2w_0^2}}{{B_S^2}}{{\left( {\frac{b}{a}A_S^{} - i\Delta u} \right)}^2}} \right]\\ \textrm{ } &\times \frac{{{\omega _0}{T_0}}}{{2{B_T}}}\textrm{exp}\left( {\frac{{i{\omega_0}{D_T}}}{{B_T^{}}}\Delta t \cdot \bar{t}} \right)\textrm{exp}\left( { - \frac{{\omega_0^2T_0^2}}{{8B_T^2}}\Delta {t^2}} \right)\frac{1}{{\sqrt {c^{\prime}} }}\exp \left( { - \frac{{{d^2}}}{{2c^{\prime}}}} \right) \end{aligned},$$
where
$$a = \frac{1}{{4w_0^2}} + \frac{1}{{\delta _{}^2}} + \frac{{k_0^2w_0^2A_S^2}}{{B_S^2}},$$
$$b = \frac{{{k_0}}}{{{B_S}}}\bar{u} + i\frac{{k_0^2w_0^2A_S^{}}}{{B_S^2}}\Delta u,$$
$$c^{\prime} = \frac{1}{{T_0^2}} + \frac{1}{{T_c^2}} + \frac{{\omega _0^2T_0^2A_T^2}}{{4B_T^2}},$$
$$d = \frac{{{\omega _0}}}{{{B_T}}}\bar{t} + i\frac{{\omega _0^2T_0^2A_T^{}}}{{4B_T^2}}\Delta t.$$

Using similar calculations while performing tedious evaluations of the multiple integrals, we obtain for Eqs. (9) and (10) the expressions

$$\begin{aligned} {\Gamma _2}({u_1},{u_2},{t_1},{t_2},z) &= \frac{{{k_0}w_0^{}}}{{{B_S}}}\textrm{exp}\left( {\frac{{i{k_0}{D_S}}}{{B_S^{}}}\Delta u \cdot \bar{u}} \right)\textrm{exp}\left( { - \frac{{k_0^2w_0^2}}{{2B_S^2}}\Delta {u^2}} \right)\frac{1}{{\sqrt a }}\exp \left[ { - \frac{{{b^2}}}{{2a}}} \right]\\ \textrm{ } &\times \frac{{{\omega _0}T_0^3}}{{8{B_T}\tau _s^2}}\textrm{exp}\left( {\frac{{i{\omega_0}{D_T}}}{{B_T^{}}}\Delta t \cdot \bar{t}} \right)\textrm{exp}\left( { - \frac{{\omega_0^2T_0^2}}{{8B_T^2}}\Delta {t^2}} \right)\\ \textrm{ } &\times \frac{1}{{\sqrt {c^{\prime}} }}\exp \left( { - \frac{{{d^2}}}{{2c^{\prime}}}} \right)\left[ {\frac{1}{{c^{\prime}}}\left( {\frac{1}{{T_c^2}} + \frac{1}{{T_0^2}}\frac{{{d^2}}}{{c^{\prime}}}} \right) + \frac{{\omega_0^2T_0^2}}{{4B_T^2}}{{\left( {\frac{d}{{c^{\prime}}}A_T^{} - i\Delta t} \right)}^2}} \right], \end{aligned}$$
and
$$\begin{aligned} {\Gamma _3}({u_1},{u_2},{t_1},{t_2},z) &={\pm} \frac{{{k_0}w_0^{}}}{{{B_S}{x_s}}}\textrm{exp}\left( {\frac{{i{k_0}{D_S}}}{{B_S^{}}}\Delta u \cdot \bar{u}} \right)\textrm{exp}\left( { - \frac{{k_0^2w_0^2}}{{2B_S^2}}\Delta {u^2}} \right)\frac{b}{{a\sqrt a }}\exp \left[ { - \frac{{{b^2}}}{{2a}}} \right]\\ \textrm{ } &\times \frac{{\omega _0^2T_0^3}}{{8B_T^2\tau _s^{}}}\textrm{exp}\left( {\frac{{i{\omega_0}{D_T}}}{{B_T^{}}}\Delta t \cdot \bar{t}} \right)\textrm{exp}\left( { - \frac{{\omega_0^2T_0^2}}{{8B_T^2}}\Delta {t^2}} \right)\frac{1}{{\sqrt {c^{\prime}} }}\exp \left( { - \frac{{{d^2}}}{{2c^{\prime}}}} \right)\left( {\frac{d}{{c^{\prime}}}A_T^{} - i\Delta t} \right)\\ &\textrm{ } \mp \frac{{k_0^2w_0^3}}{{B_S^2{x_s}}}\textrm{exp}\left( {\frac{{i{k_0}{D_S}}}{{B_S^{}}}\Delta u \cdot \bar{u}} \right)\textrm{exp}\left( { - \frac{{k_0^2w_0^2}}{{2B_S^2}}\Delta {u^2}} \right)\frac{1}{{\sqrt a }}\exp \left[ { - \frac{{{b^2}}}{{2a}}} \right]\left( {\frac{b}{a}A_S^{} - i\Delta u} \right)\\ \textrm{ } &\times \frac{{\omega _0^{}T_0^{}}}{{2B_T^{}\tau _s^{}}}\textrm{exp}\left( {\frac{{i{\omega_0}{D_T}}}{{B_T^{}}}\Delta t \cdot \bar{t}} \right)\textrm{exp}\left( { - \frac{{\omega_0^2T_0^2}}{{8B_T^2}}\Delta {t^2}} \right)\frac{d}{{c^{\prime}\sqrt {c^{\prime}} }}\exp \left( { - \frac{{{d^2}}}{{2c^{\prime}}}} \right), \end{aligned}$$
respectively. In the above calculation, the following tabulated integrals are used:
$$\int_{ - \infty }^\infty {\exp ({ - p{x^2} + 2qx} )} dx = \sqrt {\frac{\pi }{p}} \exp \left( {\frac{{{q^2}}}{p}} \right),$$
$$\int_{ - \infty }^\infty {xexp ({ - p{x^2} + 2qx} )} dx = \frac{q}{p}\sqrt {\frac{\pi }{p}} \exp \left( {\frac{{{q^2}}}{p}} \right),$$
$$\int_{ - \infty }^\infty {{x^2}\exp ({ - p{x^2} + 2qx} )} dx = \frac{1}{p}\left( {\frac{1}{2} + \frac{{{q^2}}}{p}} \right)\sqrt {\frac{\pi }{p}} \exp \left( {\frac{{{q^2}}}{p}} \right).$$

On using the definition of the complex degree of coherence of pulsed beams [39] for the MCF in Eqs. (7), (14), (19) and (20), we obtain expression

$$\mu ({u_1},{u_2},{t_1},{t_2}{,}z) = \frac{{\Gamma ({u_1},{u_2},{t_1},{t_2}{,}z)}}{{\sqrt {\Gamma ({u_1},{u_1},{t_1},{t_1}{,}z)} \sqrt {\Gamma ({u_2},{u_2},{t_2},{t_2}{,}z)} }}$$
which enables us to further study the evolution of the spatiotemporal coherency vortices of the STPCPV beams. Conventionally, the position of a spatiotemporal coherency vortex is determined by relations
$${\textrm{Re}} [{\mu ({u_1}\textrm{,}{u_2},{t_1},{t_2}{,}z)} ]= 0,$$
$${\mathop{\rm Im}\nolimits} [{\mu ({u_1}\textrm{,}{u_2},{t_1},{t_2}{,}z)} ]= 0,$$
where Re and Im denote the real and imaginary parts of a complex number respectively. For a spatiotemporal coherency vortex, the topological charge and its sign are determined by the vorticity of phase contours around the singularity [75]. Equations (25) and (26) can be conveniently employed for determining the location of the coherency vortex. Usually, for a fully coherent light field, the optical vortex arises at the position where the field’s amplitude is equal to zero [42]. However, for a partially coherent light field, the coherency vortex takes place at the position at which the complex degree of coherence of the field is equal to zero [76].

