Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Few-photon isolation in a one-dimensional waveguide using chiral quantum coupling

Open Access Open Access

Abstract

We investigated the transmission of single and two photons in a one-dimensional waveguide that is coupled with a Kerr micro-ring resonator and a polarized quantum emitter. In both cases, a phase shift occurs, and the non-reciprocal behavior of the system is attributed to the unbalanced coupling between the quantum emitter and the resonator. Our analytical solutions and numerical simulations demonstrate that the nonlinear resonator scattering causes the energy redistribution of the two photons through the bound state. When the system is in the two-photon resonance state, the polarization of the correlated two photons is locked to their propagation direction, leading to non-reciprocity. As a result, our configuration can act as an optical diode.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Nonreciprocity is a fundamental physical mechanism that signifies how symmetric operations generate opposite responses. In recent years, nonreciprocal devices have garnered considerable attention due to their potential applications in quantum information processing [114]. However, conventional devices that use the magneto-optical effect may experience significant losses in strong magnetic fields [1520]. To address this issue and facilitate integrated applications, many physical systems, such as parity-time symmetry optics [2124], optomechanics [2530], parametric processes [31,32], and chiral quantum optics [4,3337], have been attempted. Since the research objects are on a microscopic scale and differ from the classical physical studies mentioned above, nonreciprocal content has been extended to the quantum domain [3842]. For example, routers of thermal noises [43], nonreciprocal quantum entanglement [44], one-way quantum amplifiers [45], and nonreciprocal photon blockade [46] are quantum physical processes that support the development of quantum technology.

Quantum correlations are an important phenomenon in studying the foundations of quantum theory [4759]. Electromagnetically induced transparency and photon blockade are commonly used to achieve strong photon-photon interaction [6063]. Recently, one-dimensional (1D) waveguides coupled to nonlinear systems have gained attention for the transmission of constrained correlated photons. The nonlinear system, acting as the scattering center, can take the form of a multi-level atom [6471], a cavity filled with Kerr medium [7274], or be present in optomechanical systems [75,76], which would form bound states with the transmitted photons when exchanging energy. To combine quantum correlation and nonreciprocity, chiral waveguides have been introduced [74,7780]. By asymmetrically coupling the waveguide and the coupling body, photons incident from opposite directions produce unequal transmission probabilities. Despite this, the application of chiral waveguides is sometimes limited, and it is desirable to achieve the same function in conventional waveguides.

In this work, we propose a scheme for achieving nonreciprocal transmission of a few photons by using chiral quantum emitters (QEs) indirectly coupled with a 1D waveguide through a nonlinear microring resonator. By applying a magnetic field [8184] or via the ac Stark effect [8590], the QEs can be polarized and function as a quantum switch [9194]. We construct two devices to transmit single and double photons, respectively. By using Laplace transform to solve the scattering process of photons, we obtain an analytic solution. For single photon conditions, the nonlinearity does not have any effect, and the photon incident from either port only produces a phase shift. This configuration is similar to a QE embedded with a waveguide [95100]. For the two-photon case, the incident light collides with the mixture of the QEs and resonator and then exchanges energy to form a bound state. Effective nonreciprocal transmission occurs at two-photon resonance, i.e., when the photon energies match the resonant frequency shifted by the Kerr interaction. Otherwise, one-way transmission will not succeed, even at maximum polarization. This proposal transfers the asymmetric coupling from the waveguide to the QEs such that few-photon nonreciprocal transmissions can occur in conventional waveguides, and may lay the foundation for expanding applications and integration on chip.

This paper is organized as follows: In Section 2, we introduce two scattering models, which involve polarized QEs and nonlinear resonators. We provide simplified Hamiltonians for each of them. In Section 3., we analyze the scattering process of a single photon and derive analytical expressions for the transmission and reflection amplitudes. In Section 4, we investigate the scattering process of two photons and determine the conditions for achieving maximum nonreciprocal transmission of correlated photons. We also present numerical simulations of the transmission process. In Section 5, we discuss the experimental feasibility of our proposed scheme. Finally, we conclude with a summary in Section 6.

2. Physical model

Figure 1 illustrates the schematic of the proposed system, which comprises a nonlinear microring resonator coupled to QEs and an 1D waveguide located at the origin. Similar to the transverse spin and surface waves of acoustic systems [101], when photons are incident on port 1 (port 2), they excite the counterclockwise (CCW) [clockwise (CW)] mode, generating $\sigma _+(\sigma _-)$ polarized evanescent fields near the entire wall [4,102105]. The QEs are chiral and driven by $\sigma _+$($\sigma _-$) polarization, coupling to the CCW resonator mode and the CW resonator mode with coupling strengths $g_{\circlearrowleft }$ and $g_{\circlearrowright }$, respectively. We can define $D$ to describe the degree of chirality of the QE, as proposed in [105]. Specifically, we have:

$$\vert g_{\circlearrowleft}\vert=\sqrt{\dfrac{1-D}{2}}g,\vert g_{\circlearrowright}\vert=\sqrt{\dfrac{1+D}{2}}g.$$

The conventional coupling strength is denoted by $g$, and $D=-1$ ($D=1$) corresponds to $\vert g_{\circlearrowleft }\vert = g$ ($\vert g_{\circlearrowright }\vert = g$), which means the QE exhibits perfect chirality. When $D=0$, the chirality disappears and corresponds to linear polarization.

 figure: Fig. 1.

Fig. 1. The system is schematically represented by a microring resonator filled with Kerr-type nonlinear medium, which couples to a nearby waveguide, with either a single negatively charged QE in (a) or two negatively charged QEs in (b). When photons are incident from port 1 (or port 2), they are scattered by the nonlinear resonator and QEs, which results in reflection or transmission of the photons in the waveguide.

Download Full Size | PDF

In this section, we temporarily neglect the chirality of QEs for simplicity. Therefore, the Hamiltonian for single photon scattering process in Fig. 1(a) is given by Eq. (2) (set $\hbar =1$).

$$\begin{aligned} H &=\dfrac{U}{2}a^{{\dagger}}a^{{\dagger}}aa+\int_0^\infty dk \omega_k( r_k^{{\dagger}} r_k+l_k^{{\dagger}} l_k)+V\int_0^\infty dk[(r_k^{{\dagger}}+l_k^{{\dagger}})a+a^{{\dagger}}(r_k+l_k)]\\ &\quad+g a^{{\dagger}}S_{-}+g^{*}S_{+}a+w_c a^{{\dagger}}a+w_q a_{e}^{{\dagger}}a_{e}. \end{aligned}$$

The first term in Eq. (2) is the nonlinear interaction of the system with interaction strength $U$. The creation (annihilation) operator of the resonator mode is denoted by $a^{\dagger }$ ($a$), and the resonance frequency is $\omega _c$. $r_k^{\dagger }(l_k^{\dagger })$ is a bosonic operator creating a right-going (left-going) photon in the waveguide with wave number $k$ and frequency $\omega _k$. In this paper, we assume $\omega _k=k$ (set $v_g=1$), where $v_g$ is the boson velocity in the waveguide. $V$ is the coupling constant, and $a_{e}^{\dagger }(a_{g}^{\dagger })$ is the creation operator of the excited (ground) state of the QE with transition frequency $\omega _q$. $S_{+}=a_{e}^{\dagger }a_{g}$ ($S_{-}=a_{g}^{\dagger }a_{e}$) is the raising (lowering) operator. We neglect the intrinsic decay rate of the resonator and the relaxation rate of the QE.