According to Eqs. (24)-(26), one can investigate the evolution of the spatiotemporal coherency vortices in the STPCPV beams in dispersive media. In particular, for u1 = u2 = u, t1 = t2 = t, the spatiotemporal intensity of the STPCPV beams can be determined as

$$\begin{aligned} &I(u,t,z)= \Gamma ({u_1} = {u_2} = u,{t_1} = {t_2} = t,z)\\ &= \frac{{{k_0}w_0^3}}{{{B_S}x_s^2}}\frac{1}{{\sqrt a }}\textrm{exp}\left( { - \frac{1}{{2a}}\frac{{k_0^2}}{{B_S^2}}{u^2}} \right)\left[ {\frac{1}{a}\left( {\frac{1}{{{\delta^2}}} + \frac{1}{{4w_0^2}}\frac{{k_0^2}}{{aB_S^2}}{u^2}} \right) + \frac{{k_0^4w_0^2}}{{B_S^4}}\frac{{A_S^2}}{{{a^2}}}{u^2}} \right]\frac{{{\omega _0}{T_0}}}{{2{B_T}}}\frac{1}{{\sqrt {c^\prime} }}\textrm{exp}\left( { - \frac{1}{{2{c^ \prime}}}\frac{{\omega_0^2}}{{B_T^2}}{t^2}} \right)\\ &+ \frac{{{k_0}{w_0}}}{{{B_S}}}\frac{1}{{\sqrt a }}\textrm{exp}\left( { - \frac{1}{{2a}}\frac{{k_0^2}}{{B_S^2}}{u^2}} \right)\frac{{{\omega _0}T_0^3}}{{8{B_T}\tau _s^2}}\frac{1}{{\sqrt {c^\prime} }}\textrm{exp}\left( { - \frac{1}{{2{c^\prime}}}\frac{{\omega_0^2}}{{B_T^2}}{t^2}} \right)\left[ {\frac{1}{{c^\prime}}\left( {\frac{1}{{T_c^2}} + \frac{1}{{T_0^2}}\frac{{\omega_0^2}}{{{c^ \prime}B_T^2}}{t^2}} \right) + \frac{{\omega_0^4T_0^2}}{{4B_T^4}}\frac{{A_T^2}}{{{{c^\prime}^2}}}{t^2}} \right]\\ &\pm \frac{{{k_0}{w_0}}}{{{B_S}{x_s}}}\frac{1}{{a\sqrt a }}\textrm{exp}\left( { - \frac{1}{{2a}}\frac{{k_0^2}}{{B_S^2}}{u^2}} \right)\left( {\frac{{{k_0}}}{{{B_S}}}u} \right)\frac{{{\omega _0}{T_0}}}{{2{B_T}{\tau _S}}}\frac{1}{{{c^ \prime}\sqrt {c^ \prime} }}\textrm{exp}\left( { - \frac{1}{{2{c^ \prime}}}\frac{{\omega_0^2}}{{B_T^2}}{t^2}} \right)\left( {\frac{{{\omega_0}}}{{{B_T}}}t} \right)\left( {\frac{{{\omega_0}T_0^2{A_T}}}{{4{B_T}}} - \frac{{{k_0}w_0^2{A_S}}}{{{B_S}}}} \right). \end{aligned}$$

3. Coherence control of spatiotemporal coherency vortices

In this section, we will illustrate the possibility of achieving the control of the evolving spatiotemporal coherency vortices of the STPCPV beams via adjusting the coherence state of the source. For the considered numerical examples, the following values of the beam’s parameters are chosen to be λ0 = 532 nm, w0 = 2 mm, δ = 4 mm, T0 = 3 ps, Tc = 5 ps, xs = 1 mm, τs = 1 ps, u1 = 10 mm, t1 = 20 ps, unless other values are specified. For the dispersive medium, we choose fused silica, a typical material of the optical fiber. The group velocity dispersion parameter and the group velocity refractive index of fused silica at 20°C are β2 = 65.781 ps2/km and ng = c/vg = 1.4853, respectively [77].

The evolution of the spatiotemporal coherency vortices of a STPCPV beam is specified by Eqs. (24)-(26). In Figs. 1 (a)–1(c) we show the spatiotemporal intensity distribution of the STPCPV beams with topological charge m = +1 for different propagation distances z = 0, z = 0.2 km and z = 0.8 km. As shown in Fig. 1(a), at the source plane z = 0, zero spatiotemporal intensity value appears at the spatiotemporal center (u2 = 0, t2 = 0), while the phase is singular. With the increasing propagation distance, for example, at z = 0.2 km in Fig. 1(b), a spatiotemporal intensity profile acquires a center with a non-zero minimum. For larger distances from the source, e.g., Fig. 1(c), the central dip disappears and the intensity evolves into a Gaussian profile. In addition, the intensity profile rotates anticlockwise along the z axis because of the different spreading in temporal dispersion as compared to transverse beam diffraction. Figures 1 (d)-(f) show the phase distribution of µ of a STPCPV beam with topological charge m = +1, for different propagation distances: z = 0, z = 0.2 km and z = 0.8 km. In addition, the level curves Re µ = 0 and Im µ = 0 are given in Figs. 1 (g)–1(i). It is shown that, at the spatiotemporal center (u2 = 0, t2 = 0) in the u-t plane, there is a spatiotemporal coherency vortex whose phase increases anticlockwise along a closed loop from -π to π and returns to the origin. With the increasing propagation distance, the phase structure and the position of coherent vortex change. However, there always exists a spatiotemporal optical vortex near the spatiotemporal center of the beam and the topological charge is conserved along the propagation path. This phenomenon is quite different from the case of partially coherent beams propagation in random media, whose topological charge is not generally conserved [78].

 figure: Fig. 1.

Fig. 1. (a)-(c) Spatiotemporal intensity, (d)-(f) Phase distribution of µ and (g)-(i) Curves of Re µ = 0 (solid line) and Im µ = 0 (dashed line) of a STPCPV beam with topological charge m = +1 for different propagation distances.

Download Full Size | PDF

Figure 2 is organized the same way as Fig. 1 and uses the same parameters but illustrates the case m = -1. Comparison of insets (b) and (c) of Figs. 1 and 2 shows that the spatiotemporal intensity profile changes the sense of rotation: for the latter case the phase of the spatiotemporal coherency vortex increases clockwise. In both figures the phase structure and the position of coherent vortex change with increasing the propagation distance. In addition, from Figs. 1(g) and 2(g), one can see two straight lines with negative and positive slopes. The crossover point of two straight lines satisfies the equations Re µ = 0 and Im µ = 0 simultaneously, i.e., it is the core’s position of a spatiotemporal coherency vortex. Usually, one can judge the position of a spatiotemporal coherency vortex by the crossover point. We note that the two straight lines are not chosen along the u2 and t2 axes. This is due to the fact that in the plane z = 0, with fixed m = ±1, the complex degree of coherence of the pulsed beam can be expressed as

$$\mu ({u_1},{u_2},{t_1},{t_2}{,}0) = \mu ^{\prime}\left[ {\frac{{{u_1}{u_2}}}{{x_s^2}} + \frac{{{t_1}{t_2}}}{{\tau_s^2}} \mp \frac{i}{{x_s^{}\tau_s^{}}}({{u_1}t_2^{} - {u_2}t_1^{}} )} \right]$$
where
$$\mu ^{\prime} = {{\textrm{exp}\left[ { - \frac{{{{({u_2} - {u_1})}^2}}}{{2\delta_{}^2}}} \right]\exp \left[ { - \frac{{{{(t_2^{} - t_1^{})}^2}}}{{2T_c^2}}} \right]} / {\sqrt {\left( {\frac{{t_1^2}}{{\tau_s^2}} + \frac{{u_1^2}}{{x_s^2}}} \right)\left( {\frac{{t_2^2}}{{\tau_s^2}} + \frac{{u_2^2}}{{x_s^2}}} \right)} }}$$

 figure: Fig. 2.

Fig. 2. (a)-(c) Spatiotemporal intensity, (d)-(f) Phase distribution of the complex degree of coherence µ and (g)-(i) Curves of Re µ = 0 (solid line) and Im µ = 0 (dashed line) of a STPCPV beam with topological charge m = -1 for different propagation distances.

Download Full Size | PDF

Thus, by solving the equations Re[µ] = 0 and Im[µ] = 0, one can obtain the linear equations

$${u_2} ={-} \frac{{{t_1}}}{{{u_1}}}\frac{{x_s^2}}{{\tau _s^2}}{t_2},$$
$${u_2} = \frac{{{u_1}}}{{{t_1}}}{t_2}. $$

It is apparent from Eqs. [30] and [31] that there are two straight lines in the u2 and t2 coordinate system appearing for the fixed values of u1, t1, xs and τs.

Figure 3 shows the phase distribution of the complex degree of coherence µ of a STPCPV beam having different values of temporal coherent length: Tc = 1ps, Tc = 2ps and Tc → ∞, for two values of topological charge: m = ±1, at z = 0.2km. Figure 3 implies that the coherence time Tc plays a crucial part in determining the phase structure of the spatiotemporal coherency vortices of the STPCPV beams. In addition, the position of the spatiotemporal coherency vortex changes appreciably with increasing Tc. When Tc → ∞, i.e., for a spatially partially and temporally fully coherent pulsed vortex (STPCPV) beam, the position of spatiotemporal coherency vortex tends to the spatiotemporal center (u2 = 0, t2 = 0). Thus, both the phase structure and the position of the spatiotemporal coherency vortex can be conveniently controlled by adjusting the source coherence time Tc.

 figure: Fig. 3.

Fig. 3. Phase distributions of µ of a STPCPV beam with different coherence time values: Tc = 1ps, Tc = 2ps and Tc → ∞ for different topological charges m = ±1 at z = 0.2 km.

Download Full Size | PDF

Figure 4 shows the evolution of the positions of the spatiotemporal coherency vortices with coherence time set to Tc = 1ps and for the limiting case Tc → ∞, for two values of the topological charge m = ±1. As can be seen from Fig. 4(a), the position’s behavior exhibits a noticeable difference m = ±1. For m = +1, the position coordinate changes non-monotonically with the growing propagation distance z. Whereas for m = -1, it changes monotonically with growing z. In addition, for fully temporally coherent case Tc→∞ shown in Fig. 4(b), the position’s evolution is qualitatively similar for m = ±1, exhibiting, in both cases, the non-monotonic changes. Regardless of the value of Tc, the position coordinates deviate farther from the spatiotemporal center for sufficiently large distances. Comparing overall Figs. 4(a) and 4(b), we see that the coherence time Tc has a remarkable influence on the dynamics of the position of the spatiotemporal coherency vortex.

Figure 5 gives the spatial 5(a) and the temporal 5(b) positions of the spatiotemporal coherency vortices of a STPCPV beam as a function of coherence time Tc for topological charges m = ±1 at z = 0.2km. As can be seen from Fig. 5(a), spatial position u2 increases monotonically with increasing Tc for m = +1, whereas spatial position u2 increases first, then decreases with increasing Tc. Moreover, spatial position u2 approaches an asymptotic value when Tc is large enough. For example, depending on topological charge m, the asymptotic value is equal to 2.481 mm and 2.657 mm for m = +1 and m = -1, respectively. However, temporal position t2 of the spatiotemporal coherency vortex decreases with increasing Tc and approaches two asymptotic values, t2 = 1.371ps and t2 = -1.984ps for m = +1 and m = -1, respectively, when Tc is large enough.

 figure: Fig. 4.

Fig. 4. Positions evolution of spatiotemporal coherency vortices of STPCPV beams with different coherence time Tc = 1ps (a) and Tc→∞ (b) for different topological charges m=±1.

Download Full Size | PDF

 figure: Fig. 5.

Fig. 5. Spatial (a) and temporal (b) positions of spatiotemporal coherency vortices of a STPCPV beam as functions of coherence time Tc for topological charges m = ±1 and z = 0.2 km.

Download Full Size | PDF

Figure 6 shows the phase distributions of the complex degree of coherence µ of a STPCPV beam with different spatial coherence widths δ = 1mm, δ = 2mm and δ → ∞, for two topological charges m = ±1 at z = 0.2km. Just like Tc in Fig. 3, the spatial coherence width δ also plays an important role in determining the phase structure of the spatiotemporal coherency vortices of the STPCPV beams. The position of a spatiotemporal coherency vortex substantially changes with increasing δ. When δ → ∞, i.e., for spatially fully and temporally partially coherent pulsed vortex beams, the position of the spatiotemporal coherency vortex approaches the spatiotemporal center (u2 = 0, t2 = 0). Thus, the phase structure and the position of the spatiotemporal coherency vortex of a STPCPV beam can also be controlled by adjusting the spatial coherence width δ.

 figure: Fig. 6.

Fig. 6. Phase distributions of the complex degree of coherence µ of a STPCPV beam with different spatial coherent widths: δ = 1mm, δ = 2mm and δ → ∞ for topological charges m = ±1 at z = 0.2 km.

Download Full Size | PDF

Figure 7 illustrates the dynamics of the positions of the spatiotemporal coherency vortices of the STPCPV beams with coherence widths δ = 1mm and δ → ∞ for two topological charge values, m = ±1. Figure 7(a), shows that in the low spatial coherence case δ = 1mm, the position’s evolution is similar for m = ±1, in both cases changing non-monotonically with increasing z. However, for fully spatially coherent case δ → ∞ shown in Fig. 7(b), the position’s evolution presents a significant difference for m = ±1, especially for the propagation distances smaller than 0.3 km. Moreover, regardless of the spatial coherence width, the position coordinate deviates farther from the spatiotemporal center as z → ∞.