In the rotating frame with respective to $H_0=w_c [a^{\dagger }a+\int _0^\infty ( r_k^{\dagger } r_k+l_k^{\dagger } l_k) dk +a_{e}^{\dagger }a_{e}]$, there is

$$\begin{aligned} H^{'} &=\dfrac{U}{2}a^{{\dagger}}a^{{\dagger}}aa+\int_0^\infty dk \Delta_k( r_k^{{\dagger}} r_k+l_k^{{\dagger}} l_k)+V\int_0^\infty dk[(r_k^{{\dagger}}+l_k^{{\dagger}})a+a^{{\dagger}}(r_k+l_k)]\\ &\quad+g a^{{\dagger}}S_{-}+g^{*}S_{+}a+\Delta_q a_{e}^{{\dagger}}a_{e}, \end{aligned}$$
where $\Delta _k=\omega _k-\omega _c$, $\Delta _q=\omega _q-\omega _c$ are the the detunings. By employing $b_k=(r_k+l_k)/\sqrt {2}$, $b_k^{'}=(r_k-l_k)/\sqrt {2}$ [73,74,106108] , the Hamiltonian is transformed into
$$\begin{aligned} H_a &=\dfrac{U}{2}a^{{\dagger}}a^{{\dagger}}aa+\int_0^\infty dk \Delta_k [b_k^{{\dagger}} b_k+(b_k^{'})^{{\dagger}} b_k^{'}]+\overline{V}\int_0^\infty dk(b_k^{{\dagger}}a+a^{{\dagger}}b_k)\\ &\quad+ga^{{\dagger}}S_{-}+g^{*}S_{+}a+\Delta_q a_{e}^{{\dagger}}a_{e}. \end{aligned}$$

Through a similar process, we can obtain the Hamiltonian of the system in Fig. 1(b) for the two-photon scattering process:

$$\begin{aligned} H_b &=\dfrac{U}{2}a^{{\dagger}}a^{{\dagger}}aa+\int_0^\infty dk \Delta_k[b_k^{{\dagger}} b_k+(b_k^{'})^{{\dagger}} b_k^{'}]+\overline{V}\int_0^\infty dk(b_k^{{\dagger}}a+a^{{\dagger}}b_k)\\ &\quad+g a^{{\dagger}}(S_{1-}+S_{2-})+g^{*}(S_{1+}+S_{2+})a+\Delta_q (a_{1e}^{{\dagger}}a_{1e}+a_{2e}^{{\dagger}}a_{2e}). \end{aligned}$$

The creation operator $a_{ne}^{\dagger }$ ($a_{ng}^{\dagger }$) corresponds to the excited (ground) state of the $n$-th QE with transition frequency $\omega _q$, and $S_{n+}=a_{ne}^{\dagger }a_{ng}$ ($S_{n-}=a_{ng}^{\dagger }a_{ne}$) is the raising (lowering) operator.

In this case, the cavity mode only couples to the $b$ mode with an effective coupling constant of $\overline {V}=\sqrt {2}V$, while photons in the $b'$ mode evolve freely in the waveguide. Therefore, we will only consider the excitations in the $b$ space in the following discussion.

3. Single photon scattering process

As there is no contribution from Kerr nonlinearity for single-photon states, the physical model is equivalent to the work of [105] which employs the method developed by Shen and Fan [109,110] to investigate the single-photon scattering process. In this work, we apply Laplace transform to solve the photon scattering problems [73,74], and the analytical solution will be utilized in the two-photon scenario in the next section.

For a single-photon excitation, a general time-dependent state for the system can be expressed as:

$$\vert \psi(t)\rangle=\int_0^\infty dk\phi_{k}(t) b_k^{{\dagger}} \vert \varnothing\rangle + [e_{c}(t)a^{{\dagger}}+e_{q}(t) a_{e}^{{\dagger}}a_{g}]\vert \varnothing\rangle.$$

The states $b_k^{\dagger } \vert \varnothing \rangle$ and $a^{\dagger }\vert \varnothing \rangle$ correspond to single excitations in the $k$th $b$ mode of the waveguide and in the resonator, respectively. The operator $a_{e}^{\dagger }a_{g}$ represents the excitation of the QE. The vacuum state $\vert \varnothing \rangle$ denotes the absence of photons in the system, and the QE is in its ground state. The probability amplitudes $\phi _{k}(t)$, $e_{c}(t)$, and $e_{q}(t)$ are defined accordingly.

We use the Schrödinger equation $i\vert \dot {\psi }(t)\rangle =H_a\vert \psi (t)\rangle$ to derive the equations of motion for transmission and reflection:

$$i\dot{\phi}_{k}(t)=\Delta_k \phi_{k}(t)+\overline{V} e_{c}(t),$$
$$i\dot{e}_{c}(t)=\overline{V} \int_0^\infty dk \phi_{k}(t)+g e_{q}(t),$$
$$i\dot{e}_{q}(t)=\Delta_q e_{q}(t)+g e_{c}(t).$$

To transform Eq. (7) into a system of algebraic equations, we perform the Laplace transform and introduce the initial probability amplitudes $\phi _{k}(0)$, $e_{c}(0)$, and $e_{q}(0)$:

$$(s+i\Delta_k)\widetilde{\phi}_{k}(s)=\phi_{k}(0)-i\overline{V} \widetilde{e}_{c}(s),$$
$$s\widetilde{e}_{c}(s)=e_{c}(0)-i\overline{V} \int_0^\infty dk \widetilde{\phi}_{k}(s)-ig\widetilde{e}_{q}(s),$$
$$(s+i\Delta_q) \widetilde{e}_{q}(s)= e_{q}(0)-i g\widetilde{e}_{c}(s).$$