Figure 8 demonstrates the spatial 8(a) and the temporal 8(b) positions of the spatiotemporal coherency vortices of the STPCPV beams as a function of coherence width δ, for topological charges m = ±1 at z = 0.2 km. As can be seen from Fig. 8(a), spatial position u2 decreases monotonically with increasing δ for m = ±1. And spatial position u2 approaches asymptotic values -0.516mm and 0.437mm for m = +1 and m = -1, respectively. However, temporal position t2 exhibits a non-monotonical change with the increasing coherence width δ, as shown in Fig. 8(b). Moreover, for m = +1, temporal position t2 increases first, then decreases with increasing δ, and approaches an asymptotic value t2 = 2.383ps. Nevertheless, for m = -1, the situation is the opposite, i.e., temporal position t2 decreases first, then increases with increasing δ, and approaches the asymptotic value t2 = 2.383ps. As shown in Fig. 8, the coherence width δ can efficiently control the spatial and the temporal positions of the spatiotemporal coherency vortices of the STPCPV beams.

 figure: Fig. 7.

Fig. 7. Position evolution of spatiotemporal coherency vortices of STPCPV beams with coherence widths δ = 1mm and δ → ∞ for topological charges m = ±1.

Download Full Size | PDF

 figure: Fig. 8.

Fig. 8. Spatial (a) and temporal (b) positions of spatiotemporal coherency vortices of a STPCPV beam as functions of coherence width δ for topological charges m = ±1 and z = 0.2 km.

Download Full Size | PDF

Figure 9 shows the phase distributions of the complex degree of coherence µ and curves of Re µ = 0 and Im µ = 0 of spatially fully and temporally fully coherent pulsed vortex beams with topological charge m = ±1, for propagation distances z = 0, z = 0.2km and z = 0.8km, respectively. As is well known, in stationary beams, the coherency vortex reduces to an optical field vortex when the degree of spatial coherence approaches infinity. Similarly to the case of stationary beams, the spatiotemporal coherency vortex reduces to a spatiotemporal optical field vortex when both coherence width δ and coherence time Tc approach infinity. As shown in Fig. (9), the position of the spatiotemporal optical field vortex of a fully coherent pulsed vortex beam always remains at the spatiotemporal center (u2 = 0, t2 = 0). In addition, the phase structure remains invariant with the increasing propagation distance. Thus, we conclude that the discovered dynamics in the spatiotemporal coherency vortex’ structure and position are entirely the source correlation-induced.

 figure: Fig. 9.

Fig. 9. Phase distributions of the complex degree of coherence µ and curves of Re µ = 0 and Im µ = 0 of spatially fully and temporally fully coherent pulsed vortex beams with topological charge m = ±1 for propagation distances z = 0, z = 0.2km and z = 0.8km, respectively.

Download Full Size | PDF

As is widely known, optical vortices and STOVs have symmetries in the properties of the ∓ 1 topological charges. However, for a stationary partially coherent light field, the symmetry is broken. This is because the coherency vortex takes place at the position where the spectral degree of coherence µ (r1, r2, ω) is equal to zero. The phase distribution of µ depends tremendously on the choice of the position variable r1 [79]. Physically, µ (r1, r2, ω) is related to the cross-spectral density (CSD) W(r1, r2, ω). The CSD of a partially coherent light field is characterized by the ensemble averaging of the individual electric field realizations, which includes intrinsic random phase fluctuations.

Similarly to the case of a stationary light field, for a partially coherent pulsed field of our interest, the symmetry is broken too, because the spatiotemporal coherency vortex takes place at the position where the complex degree of coherence µ (u1, u2, t1, t2, z) of the field is equal to zero. The phase distribution of µ also depends on the choice of the position variable (u1, t1), which is affected by the topological charges. In addition, the position-related spatiotemporal intensity also depends on the topological charges shown in Eq. (27).

4. Conclusion

In this paper, we have proposed a novel method to achieve the coherence control of the spatiotemporal coherency vortices in the STPCPV beams. Specifically, the analytical expressions for the mutual coherence functions of the STPCPV beams with topological charge m = ±1 have been derived and used to study the evolution of the spatiotemporal coherency vortices of these beams propagating through fused silica. It has been found that the coherence width δ and the coherence time Tc play an important role in determining the phase distribution and position of spatiotemporal coherency vortices. For topological charge m = +1, the spatial position u2 grows monotonically with increasing coherence time Tc. For topological charge m = -1, the spatial position u2 changes non-monotonically with increasing coherence time Tc. In addition, temporal position t2 changes non-monotonically with increasing coherence width δ for both topological charges, m = ±1. Both the dependency of the temporal position t2 on Tc and that of the spatial position u2 on δ are monotonically decreasing functions for m = ±1. By taking advantage of these special properties, one can control the phase distribution and the position of the spatiotemporal coherency vortices. In other words, the spatial and temporal coherence are found to be very efficient tools for controlling the phase distribution and the position of the spatiotemporal coherency vortices of the STPCPV beams. One possible extension of the present work is related to using nonzero coefficients CS and CT in Eqs. (3) and (4), which would correspond to spatial focusing and temporal compression [80] of the pulse, respectively, as it was done recently for pulses with a different spatiotemporal form [81].

It should be pointed out that the results obtained in this paper will degenerate into spatiotemporal optical field vortices of fully coherent pulsed beams when both the coherence width δ and the coherence time Tc approach infinity. The method introduced in our paper will open new opportunities for the theoretical analysis of spatiotemporal optical vortices with partial spatial and temporal coherence. Furthermore, the results obtained in this paper will benefit a number of technologies relating to light-matter interaction, such as optical trapping, quantum entanglement, spatiotemporal spin-orbit angular momentum coupling, and many others [28].

Funding

National Natural Science Foundation of China (12174171); Central Plains Talents Program of Henan (ZYYCYU202012144); China Scholarship Council (202008410578); Excellent Overseas Visiting Scholar Program of Henan (026); Belarusian Republican Foundation for Fundamental Research (F21TURG-003); University of Miami via the Cooper Fellowship.

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are available from the corresponding authors upon reasonable request.

References

1. J. Ng, Z. Lin, and C. T. Chan, “Theory of Optical Trapping by an Optical Vortex Beam,” Phys. Rev. Lett. 104(10), 103601 (2010). [CrossRef]  

2. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011). [CrossRef]  

3. Y. Yang, Y. Ren, M. Chen, Y. Arita, and C. Rosales-Guzmán, “Optical trapping with structured light: a review,” Adv. Photon. 3(03), 034001 (2021). [CrossRef]  

4. M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light’s Orbital Angular Momentum,” Science 341(6145), 537–540 (2013). [CrossRef]  

5. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012). [CrossRef]  

6. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013). [CrossRef]  

7. A. Vaziri, J. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of Higher Dimensional Entanglement: Qutrits of Photon Orbital Angular Momentum,” Phys. Rev. Lett. 91(22), 227902 (2003). [CrossRef]  

8. L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014). [CrossRef]  

9. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh Criterion Limit with Optical Vortices,” Phys. Rev. Lett. 97(16), 163903 (2006). [CrossRef]  

10. X. Qiu, D. Zhang, W. Zhang, and L. Chen, “Structured-Pump-Enabled Quantum Pattern Recognition,” Phys. Rev. Lett. 122(12), 123901 (2019). [CrossRef]  

11. Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, “Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities,” Light: Sci. Appl. 8(1), 90 (2019). [CrossRef]  

12. X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent advances on optical vortex generation,” Nanophotonics 7(9), 1533–1556 (2018). [CrossRef]  

13. J. Wang and Y. Liang, “Generation and Detection of Structured Light: A Review,” Front. Phys. 9, 688284 (2021). [CrossRef]  

14. Q. Zhao, M. Dong, Y. Bai, and Y. Yang, “Measuring high orbital angular momentum of vortex beams with an improved multipoint interferometer,” Photonics Res. 8(5), 745–749 (2020). [CrossRef]  

15. X. Lei, A. Yang, P. Shi, Z. Xie, L. Du, A. V. Zayats, and X. Yuan, “Photonic Spin Lattices: Symmetry Constraints for Skyrmion and Meron Topologies,” Phys. Rev. Lett. 127(23), 237403 (2021). [CrossRef]  

16. J. Zhang, F. Fan, J. Zeng, and J. Wang, “Prototype system for underwater wireless optical communications employing orbital angular momentum multiplexing,” Opt. Express 29(22), 35570–35578 (2021). [CrossRef]  

17. J. Wang, S. Chen, and J. Liu, “Orbital angular momentum communications based on standard multi-mode fiber (invited paper),” APL Photonics 6(6), 060804 (2021). [CrossRef]  

18. H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017). [CrossRef]  

19. L. Fang, H. Wang, Y. Liang, H. Cao, and J. Wang, “Spin-Orbit Mapping of Light,” Phys. Rev. Lett. 127(23), 233901 (2021). [CrossRef]  

20. N. K. Viswanathan and V. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34(8), 1189–1191 (2009). [CrossRef]  

21. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6(1), 71 (2004). [CrossRef]  

22. H. Zhang, J. Zeng, X. Lu, Z. Wang, C. Zhao, and Y. Cai, “Review on fractional vortex beam,” Nanophotonics 11(2), 241–273 (2022). [CrossRef]  

23. L. Zhu, M. Tang, H. Li, Y. Tai, and X. Li, “Optical vortex lattice: an exploitation of orbital angular momentum,” Nanophotonics 10(9), 2487–2496 (2021). [CrossRef]  

24. J. García-García, C. Rickenstorff-Parrao, R. Ramos-García, V. Arrizón, and A. S. Ostrovsky, “Simple technique for generating the perfect optical vortex,” Opt. Lett. 39(18), 5305–5308 (2014). [CrossRef]  

25. A. Sukhorukov and V. Yangirova, “Spatio-temporal vortices: properties, generation and recording,” Proc. SPIE 5949, 594906 (2005). [CrossRef]  

26. K. Y. Bliokh and F. Nori, “Spatiotemporal vortex beams and angular momentum,” Phys. Rev. A 86(3), 033824 (2012). [CrossRef]  

27. S. Huang, P. Wang, X. Shen, and J. Liu, “Properties of the generation and propagation of spatiotemporal optical vortices,” Opt. Express 29(17), 26995–27003 (2021). [CrossRef]  

28. A. Chong, C. Wan, J. Chen, and Q. Zhan, “Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum,” Nat. Photonics 14(6), 350–354 (2020). [CrossRef]  

29. J. Chen, C. Wan, A. Chong, and Q. Zhan, “Experimental demonstration of cylindrical vector spatiotemporal optical vortex,” Nanophotonics 10(18), 4489–4495 (2021). [CrossRef]  

30. J. Chen, C. Wan, A. Chong, and Q. Zhan, “Subwavelength focusing of a spatio-temporal wave packet with transverse orbital angular momentum,” Opt. Express 28(12), 18472–18478 (2020). [CrossRef]  

31. Q. Cao, J. Chen, K. Lu, C. Wan, A. Chong, and Q. Zhan, “Sculpturing spatiotemporal wavepackets with chirped pulses,” Photonics Res. 9(11), 11002261 (2021). [CrossRef]  

32. C. Wan, J. Chen, A. Chong, and Q. Zhan, “Generation of ultrafast spatiotemporal wave packet embedded with time-varying orbital angular momentum,” Sci. Bull. 65(16), 1334–1336 (2020). [CrossRef]  

33. J. Chen, C. Wan, and Q. Zhan, “Engineering photonic angular momentum with structured light: a review,” Adv. Photon. 3(6), 064001 (2021). [CrossRef]  

34. S. W. Hancock, S. Zahedpour, A. Goffin, and H. M. Milchberg, “Free-space propagation of spatiotemporal optical vortices,” Optica 6(12), 1547–1553 (2019). [CrossRef]  

35. N. Jhajj, I. Larkin, E. W. Rosenthal, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Spatiotemporal Optical Vortices,” Phys. Rev. X 6(3), 031037 (2016). [CrossRef]  

36. S. W. Hancock, S. Zahedpour, and H. M. Milchberg, “Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum,” Optica 8(5), 594–597 (2021). [CrossRef]  

37. S. W. Hancock, S. Zahedpour, and H. M. Milchberg, “Mode Structure and Orbital Angular Momentum of Spatiotemporal Optical Vortex Pulses,” Phys. Rev. Lett. 127(19), 193901 (2021). [CrossRef]  

38. K. Y. Bliokh, “Spatiotemporal Vortex Pulses: Angular Momenta and Spin-Orbit Interaction,” Phys. Rev. Lett. 126(24), 243601 (2021). [CrossRef]  

39. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

40. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light, 1 ed. (Cambridge University, 2007).

41. F. Gori, M. Santarsiero, R. Borghi, and S. Vicalvi, “Partially coherent sources with helicoidal modes,” J. Mod. Opt. 45(3), 539–554 (1998). [CrossRef]  

42. G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222(1-6), 117–125 (2003). [CrossRef]  

43. G. V. Bogatyryova, C. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28(11), 878–880 (2003). [CrossRef]  

44. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92(14), 143905 (2004). [CrossRef]  

45. R. K. Singh, A. M. Sharma, and P. Senthilkumaran, “Vortex array embedded in a partially coherent beam,” Opt. Lett. 40(12), 2751–2754 (2015). [CrossRef]  

46. Y. Zhang, Y. Cai, and G. Gbur, “Partially coherent vortex beams of arbitrary radial order and a van Cittert–Zernike theorem for vortices,” Phys. Rev. A 101(4), 043812 (2020). [CrossRef]  

47. Y. Zhang, O. Korotkova, Y. Cai, and G. Gbur, “Correlation-induced orbital angular momentum changes,” Phys. Rev. A 102(6), 063513 (2020). [CrossRef]  

48. J. Wang, S. Yang, M. Guo, Z. Feng, and J. Li, “Change in phase singularities of a partially coherent Gaussian vortex beam propagating in a GRIN fiber,” Opt. Express 28(4), 4661–4673 (2020). [CrossRef]  

49. C. Yang, X. Guo, M. J. Guo, J. Wang, M. Duan, and J. Li, “Influence of gain or absorption media on transmission of partially coherent vortex beams,” J. Opt. Soc. Am. A 38(5), 675–682 (2021). [CrossRef]  