The initial excitation of the system is only derived from the photon incident from port 1 (port 2) in the waveguide, and we assume that the incident single photon is prepared in a wave packet with a Lorentzian spectrum. Therefore, the initial condition of the system is given by:

$$\phi_{k}(0)=\dfrac{\sqrt{\epsilon/\pi}}{\Delta_k-\delta+i\epsilon},e_{c}(0)=e_{q}(0)=0,$$
$\delta$ and $\epsilon$ denote the detuning and spectral width of the incident photon, respectively. After performing some calculations, we obtain:
$$\widetilde{\phi}_{k}(s)=\dfrac{\sqrt{\epsilon/\pi}}{s+i\Delta_k }(\dfrac{1}{\Delta_k-\delta+i \epsilon}+\dfrac{1}{s+\alpha}\dfrac{4 \alpha }{\delta-i (s+\epsilon)}),$$
$$\widetilde{e}_{c}(s)=\dfrac{1}{\overline{V}(s+\alpha)}\dfrac{4 i \alpha \sqrt{\epsilon/\pi} }{\delta-i (s+\epsilon)},$$
$$\widetilde{e}_{q}(s)=\dfrac{g}{\overline{V}(s+\alpha)}\dfrac{4 i \alpha \sqrt{\epsilon/\pi} }{\delta-i (s+\epsilon)}\dfrac{1}{(s+i\Delta_q)},$$
where $\alpha =\pi \overline {V}^2 s(s+i\Delta _q)/[s(s+i\Delta _q)+g^2]$ with $\Delta _q$ being the detuning between the QE and the resonator frequencies. We set $\Delta _q=0$, assuming that the QE and resonator have the same resonant frequency. By taking the inverse Laplace transform of Eq. (10) and in the long-time limit, we obtain:
$$\begin{array}{r} e_{c}(t\rightarrow \infty)=e_{q}(t\rightarrow \infty)=0,\\ \phi_{k}(t\rightarrow \infty)=\overline{t}_k \phi_{k}(0)e^{{-}i\Delta_k t}. \end{array}$$

Equation (11) indicates that the scattering process does not alter the properties of the incident photon, but only leads to a phase shift. We can define the transmission amplitude in the $b$ mode as follow:

$$\overline{t}_k=\dfrac{\Delta_k -i\beta-\dfrac{g^2}{\Delta_{k}}}{\Delta_k +i\beta-\dfrac{g^2}{\Delta_{k}}},\beta=\pi\overline{V}^2.$$

Returning to the original left- and right-propagation modes, we assume that a single-photon wavepacket is incident on the system from port 1. Its propagation state can be described as:

$$\vert \psi(0)\rangle=\int_0^\infty dk\phi_{k}(0) r_k^{{\dagger}} \vert \varnothing\rangle.$$

Firstly, the right-moving photon is absorbed by the hybrid system consisting of the resonator and QE. Then, the excited system releases a photon back into the waveguide with a reflected and a transmitted part. The scattering amplitudes can be defined as follows:

$$\begin{array}{r}t_k=\dfrac{\Delta_k- \dfrac{(\vert g_{\circlearrowleft}\vert^2-\vert g_{\circlearrowright}\vert^2) }{\Delta_{k}}}{\Delta_k +i\beta-\dfrac{g^2}{\Delta_{k}}}=\dfrac{\Delta_k- \dfrac{D g^2}{\Delta_{k}}}{\Delta_k +i\beta-\dfrac{g^2}{\Delta_{k}}}, \\ r_k\approx \dfrac{ -(i\beta+\dfrac{2 \vert g_{\circlearrowleft}\vert \vert g_{\circlearrowright}\vert}{\Delta_{k}})}{\Delta_k +i\beta-\dfrac{g^2}{\Delta_{k}}}=\dfrac{ -(i\beta+\dfrac{\sqrt{1-D^2} g^2}{\Delta_{k}})}{\Delta_k +i\beta-\dfrac{g^2}{\Delta_{k}}}.\end{array}$$

If a single-photon wavepacket is incident on the system from port 2, its propagation state can be described as follow:

$$\vert \psi(0)\rangle=\int_0^\infty dk\phi_{k}(0) l_k^{{\dagger}} \vert \varnothing\rangle.$$

Since the expression of $r_k$ in Eq. (14) remains the same under the exchange of $\vert g_{\circlearrowleft }\vert$ and $\vert g_{\circlearrowright }\vert$, the reflection amplitude remains unchanged. However, due to the asymmetric coupling, the transmission amplitude changes to:

$$t_k^{'}=\dfrac{\Delta_k+\dfrac{D g^2}{\Delta_{k}}}{\Delta_k +i\beta-\dfrac{g^2}{\Delta_{k}}}.$$

In general, the propagation of photons is mainly affected by the frequency detuning with the resonator. By introducing the chiral coupling of the QE, the balance of transmission for the original left- and right-moving emitted photons is broken, and the parameter $D$ must be taken into consideration. Figure 2 shows the transmittance (blue solid) and reflectance (red dotted) as a function of $\Delta _k$ for a given $g$ and $D$. Figures 2(b, d, f) are zoomed-in versions of Figs. 2(a, c, e) around the frequency detuning of [-0.1, 0.1]. The peaks and troughs of the scattering amplitude are generated at the resonance [Fig. 2(a)], which means that the scattering system acts as a mirror blocking the propagation of photons [33,110113]. However, as $D$ increases, a sub-peak and sub-trough are generated with a narrow bandwidth around the resonance, and they reach the extremes at $D=-1$. At this point, previous blocking disappears. Throughout the whole process, the chirality of the QE controls the passage of the incident photon. In Fig. 3, we plot the isolation contrast $\eta =(|t_k|^2-|t_k^{'}|^2)/(|t_k|^2+|t_k^{'}|^2)$ [104,105,114] as a function of $\Delta _k$ for a given $g$ and $D$. We emphasize that $|t_k|^2$ dominates the transmittance when $\eta > 0$ (blue solid), and $|t_k^{'}|^2$ dominates the transmittance when $\eta < 0$ (red dotted). $D=0$ corresponds to $\eta = 0$, which means the system does not exhibit nonreciprocity property. For $D=-1(+1)$, there is $\eta \approx +1 (-1)$. The physical explanation is that only when photons incident to port 1 (port 2) will pass through the resonator, and our device becomes a nonreciprocal system.

 figure: Fig. 2.

Fig. 2. The transmittance (blue solid) and reflectance (red dotted) as a function of $\Delta _k$. (a,b),(c,d),(e,f) are shown for $D= 0, -0.5, -1$, respectively. (b),(d),(f) are the zoom in of (a),(c),(e), respectively. Other parameter is set as $g=0.1$, all parameters are in units of $\beta$.

Download Full Size | PDF

 figure: Fig. 3.