50. F. Wang, S. Zhu, and Y. Cai, “Experimental study of the focusing properties of a Gaussian Schell-model vortex beam,” Opt. Lett. 36(16), 3281–3283 (2011). [CrossRef]  

51. X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38(24), 5323–5326 (2013). [CrossRef]  

52. X. Liu, X. Peng, L. Liu, G. Wu, C. Zhao, F. Wang, and Y. Cai, “Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle,” Appl. Phys. Lett. 110(18), 181104 (2017). [CrossRef]  

53. X. Liu, J. Zeng, and Y. Cai, “Review on vortex beams with low spatial coherence,” Adv. Phys.: X 4(1), 1626766 (2019). [CrossRef]  

54. J. Zeng, R. Lin, X. Liu, C. Zhao, and Y. Cai, “Review on partially coherent vortex beams,” Front. Optoelectron. 12(3), 229–248 (2019). [CrossRef]  

55. R. Dutta, J. Turunen, and A. T. Friberg, “Michelson’s interferometer and the temporal coherence of pulse trains,” Opt. Lett. 40(2), 166–169 (2015). [CrossRef]  

56. A. Abbas, C. Xu, and L. Wang, “Spatiotemporal ghost imaging and interference,” Phys. Rev. A 101(4), 043805 (2020). [CrossRef]  

57. A. Abbas and L. Wang, “Hanbury Brown and Twiss effect in spatiotemporal domain,” Opt. Express 28(21), 32077–32086 (2020). [CrossRef]  

58. H. Pesonen, K. Saastamoinen, M. Koivurova, T. Setälä, and J. Turunen, “Temporal coherence modulation of pulsed, scalar light with a Fabry–Pérot interferometer,” J. Opt. Soc. Am. A 36(7), 1137–1145 (2019). [CrossRef]  

59. H. Pesonen, P. Li, T. Setälä, and J. Turunen, “Temporal coherence and polarization modulation of pulse trains by resonance gratings,” J. Opt. Soc. Am. A 37(1), 27–38 (2020). [CrossRef]  

60. H. Wang, X. Ji, Y. Deng, X. Li, and H. Yu, “Theory of the quasi-steady-state self-focusing of partially coherent light pulses in nonlinear media,” Opt. Lett. 45(3), 710–713 (2020). [CrossRef]  

61. A. L. Marec, O. Guilbaud, O. Larroche, and A. Klisnick, “Evidence of partial temporal coherence effects in the linear autocorrelation of extreme ultraviolet laser pulses,” Opt. Lett. 41(14), 3387–3390 (2016). [CrossRef]  

62. C. Bourassin-Bouchet and M. E. Couprie, “Partially coherent ultrafast spectrography,” Nat. Commun. 6(1), 6465 (2015). [CrossRef]  

63. H. Lajunen and T. Saastamoinen, “Non-uniformly correlated partially coherent pulses,” Opt. Express 21(1), 190–195 (2013). [CrossRef]  

64. M. Koivurova, L. Ahad, G. Geloni, T. Setälä, J. Turunen, and A. T. Friberg, “Interferometry and coherence of nonstationary light,” Opt. Lett. 44(3), 522–525 (2019). [CrossRef]  

65. M. Tang, D. Zhao, Y. Zhu, and L. K. Ang, “Electromagnetic sinc Schell-model pulses in dispersive media,” Phys. Lett. A 380(5-6), 794–797 (2016). [CrossRef]  

66. C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22(1), 931–942 (2014). [CrossRef]  

67. C. Ding, M. Koivurova, J. Turunen, and L. Pan, “Temporal self-splitting of optical pulses,” Phys. Rev. A 97(5), 053838 (2018). [CrossRef]  

68. C. Ding, O. Korotkova, D. Zhao, D. Li, Z. Zhao, and L. Pan, “Propagation of temporal coherence gratings in dispersive medium with a chirper,” Opt. Express 28(5), 7463–7474 (2020). [CrossRef]  

69. J. Turunen, “Low-coherence laser beams,” in Laser Beam Propagation: Generation and Propagation of Customized Light, A. Forbes, ed. (CRC, 2014).

70. M. Hyde, “Twisted space-frequency and space-time partially coherent beams,” Sci. Rep. 10(1), 12443 (2020). [CrossRef]  

71. A. Mirando, Y. Zang, Q. Zhan, and A. Chong, “Generation of spatiotemporal optical vortices with partial temporal coherence,” Opt. Express 29(19), 30426–30435 (2021). [CrossRef]  

72. M. Luo and D. Zhao, “Characterizing the polarization and cross-polarization of electromagnetic vortex pulses in the space-time and space-frequency domain,” Opt. Express 23(4), 4153–4162 (2015). [CrossRef]  

73. L. Wang, Q. Lin, H. Chen, and S. Zhu, “Propagation of partially coherent pulsed beams in the spatiotemporal domain,” Phys. Rev. E 67(5), 056613 (2003). [CrossRef]  

74. H. Lajunen, J. Turunen, P. Vahimaa, J. Tervo, and F. Wyrowski, “Spectrally partially coherent pulse trains in dispersive media,” Opt. Commun. 255(1-3), 12–22 (2005). [CrossRef]  

75. I. Freund and N. Shvartsman, “Wave-Field Phase Singularities:The Sign Principle,” Phys. Rev. A 50(6), 5164–5172 (1994). [CrossRef]  

76. H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28(12), 968–970 (2003). [CrossRef]  

77. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965). [CrossRef]  

78. J. Li and B. Lü, “Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices,” J. Opt. A: Pure Appl. Opt. 11(4), 045710 (2009). [CrossRef]  

79. G. Gbur, T. D. Visser, and E. Wolf, “’Hidden’ singularities in partially coherent wavefields,” J. Opt. A: Pure Appl. Opt. 6(5), S239–S242 (2004). [CrossRef]  

80. G. Patera, D. B. Horoshko, and M. I. Kolobov, “Space-time duality and quantum temporal imaging,” Phys. Rev. A 98(5), 053815 (2018). [CrossRef]  

81. C. Ding, O. Korotkova, D. B. Horoshko, Z. Zhao, and L. Pan, “Evolution of Spatiotemporal Intensity of Partially Coherent Pulsed Beams with Spatial Cosine-Gaussian and Temporal Laguerre–Gaussian Correlations in Still, Pure Water,” Photonics 8(4), 102 (2021). [CrossRef]  

Data availability

Data underlying the results presented in this paper are available from the corresponding authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a)-(c) Spatiotemporal intensity, (d)-(f) Phase distribution of µ and (g)-(i) Curves of Re µ = 0 (solid line) and Im µ = 0 (dashed line) of a STPCPV beam with topological charge m = +1 for different propagation distances.
Fig. 2.
Fig. 2. (a)-(c) Spatiotemporal intensity, (d)-(f) Phase distribution of the complex degree of coherence µ and (g)-(i) Curves of Re µ = 0 (solid line) and Im µ = 0 (dashed line) of a STPCPV beam with topological charge m = -1 for different propagation distances.
Fig. 3.
Fig. 3. Phase distributions of µ of a STPCPV beam with different coherence time values: Tc = 1ps, Tc = 2ps and Tc → ∞ for different topological charges m = ±1 at z = 0.2 km.
Fig. 4.
Fig. 4. Positions evolution of spatiotemporal coherency vortices of STPCPV beams with different coherence time Tc = 1ps (a) and Tc→∞ (b) for different topological charges m=±1.
Fig. 5.
Fig. 5. Spatial (a) and temporal (b) positions of spatiotemporal coherency vortices of a STPCPV beam as functions of coherence time Tc for topological charges m = ±1 and z = 0.2 km.
Fig. 6.
Fig. 6. Phase distributions of the complex degree of coherence µ of a STPCPV beam with different spatial coherent widths: δ = 1mm, δ = 2mm and δ → ∞ for topological charges m = ±1 at z = 0.2 km.
Fig. 7.
Fig. 7. Position evolution of spatiotemporal coherency vortices of STPCPV beams with coherence widths δ = 1mm and δ → ∞ for topological charges m = ±1.
Fig. 8.
Fig. 8. Spatial (a) and temporal (b) positions of spatiotemporal coherency vortices of a STPCPV beam as functions of coherence width δ for topological charges m = ±1 and z = 0.2 km.
Fig. 9.
Fig. 9. Phase distributions of the complex degree of coherence µ and curves of Re µ = 0 and Im µ = 0 of spatially fully and temporally fully coherent pulsed vortex beams with topological charge m = ±1 for propagation distances z = 0, z = 0.2km and z = 0.8km, respectively.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