Fig. 3. The isolation contrast $\eta$ as a function of $D$, for $g=0.1$, $\Delta _k=0.1$, all parameters are in units of $\beta$.

Download Full Size | PDF

4. Two photon scattering process

Figure 1(b) illustrates the physical model of two-photon scattering. To enable scattering synchronization, we introduce an additional QE coupling in addition to the original hybrid system. The corresponding Hamiltonian is described by Eq. (5).

For double photon excitation, the system includes not only additional cross-combination terms of wave functions, but also Kerr nonlinearity coupling, leading to new physical phenomena. The time-dependent state of the system can be described as follows:

$$\begin{aligned} \vert \Phi(t)\rangle&=\int_0^\infty dk dk^{'}\phi_{{kk^{'}}}(t) b_k^{{\dagger}}b^{{\dagger}}_{k^{'}} \vert \varnothing\rangle +e_{cc}(t)\dfrac{a^{{\dagger}}a^{{\dagger}}}{\sqrt{2}} \vert \varnothing\rangle +e_{qq}(t)a_{1e}^{{\dagger}}a_{1g}a_{2e}^{{\dagger}}a_{2g}\vert \varnothing\rangle\\ &\quad+[\int_0^\infty dk \phi_{{k}c}(t)b_k^{{\dagger}}a^{{\dagger}}+e_{cq1}(t)a^{{\dagger}}a_{1e}^{{\dagger}}a_{1g}+e_{cq2}(t)a^{{\dagger}}a_{2e}^{{\dagger}}a_{2g}]\vert \varnothing\rangle. \end{aligned}$$

The amplitudes ${\phi _{{kk^{'}}}(t), e_{cc}(t), e_{qq}(t)}$ represent the states of double excitations generated in the waveguide, resonator, and QEs, respectively. $\phi _{{k}c}(t)$ corresponds to the state with one photon in the resonator and one photon with wave number $k$ in the waveguide, while $e_{cqn}(t)$ corresponds to the state with one photon in the resonator and the $n$-th QE excited.

The equations of motion are obtained by applying the Schrödinger equation $i\vert \dot {\Phi }(t)\rangle =H_b\vert \psi (t)\rangle$.

$$i\dot{\phi}_{{kk^{'}}}(t)=(\Delta_k +\Delta_{k^{'}})\phi_{{kk^{'}}}(t)+\overline{V}[ \phi_{{k}c}(t)+ \phi_{{k^{'}}c}(t)],$$
$$i\dot{e}_{cc}(t)=U e_{cc}(t)+\sqrt{2}\overline{V} \int_0^\infty dk \phi_{{k}c}(t)+\sqrt{2}g[e_{cq1}(t)+e_{cq2}(t)],$$
$$i\dot{e}_{qq}(t)=2\Delta_q e_{qq}(t)+g[e_{cq1}(t)+e_{cq2}(t)],$$
$$i\dot{\phi}_{{k}c}(t)=\Delta_k \phi_{{k}c}(t)+\sqrt{2}\overline{V} {e}_{cc}(t)+\overline{V} \int_0^\infty dk^{'} \phi_{{kk^{'}}}(t),$$
$$i \dot{e}_{cq1}(t)=\Delta_q e_{cq1}(t)+\sqrt{2}g{e}_{cc}(t)+ g{e}_{qq}(t),$$
$$i \dot{e}_{cq2}(t)=\Delta_q e_{cq2}(t)+\sqrt{2}g{e}_{cc}(t)+ g{e}_{qq}(t).$$

We assume that the incident signal takes the form of a two-photon Lorentz wave packet. Therefore, the initial condition of the system is given by:

$$\begin{array}{c}e_{cc}(0)=e_{qq}(0)=\phi_{{k}c}(0)=e_{cq1}(0)=e_{cq2}(0)=0, \\ \phi_{kk^{'}}(0)=B(\dfrac{1}{\Delta_k -\delta_1+i\epsilon_1}\dfrac{1}{\Delta_{k^{'}} -\delta_2+i\epsilon_2}+\dfrac{1}{\Delta_{k^{'}} -\delta_1+i\epsilon_1}\dfrac{1}{\Delta_k -\delta_2+i\epsilon_2}),\end{array}$$
with the normalization constant
$$B=\sqrt{\dfrac{\epsilon_1\epsilon_2}{2\pi^2}}[1+\dfrac{4\epsilon_1\epsilon_2}{(\delta_1-\delta_2)^2+(\epsilon_1+\epsilon_2)^2}]^{{-}1/2}.$$

To simplify the calculations, we assume that the two photons are initially independent of each other, i.e., $\delta _1=\delta _2=\delta$ and $\epsilon _1=\epsilon _2=\epsilon$. Therefore, Eq. (19) can be rewritten as

$$\phi_{{kk^{'}}}(0)=\dfrac{\epsilon}{\pi}\dfrac{1}{\Delta_k -\delta+i\epsilon}\dfrac{1}{\Delta_{k^{'}} -\delta+i\epsilon}.$$

We are interested in the long-time limit scattering behavior of two photons in the waveguide. After some approximations (see Appendix), we obtain the asymptotic solution of $\phi _{{kk^{'}}}(t)$ for $t\gg \beta ^{-1}$ and $\epsilon ^{-1}$

$$\phi_{kk^{'}}(t)=[\overline{t}_k\overline{t}_{k^{'}} \phi_{kk^{'}}(0)+C_{kk^{'}}]e^{{-}i(\Delta_k+\Delta_{k^{'}}) t}.$$

The transmission amplitudes in $b$ space with wavenumbers $k$ and $k^{'}$ are denoted by $\overline {t}_k$ and $\overline {t}_{k^{'}}$, respectively. The additional term $C_{kk^{'}}$ is defined as

$$\begin{aligned} C_{kk^{'}}&= \dfrac{8i\beta\epsilon}{\pi} \bigg \{\dfrac{\beta[-\dfrac{1}{2}U(\Delta_k+\Delta_{k^{'}})^2+g^2(U-2\Delta_k-2\Delta_{k^{'}})]({-}2\delta+\Delta_k+\Delta_{k^{'}}+2i\epsilon)}{[\dfrac{1}{2}(\Delta_k+\Delta_{k^{'}})^2({-}U+2i\beta+\Delta_k+\Delta_{k^{'}})+g^2(U-2i\beta-3\Delta_k-3\Delta_{k^{'}})]}\\ &\quad \times \dfrac{1}{(\beta+i\delta-i\Delta_k-i\Delta_{k^{'}}+\epsilon)} -\dfrac{g^2(\Delta_k+\Delta_{k^{'}})[{-}4g^2+4\beta^2+4\Delta_k\Delta_{k^{'}}]}{[2g^2-i\beta(\Delta_k+\Delta_{k^{'}})-2\Delta_k\Delta_{k^{'}}]^2}\bigg \}\\ &\quad\times\dfrac{1}{(\beta-i\Delta_k)(\beta-i\Delta_{k^{'}})({-}2\delta+\Delta_k+\Delta_{k^{'}}+2i\epsilon)^2}. \end{aligned}$$

Equation (23) consists of two main parts. The first part results from the combined effect of the cavity and QE, while the second part arises from the individual function of the QE. Equations (22) and (23) demonstrate that the Kerr nonlinearity coupling contributes to the two-photon scattering process, as $C_{kk'}$ contains the parameter $U$. When $U=0$, the original nonlinear resonator degenerates to a normal one, and the scattered photons lose their correlation. When we set $g=0$, the QE effect disappears, and the result is consistent with [73,74].

Let us now consider two ways of photon incidence. First, assuming that two photons are injected from port 1, the initial state can be expressed as:

$$\vert \Phi(0)\rangle= \int_0^\infty d\Delta_k\int_0^\infty d\Delta_{k^{'}}\phi_{kk^{'}}(0) r_k^{{\dagger}}r_{k^{'}}^{{\dagger}}|\varnothing\rangle.$$

After scattering with the cavity and QEs, there are four possible outcomes when two photons are injected from port 1 with the initial state. These are: two photons are transmitted with amplitude $\phi r^{rr}_{kk^{'}}$; two photons are reflected with amplitude $\phi r^{ll}_{kk^{'}}$; two photons exit from port 1 and port 2, respectively, with amplitudes $\phi r^{rl}_{kk^{'}}$ and $\phi r^{lr}_{kk^{'}}$. Finally, in the long-time limit, the state can be expressed as:

$$\begin{aligned} \vert \Phi(t)\rangle&= \int_0^\infty d\Delta_k\int_0^\infty d\Delta_{k^{'}}(\phi r^{rr}_{kk^{'}} r_k^{{\dagger}}r_{k^{'}}^{{\dagger}}+\phi r^{ll}_{kk^{'}} l_k^{{\dagger}}l_{k^{'}}^{{\dagger}})e^{{-}i(\Delta_k+\Delta_{k^{'}})t}|\varnothing\rangle\\ &\quad +\int_0^\infty d\Delta_k\int_0^\infty d\Delta_{k^{'}}(\phi r^{rl}_{kk^{'}} r_k^{{\dagger}}l_{k^{'}}^{{\dagger}}+\phi r^{lr}_{kk^{'}} l_k^{{\dagger}}r_{k^{'}}^{{\dagger}})e^{{-}i(\Delta_k+\Delta_{k^{'}})t}|\varnothing\rangle, \end{aligned}$$
where
$$\phi r^{rr}_{kk^{'}}=t_k t_{k^{'}} \phi_{{kk^{'}}}(0)+\dfrac{(1-D)^2}{4}C_{kk^{'}},\phi r^{ll}_{kk^{'}}=r_k r_{k^{'}} \phi_{{kk^{'}}}(0)+\dfrac{1-D^2}{4}C_{kk^{'}},$$
$$\phi r^{rl}_{kk^{'}}=t_k r_{k^{'}} \phi_{{kk^{'}}}(0)+\dfrac{(1-D)\sqrt{1-D^2}}{4}C_{kk^{'}},\phi r^{lr}_{kk^{'}}=r_k t_{k^{'}} \phi_{kk^{'}}(0)+\dfrac{(1-D)\sqrt{1-D^2}}{4}C_{kk^{'}}.$$

The first part of each amplitude represents the free propagation of the two photons, while the second part describes the correlation of the output photons resulting from the scattering with the nonlinear cavity and QEs.

Second, assuming two photons are injected from port 2 with the initial state

$$\vert \Phi(0)\rangle= \int_0^\infty d\Delta_k\int_0^\infty d\Delta_{k^{'}}\phi_{kk^{'}}(0) l_k^{{\dagger}}l_{k^{'}}^{{\dagger}}|\varnothing\rangle.$$

Similar to the first situation, and there is

$$\begin{aligned} \vert \Phi(t)\rangle&= \int_0^\infty d\Delta_k\int_0^\infty d\Delta_{k^{'}}(\phi l^{rr}_{kk^{'}} r_k^{{\dagger}}r_{k^{'}}^{{\dagger}}+\phi l^{ll}_{kk^{'}} l_k^{{\dagger}}l_{k^{'}}^{{\dagger}})e^{{-}i(\Delta_k+\Delta_{k^{'}})t}|\varnothing\rangle\\ &\quad +\int_0^\infty d\Delta_k\int_0^\infty d\Delta_{k^{'}}(\phi l^{rl}_{kk^{'}} r_k^{{\dagger}}l_{k^{'}}^{{\dagger}}+\phi l^{lr}_{kk^{'}} l_k^{{\dagger}}r_{k^{'}}^{{\dagger}})e^{{-}i(\Delta_k+\Delta_{k^{'}})t}|\varnothing\rangle. \end{aligned}$$

The amplitudes corresponding to the scattering of two photons injected from port 2 are given by $\phi l^{ll}_{kk^{'}}$ for the transmitted photons, $\phi l^{rr}_{kk^{'}}$ for the reflected photons, $\phi l^{rl}_{kk^{'}}$ and $\phi l^{lr}_{kk^{'}}$ for the case where one photon is transmitted and the other is reflected. The expressions for these amplitudes are given by:

$$\phi l^{ll}_{kk^{'}}=t_k^{'} t_{k^{'}}^{'} \phi_{{kk^{'}}}(0)+\dfrac{(1+D)^2}{4}C_{kk^{'}},\phi l^{rr}_{kk^{'}}=r_k r_{k^{'}} \phi_{{kk^{'}}}(0)+\dfrac{1-D^2}{4}C_{kk^{'}},$$
$$\phi l^{rl}_{kk^{'}}=t_k^{'} r_{k^{'}} \phi_{{kk^{'}}}(0)+\dfrac{(1+D)\sqrt{1-D^2}}{4}C_{kk^{'}},\phi l^{lr}_{kk^{'}}=r_k t_{k^{'}}^{'} \phi_{kk^{'}}(0)+\dfrac{(1+D)\sqrt{1-D^2}}{4}C_{kk^{'}}.$$

Once we choose $D\neq 0$, the balance of the system is broken, meaning that $\phi r^{rr}_{kk^{'}}\neq \phi l^{ll}_{kk^{'}}$. In this sense, the system functions as an optical diode to some extent. For the sake of later discussion, we denote the two parts of $\phi r^{rr}_{kk^{'}}$ by NP and IP, respectively, i.e.,

$${\rm NP}=t_k t_{k^{'}} \phi_{{kk^{'}}}(0),~ {\rm IP}=\dfrac{(1-D)^2}{4} C_{kk^{'}}.$$