Γ m ( 0 ) ( r 1 , r 2 , τ 1 , τ 2 ) = exp ( r 1 2 + r 2 2 4 w 0 2 ) exp [ ( r 2 r 1 ) 2 2 δ 2 ] exp ( τ 1 2 + τ 2 2 T 0 2 ) exp [ ( τ 2 τ 1 ) 2 2 T c 2 ]   × [ τ 1 τ s i sgn ( m ) x 1 x s ] | m | [ τ 2 τ s + i sgn ( m ) x 2 x s ] | m | exp [ i ω 0 ( τ 2 τ 1 ) ] ,
Γ ( ρ 1 , ρ 2 , t 1 , t 2 , z ) = [ k 0 2 π B S ] 2 ω 0 2 π B T Γ m ( 0 ) ( r 1 , r 2 , τ 1 , τ 2 )   × exp { i k 0 2 B S [ A S ( r 1 2 r 2 2 ) 2 ( r 1 ρ 1 r 2 ρ 2 ) + D S ( ρ 1 2 ρ 2 2 ) ] } d r 1 d r 2   × exp { i ω 0 2 B T [ A T ( τ 1 2 τ 2 2 ) 2 ( τ 1 t 1 τ 2 t 2 ) + D T ( t 1 2 t 2 2 ) ] } d τ 1 d τ 2 .
( A S B S C S D S ) = ( 1 z 0 1 ) ,
( A T B T C T D T ) = ( 1 ω 0 β 2 z 0 1 ) ,
Γ ± 1 ( 0 ) ( x 1 , x 2 , τ 1 , τ 2 ) = exp ( x 1 2 + x 2 2 4 w 0 2 ) exp [ ( x 2 x 1 ) 2 2 δ 2 ] exp ( τ 1 2 + τ 2 2 T 0 2 ) exp [ ( τ 2 τ 1 ) 2 2 T c 2 ]   × [ x 1 x 2 x s 2 + τ 1 τ 2 τ s 2 i x s τ s ( x 1 τ 2 x 2 τ 1 ) ] exp [ i ω 0 ( τ 2 τ 1 ) ] ,
Γ ( u 1 , u 2 , t 1 , t 2 , z ) = k 0 2 π B S ω 0 2 π B T Γ ± 1 ( 0 ) ( x 1 , x 2 , τ 1 , τ 2 )   × exp { i k 0 2 B S [ A S ( x 1 2 x 2 2 ) 2 ( x 1 u 1 x 2 u 2 ) + D S ( u 1 2 u 2 2 ) ] } d x 1 d x 2   × exp { i ω 0 2 B T [ A T ( τ 1 2 τ 2 2 ) 2 ( τ 1 t 1 τ 2 t 2 ) + D T ( t 1 2 t 2 2 ) ] } d τ 1 d τ 2 .
Γ ( u 1 , u 2 , t 1 , t 2 , z ) = Γ 1 ( u 1 , u 2 , t 1 , t 2 , z ) + Γ 2 ( u 1 , u 2 , t 1 , t 2 , z ) + Γ 3 ( u 1 , u 2 , t 1 , t 2 , z ) ,
Γ 1 ( u 1 , u 2 , t 1 , t 2 , z ) = k 0 2 π B S ω 0 2 π B T x 1 x 2 x s 2 exp ( x 1 2 + x 2 2 4 w 0 2 ) exp [ ( x 2 x 1 ) 2 2 δ 2 ]   × exp { i k 0 2 B S [ A S ( x 1 2 x 2 2 ) 2 ( x 1 u 1 x 2 u 2 ) + D S ( u 1 2 u 2 2 ) ] } d x 1 d x 2   × exp ( τ 1 2 + τ 2 2 T 0 2 ) exp [ ( τ 2 τ 1 ) 2 2 T c 2 ] exp [ i ω 0 ( τ 2 τ 1 ) ]   × exp { i ω 0 2 B T [ A T ( τ 1 2 τ 2 2 ) 2 ( τ 1 t 1 τ 2 t 2 ) + D T ( t 1 2 t 2 2 ) ] } d τ 1 d τ 2 ,
Γ 2 ( u 1 , u 2 , t 1 , t 2 , z ) = k 0 2 π B S ω 0 2 π B T exp ( x 1 2 + x 2 2 4 w 0 2 ) exp [ ( x 2 x 1 ) 2 2 δ 2 ]   × exp { i k 0 2 B S [ A S ( x 1 2 x 2 2 ) 2 ( x 1 u 1 x 2 u 2 ) + D S ( u 1 2 u 2 2 ) ] } d x 1 d x 2   × τ 1 τ 2 τ s 2 exp ( τ 1 2 + τ 2 2 T 0 2 ) exp [ ( τ 2 τ 1 ) 2 2 T c 2 ] exp [ i ω 0 ( τ 2 τ 1 ) ]   × exp { i ω 0 2 B T [ A T ( τ 1 2 τ 2 2 ) 2 ( τ 1 t 1 τ 2 t 2 ) + D T ( t 1 2 t 2 2 ) ] } d τ 1 d τ 2 ,
0.9 $ Γ 3 ( u 1 , u 2 , t 1 , t 2 , z ) = k 0 2 π B S ω 0 2 π B T [ i x s τ s ( x 1 τ 2 x 2 τ 1 ) ] exp ( x 1 2 + x 2 2 4 w 0 2 ) exp [ ( x 2 x 1 ) 2 2 δ 2 ]   × exp { i k 0 2 B S [ A S ( x 1 2 x 2 2 ) 2 ( x 1 u 1 x 2 u 2 ) + D S ( u 1 2 u 2 2 ) ] } d x 1 d x 2   × exp ( τ 1 2 + τ 2 2 T 0 2 ) exp [ ( τ 2 τ 1 ) 2 2 T c 2 ] exp [ i ω 0 ( τ 2 τ 1 ) ]   × exp { i ω 0 2 B T [ A T ( τ 1 2 τ 2 2 ) 2 ( τ 1 t 1 τ 2 t 2 ) + D T ( t 1 2 t 2 2 ) ] } d τ 1 d τ 2 . $
t ¯ = ( t 1 + t 2 ) / 2 Δ t = t 2 t 1 , τ ¯ = ( τ 1 + τ 2 ) / 2 Δ τ = τ 2 τ 1 ,
u ¯ = ( u 1 + u 2 ) / 2 Δ u = u 2 u 1 , x ¯ = ( x 1 + x 2 ) / 2 Δ x = x 2 x 1 .
Γ 1 ( u 1 , u 2 , t 1 , t 2 , z ) = k 0 2 π B S x s 2 exp ( i k 0 D S B S Δ u u ¯ )   × ( x ¯ 2 1 4 Δ x 2 ) exp ( 1 2 w 0 2 x ¯ 2 ) exp [ i k 0 B S ( A S Δ x Δ u ) x ¯ ] d x ¯   × exp [ ( 1 8 w 0 2 + 1 2 δ 2 ) Δ x 2 ] exp ( i k B S y ¯ Δ x ) d Δ x   × ω 0 2 π B T exp ( i ω 0 D T B T Δ t t ¯ ) exp ( 2 T 0 2 τ ¯ 2 ) exp [ i ω 0 B T ( A T Δ τ Δ t ) τ ¯ ] d τ ¯   × exp [ ( 1 2 T 0 2 + 1 2 T c 2 ) Δ τ 2 ] exp ( i ω 0 B T t ¯ Δ τ ) d Δ τ .
Γ 1 ( u 1 , u 2 , t 1 , t 2 , z ) = k 0 w 0 3 B S x s 2 exp ( i k 0 D S B S Δ u u ¯ ) exp ( k 0 2 w 0 2 2 B S 2 Δ u 2 )   × 1 a exp ( b 2 2 a ) [ 1 a ( 1 δ 2 + 1 4 w 0 2 b 2 a ) + k 0 2 w 0 2 B S 2 ( b a A S i Δ u ) 2 ]   × ω 0 T 0 2 B T exp ( i ω 0 D T B T Δ t t ¯ ) exp ( ω 0 2 T 0 2 8 B T 2 Δ t 2 ) 1 c exp ( d 2 2 c ) ,
a = 1 4 w 0 2 + 1 δ 2 + k 0 2 w 0 2 A S 2 B S 2 ,
b = k 0 B S u ¯ + i k 0 2 w 0 2 A S B S 2 Δ u ,
c = 1 T 0 2 + 1 T c 2 + ω 0 2 T 0 2 A T 2 4 B T 2 ,
d = ω 0 B T t ¯ + i ω 0 2 T 0 2 A T 4 B T 2 Δ t .
Γ 2 ( u 1 , u 2 , t 1 , t 2 , z ) = k 0 w 0 B S exp ( i k 0 D S B S Δ u u ¯ ) exp ( k 0 2 w 0 2 2 B S 2 Δ u 2 ) 1 a exp [ b 2 2 a ]   × ω 0 T 0 3 8 B T τ s 2 exp ( i ω 0 D T B T Δ t t ¯ ) exp ( ω 0 2 T 0 2 8 B T 2 Δ t 2 )   × 1 c exp ( d 2 2 c ) [ 1 c ( 1 T c 2 + 1 T 0 2 d 2 c ) + ω 0 2 T 0 2 4 B T 2 ( d c A T i Δ t ) 2 ] ,
Γ 3 ( u 1 , u 2 , t 1 , t 2 , z ) = ± k 0 w 0 B S x s exp ( i k 0 D S B S Δ u u ¯ ) exp ( k 0 2 w 0 2 2 B S 2 Δ u 2 ) b a a exp [ b 2 2 a ]   × ω 0 2 T 0 3 8 B T 2 τ s exp ( i ω 0 D T B T Δ t t ¯ ) exp ( ω 0 2 T 0 2 8 B T 2 Δ t 2 ) 1 c exp ( d 2 2 c ) ( d c A T i Δ t )   k 0 2 w 0 3 B S 2 x s exp ( i k 0 D S B S Δ u u ¯ ) exp ( k 0 2 w 0 2 2 B S 2 Δ u 2 ) 1 a exp [ b 2 2 a ] ( b a A S i Δ u )   × ω 0 T 0 2 B T τ s exp ( i ω 0 D T B T Δ t t ¯ ) exp ( ω 0 2 T 0 2 8 B T 2 Δ t 2 ) d c c exp ( d 2 2 c ) ,
exp ( p x 2 + 2 q x ) d x = π p exp ( q 2 p ) ,
x e x p ( p x 2 + 2 q x ) d x = q p π p exp ( q 2 p ) ,
x 2 exp ( p x 2 + 2 q x ) d x = 1 p ( 1 2 + q 2 p ) π p exp ( q 2 p ) .
μ ( u 1 , u 2 , t 1 , t 2 , z ) = Γ ( u 1 , u 2 , t 1 , t 2 , z ) Γ ( u 1 , u 1 , t 1 , t 1 , z ) Γ ( u 2 , u 2 , t 2 , t 2 , z )
Re [ μ ( u 1 , u 2 , t 1 , t 2 , z ) ] = 0 ,
Im [ μ ( u 1 , u 2 , t 1 , t 2 , z ) ] = 0 ,
I ( u , t , z ) = Γ ( u 1 = u 2 = u , t 1 = t 2 = t , z ) = k 0 w 0 3 B S x s 2 1 a exp ( 1 2 a k 0 2 B S 2 u 2 ) [ 1 a ( 1 δ 2 + 1 4 w 0 2 k 0 2 a B S 2 u 2 ) + k 0 4 w 0 2 B S 4 A S 2 a 2 u 2 ] ω 0 T 0 2 B T 1 c exp ( 1 2 c ω 0 2 B T 2 t 2 ) + k 0 w 0 B S 1 a exp ( 1 2 a k 0 2 B S 2 u 2 ) ω 0 T 0 3 8 B T τ s 2 1 c exp ( 1 2 c ω 0 2 B T 2 t 2 ) [ 1 c ( 1 T c 2 + 1 T 0 2 ω 0 2 c B T 2 t 2 ) + ω 0 4 T 0 2 4 B T 4 A T 2 c 2 t 2 ] ± k 0 w 0 B S x s 1 a a exp ( 1 2 a k 0 2 B S 2 u 2 ) ( k 0 B S u ) ω 0 T 0 2 B T τ S 1 c c exp ( 1 2 c ω 0 2 B T 2 t 2 ) ( ω 0 B T t ) ( ω 0 T 0 2 A T 4 B T k 0 w 0 2 A S B S ) .
μ ( u 1 , u 2 , t 1 , t 2 , 0 ) = μ [ u 1 u 2 x s 2 + t 1 t 2 τ s 2 i x s τ s ( u 1 t 2 u 2 t 1 ) ]
μ = exp [ ( u 2 u 1 ) 2 2 δ 2 ] exp [ ( t 2 t 1 ) 2 2 T c 2 ] / ( t 1 2 τ s 2 + u 1 2 x s 2 ) ( t 2 2 τ s 2 + u 2 2 x s 2 )
u 2 = t 1 u 1 x s 2 τ s 2 t 2 ,
u 2 = u 1 t 1 t 2 .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.