In the frequency domain, we plot the norm square of the amplitudes of $\phi r^{rr}_{kk^{'}}$, $\phi l^{ll}_{kk^{'}}$, and $\phi r^{ll}_{kk^{'}}$ for $\delta =0$ and $\delta =5$, respectively. When $\delta =0$, the maximum frequency of the two-photon wave packet coincides with the resonator. Incident photons are mainly reflected and uncorrelated [see Fig. 4(e)], while the transmitted photons are strongly correlated, and the photon transmission probabilities are concentrated along the line $\Delta _k+\Delta _{k^{'}}=0$ [see Fig. 4(a) (c)]. It can be inferred that the transmission of incident photons is dominated by the $C_{kk^{'}}$ term since $t_\mu \approx 0$ $(\mu =k,k^{'})$ at zero detuning. Conversely, when $\delta =5$, the transmission parts are almost uncorrelated but dominant in probabilities [see Fig. 4(b) (d)]. Due to $r_\mu \approx 0$, the correlated photons mainly appear in the reflection, and the photon transmission probability is concentrated along the line $\Delta _k+\Delta _{k^{'}}=10$ [see Fig. 4(f)]. Comparing Fig. 4(a) and Fig. 4(c), we observe that in the same frequency domain, $|\phi r^{rr}_{kk^{'}}|^2$ is generally greater than $|\phi l^{ll}_{kk^{'}}|^2$. Specifically, for $\Delta _k=0,1,2$ with $\Delta _k+\Delta _{k^{'}}=0$, we have $|\phi r^{rr}_{kk^{'}}|^2=0.0975, 0.0244, 0.0039$ and $|\phi l^{ll}_{kk^{'}}|^2=0.0395, 0.0099, 0.0016$. This phenomenon is mainly caused by the asymmetric coupling of the QEs.

 figure: Fig. 4.

Fig. 4. (a), (c), (e) are plots of $|\phi r^{rr}_{kk^{'}}|^2$ , $|\phi l^{ll}_{kk^{'}}|^2$ and $|\phi r^{ll}_{kk^{'}}|^2$ of the two transmitted photons as functions of $\Delta _k$, $\Delta _k^{'}$, when $\delta =0$. (b), (d), (f) are plots of $|\phi r^{rr}_{kk^{'}}|^2$ , $|\phi l^{ll}_{kk^{'}}|^2$ and $|\phi r^{ll}_{kk^{'}}|^2$ of the two transmitted photons as functions of $\Delta _k$, $\Delta _k^{'}$, when $\delta =5$. Other parameters are set as $g=0.1$, $D=-0.1$, $U=10$ and $\epsilon =0.1$, all parameters are in units of $\beta$.

Download Full Size | PDF

We define the contrast for two-photon isolation as $\eta ^2 = (|\phi r^{rr}_{kk^{'}}|^2 - |\phi l^{ll}_{kk^{'}}|^2) / (|\phi r^{rr}_{kk^{'}}|^2 + |\phi l^{ll}_{kk^{'}}|^2)$ and plot it as a function of $\Delta _\mu$ in Fig. 5 for given values of $\delta =5$ and $U=10$. It can be observed that $\eta ^2=1$ is mainly concentrated along the line $\Delta _k+\Delta _{k^{'}}=10$, which is shown as a black dotted line in the figure. However, the line of concentration for isolation contrast is not completely continuous, and is truncated around $(\Delta _k , \Delta _{k^{'}})=(5,5)$ as shown in Fig. 5(b). This is due to the incident photons being localized in this frequency region under the condition $\epsilon \ll \beta <\delta$. In Fig. 6, we plot the norm square of the amplitude of $\phi r^{rr}_{kk^{'}}$ as a function of $\delta$ and $U$, respectively. It is indicated that for fixed $U=10$, the peak value is achieved at $\delta =5$ [Fig. 6(a)], while for fixed $\delta =5$, the maximum exists in $U\in [10,11]$, which corresponds to the pink-shaded area in Fig. 6(b). In conclusion, to obtain preferable results for two-photon unidirectional or nonreciprocal transmission, we set $2\delta =U=10$ under the condition of $(\Delta _k , \Delta _{k^{'}})=(10,0)$ or $(0,10)$, $g = 0.1$, $D=-1$, and $\epsilon =0.1$.

 figure: Fig. 5.

Fig. 5. (a) The two photon isolation contrast $\eta ^2$ as a function of $\Delta _\mu$, for $\delta =5$, $g=0.1$, $D=-1$, $U=10$ and $\epsilon =0.1$, (b) is the zoom in of (a), all parameters are in units of $\beta$.

Download Full Size | PDF

 figure: Fig. 6.

Fig. 6. (a) The norm square of the amplitude of $\phi r^{rr}_{kk^{'}}$ as a function of $\delta$ for $U=10$. (b) The norm square of the amplitude of $\phi r^{rr}_{kk^{'}}$ as a function of $U$ for $\delta =5$. Other parameter are set as $(\Delta _k , \Delta _{k^{'}})=(10,0)$ or $(0,10)$, $g = 0.1$, $D=-1$ and $\epsilon =0.1$, all parameters are in units of $\beta$.

Download Full Size | PDF

To demonstrate the impact of asymmetric coupling of QEs on the scattering wave of two photons incident from port 1 and port 2, we plot the norm square of the amplitudes of $\phi r^{rr}_{kk^{'}}$ and $\phi l^{ll}_{kk^{'}}$ as functions of $D$ for $g=0.1, U=10$, and $\epsilon =0.1$ at single-photon resonance $\Delta _k=\Delta _{k^{'}}=\delta =0$ and two-photon resonance $(\Delta _k,\Delta _{k^{'}})=(10,0)$ or $(0,10),\delta =5$ in Fig. 7(a-b). At single-photon resonance in Fig. 7(a), when QEs are maximally polarized, i.e., $D=\pm 1$, the transmission amplitude of incident photons is greater in the weakly coupled direction. Moreover, the transmission probabilities monotonically decrease and increase as $D$ increases in the range of $[-1,0]$ and $[0,1]$, respectively. Figure 7(c) shows that the NP part dominates the transmission process, and its evolution is consistent with curves in Fig. 7(a). At two-photon resonance in Fig. 7(b), due to the dominance of the IP part in the transmission process [Fig. 7(d)], the transmission probabilities remain monotonous: $|\phi r^{rr}_{kk^{'}}|^2$ for two transmitted photons incident from port 1 decreases as $D$ increases, $|\phi l^{ll}_{kk^{'}}|^2$ for two transmitted photons incident from port 2 increases as $D$ increases, and they both reach a maximum in their respective strongly coupled point. Therefore, the system functions as a diode that realizes one-way transmission of few photons based on the chiral quantum coupling.

 figure: Fig. 7.

Fig. 7. The norm square of the amplitudes of $\phi r^{rr}_{kk^{'}}$ and $\phi l^{ll}_{kk^{'}}$ as functions of $D$ for (a) $\Delta _k=\Delta _{k^{'}}=\delta =0$, (b) $(\Delta _k , \Delta _{k^{'}})=(10,0)$ or $(0,10),\delta =5$. The norm square of the NP part and IP part as functions of $D$ for (c) $\Delta _k=\Delta _{k^{'}}=\delta =0$, (d) $(\Delta _k , \Delta _{k^{'}})=(10,0)$ or $(0,10),\delta =5$. Other parameter are set as $g = 0.1, U=10$ and $\epsilon =0.1$, all parameters are in units of $\beta$.

Download Full Size | PDF

5. Experimental feasibility

In this section, we provide a detailed analysis of the experimental feasibility of our scheme. A Cs atom, Rb atom, or a quantum dot could be used as a quantum impurity to introduce the asymmetry in the coupling strength, with $g_{\circlearrowleft }/2\pi =\sqrt {45}g_{\circlearrowright }/2\pi =17-50$ MHz and the decay rate $\gamma _{\circlearrowleft }/2\pi =45\gamma _{\circlearrowright }/2\pi \approx 2.5$ MHz between the degenerate level and ground level [84,102,103,115]. Additionally, the NV center in diamond could also be applied to our solution and provide the required chirality [116118]. In Fig. 8(a), the NV center, initially prepared in state $\vert A_2\rangle$, will decay into spin states $\vert \mp 1\rangle$ by emitting $\sigma _\pm$ polarized photons with a wavelength of 637 nm, while the ground state $\vert 0\rangle$ is connected to the spin states through 532 nm microwave signals. In Fig. 8(b), a strong homogeneous static magnetic field $B_{static}$ is applied to remove the degenerate states $\vert \mp 1\rangle$ with a Zeeman splitting $\delta _B=2g_e \mu _B B_{static}$, while the zero-field splitting between the degenerate spin sublevels and ground level is $D=2\pi \times 2.87$ GHz.

 figure: Fig. 8.

Fig. 8. The polarization dependent transition (a) and the energy level (b) for NV center.

Download Full Size | PDF

The fabrication techniques of optical microring resonators have been well developed and applied in many fields, such as an all-optical parity bit generator and checker circuit using GaAs–AlGaAs-based micro-ring resonators [119], the ultrasmall design of a universal linear circuit based on microring resonators [120], and the heterogeneously integrated III–V-on-Si microring resonator that works as a versatile building block [121]. Recently, nonlinear microring resonators have become a research hotspot [46,74,122]. In our scheme, the Kerr-type nonlinear interaction could be around $5\times 10^6$ rad/s [122], and the silicon waveguides have a width of 450 nm and a height of 250 nm. The radius of the ring is $R=5$ $\mu$m, and the spacing between the ring and the straight waveguide is 200 nm. The fiber-to-fiber insertion loss is measured to be 10.4 dB [123]. In a silicon-on-insulator (SOI) mesoscopic resonator, the quality factor $Q\sim 10^5$ at $\lambda _c \sim 1.55$ $\mu$m [124], and the mode volume is smaller than $V_m\sim 1.55$ $\mu$m$^3$ [125].

6. Summary

In conclusion, we have proposed two scattering systems for single photon and correlated two photons, respectively. By introducing QEs with polarization, the system exhibits nonreciprocal behavior under certain conditions. In the single photon scattering process, we obtain the transmission and reflection amplitudes, including the chiral degree $D$, and the incident light experiences a phase shift when coming out from the other port. The scattering of two photons is solved analytically in the long-time limit, and the asymptotic solution contains the NP part and IP part, where the former is the free propagation of photons, and the latter contains the nonlinear contribution of the resonator. Our work reveals the unique characteristic that the transmission amplitude only exhibits monotonicity at the two-photon resonances, which shows the possibility of studying few-photon nonreciprocity conduction in kerr nonlinear systems. Moreover, according to the integrated ring resonator theory [126,127], coupling another waveguide over the original resonator can combine it into a four-port circulator. By adjusting the diameter of the resonator or the frequency of the incident light, it is possible to transmit photons from the lower bus (throughput) waveguide to the upper drop waveguide subjectively. Nonreciprocal correlated photon transmission in higher-dimensional devices could meet more application requirements [128136].

7. Appendix: solution of Eq. (18)

In this appendix, we use the Laplace transform to derive the solution of Eq. (18). Assuming the initial condition is given by (19), and choosing $\delta _1=\delta _2=\delta$ and $\epsilon _1=\epsilon _2=\epsilon$, we can rewrite Eq. (18) as:

$$[s+i(\Delta_k +\Delta_{k^{'}})]\widetilde{\phi}_{{kk^{'}}}(s)=\phi_{{kk^{'}}}(0)-i\overline{V}[ \widetilde{\phi}_{{k}c}(s)+ \widetilde{\phi}_{{k^{'}}c}(s),$$
$$(s+i U)\widetilde{e}_{cc}(s)={-}i\sqrt{2}\overline{V} \int_0^\infty dk \widetilde{\phi}_{{k}c}(s)-i\sqrt{2}g[\widetilde{e}_{cq1}(s)+\widetilde{e}_{cq2}(s)],$$
$$(s+2 i\Delta_q )\widetilde{e}_{qq}(s)={-}i g[\widetilde{e}_{cq1}(s)+\widetilde{e}_{cq2}(s)],$$
$$(s+i\Delta_k)\widetilde{\phi}_{{k}c}(s)={-}i\sqrt{2}\overline{V} \widetilde{e}_{cc}(s)-i\overline{V} \int_0^\infty dk^{'} \widetilde{\phi}_{{kk^{'}}}(s),$$
$$(s+i\Delta_q)\widetilde{e}_{cq1}(s)={-}i\sqrt{2}g\widetilde{e}_{cc}(s)-i g\widetilde{e}_{qq}(s),$$
$$(s+i\Delta_q) \widetilde{e}_{cq2}(s)={-}i\sqrt{2}g\widetilde{e}_{cc}(s)-i g\widetilde{e}_{qq}(s).$$

If $\Delta _\mu \geqslant 0$, we can extend the lower limit of integration to $-\infty$ and use the approximation $\sum _0^{\infty } dk \dfrac {\overline {V}^2}{s+i(\Delta _k+\Delta _{k^{'}})}\approx \sum _{-\infty }^{\infty } d\Delta _k \dfrac {\overline {V}^2}{s+i(\Delta _k+\Delta _{k^{'}})}=\beta$. Solving the above equations yields:

$$\begin{aligned} \widetilde{\phi}_{{kk^{'}}}(s)&=\dfrac{\epsilon/(2\pi)}{s+i(\Delta_k +\Delta_{k^{'}})}\bigg \{\dfrac{4i \beta}{(s+\beta+i\Delta_k)(-\delta+\Delta_k+i\epsilon)(s+i\delta+i\Delta_k+\epsilon)}\\ &\quad+\dfrac{4i \beta}{(s+\beta+i\Delta_{k^{'}})(-\delta+\Delta_{k^{'}}+i\epsilon)(s+i\delta+i\Delta_{k^{'}}+\epsilon)}+ \dfrac{2}{(-\delta+\Delta_k+i \epsilon)(-\delta+\Delta_{k^{'}}+i \epsilon)}\\ &\quad- 8\beta^2 \left[ \dfrac{1}{(s+\beta+i\Delta_k)(s+i\delta+i\Delta_k+\epsilon)}+\dfrac{1}{(s+\beta+i\Delta_{k^{'}})(s+i\delta+i\Delta_{k^{'}}+\epsilon)}\right]\\ &\quad\times \dfrac{1}{(s+\beta+i\delta+\epsilon)(s+2i\delta+2\epsilon)} -16\beta^2 \left( \dfrac{1}{s+\beta+i\Delta_k}+\dfrac{1}{s+\beta+i\Delta_{k^{'}}} \right)\\ &\quad\times\dfrac{1}{(s+\dfrac{4g^2 s}{2g^2+s^2}+iU+2\beta)(s+\beta+i\delta+\epsilon)(s+2i\delta+2\epsilon)} \bigg \}. \end{aligned}$$

Taking the inverse Laplace transform of $\widetilde {\phi }_{{kk^{'}}}(s)$ gives us the probability amplitude $\phi _{{kk^{'}}}(t)$ for the two photons. In the long-time limit, we obtain the asymptotic solution.

$$\phi_{kk^{'}}(t\rightarrow\infty)=[\overline{t}_k\overline{t}_{k^{'}} \phi_{kk^{'}}(0)+C_{kk^{'}}]e^{{-}i(\Delta_k+\Delta_{k^{'}}) t},$$
where
$$\begin{aligned} C_{kk^{'}}&= \dfrac{8i\beta\epsilon}{\pi} \bigg \{\dfrac{\beta[-\dfrac{1}{2}U(\Delta_k+\Delta_{k^{'}})^2+g^2(U-2\Delta_k-2\Delta_{k^{'}})]({-}2\delta+\Delta_k+\Delta_{k^{'}}+2i\epsilon)}{[\dfrac{1}{2}(\Delta_k+\Delta_{k^{'}})^2({-}U+2i\beta+\Delta_k+\Delta_{k^{'}})+g^2(U-2i\beta-3\Delta_k-3\Delta_{k^{'}})]}\\ &\quad \times \dfrac{1}{(\beta+i\delta-i\Delta_k-i\Delta_{k^{'}}+\epsilon)} -\dfrac{g^2(\Delta_k+\Delta_{k^{'}})[{-}4g^2+4\beta^2+4\Delta_k\Delta_{k^{'}}]}{[2g^2-i\beta(\Delta_k+\Delta_{k^{'}})-2\Delta_k\Delta_{k^{'}}]^2}\bigg \}\\ &\quad\times\dfrac{1}{(\beta-i\Delta_k)(\beta-i\Delta_{k^{'}})({-}2\delta+\Delta_k+\Delta_{k^{'}}+2i\epsilon)^2}. \end{aligned}$$

Funding

National Natural Science Foundation of China (92065105).

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical Diode Made from a Moving Photonic Crystal,” Phys. Rev. Lett. 110(9), 093901 (2013). [CrossRef]  

2. K. Xia, M. Alamri, and M. S. Zubairy, “Ultrabroadband nonreciprocal transverse energy flow of light in linear passive photonic circuits,” Opt. Express 21(22), 25619 (2013). [CrossRef]  

3. I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015). [CrossRef]  

4. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541(7638), 473–480 (2017). [CrossRef]  

5. D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11(12), 774–783 (2017). [CrossRef]  

6. Y. Tokura and N. Nagaosa, “Nonreciprocal responses from non-centrosymmetric quantum materials,” Nat. Commun. 9(1), 3740 (2018). [CrossRef]  

7. R. Fleury, M. R. Haberman, G. Huang, and A. N. Norris, “Introduction to the special issue on non-reciprocal and topological wave phenomena in acoustics,” J. Acoust. Soc. Am. 146(1), 719–720 (2019). [CrossRef]  

8. H. Nassar, B. Yousefzadeh, R. Fleury, M. Ruzzene, A. Alù, C. Daraio, A. N. Norris, G. Huang, and M. R. Haberman, “Nonreciprocity in acoustic and elastic materials,” Nat. Rev. Mater. 5(9), 667–685 (2020). [CrossRef]  

9. X. Y. Yao, H. Ali, F. L. Li, and P. B. Li, “Nonreciprocal Phonon Blockade in a Spinning Acoustic Ring Cavity Coupled to a Two-Level System,” Phys. Rev. Appl. 17(5), 054004 (2022). [CrossRef]  

10. K. Y. Xia, F. Nori, and M. Xiao, “Cavity-Free Optical Isolators and Circulators Using a Chiral Cross-Kerr Nonlinearity,” Phys. Rev. Lett. 121(20), 203602 (2018). [CrossRef]  

11. R. K. Pan, K. Y. Xia, and F. Nori, “Dynamic Nonreciprocity with a Kerr Nonlinear Resonator,” Chin. Phys. Lett. 39(12), 124201 (2022). [CrossRef]  

12. K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015). [CrossRef]  

13. K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015). [CrossRef]  

14. K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015). [CrossRef]  

15. L. J. Aplet and J. W. Carson, “A Faraday Effect Optical Isolator,” Appl. Opt. 3(4), 544 (1964). [CrossRef]  

16. G. X. Yu, J. J. Fu, W. W. Du, Y. H. Lv, and M. Luo, “Nonreciprocal transmission of electromagnetic waves by three-layer magneto-optical mediums,” Chin. Phys. B 28(2), 024101 (2019). [CrossRef]  

17. M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740 (2011). [CrossRef]  

18. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011). [CrossRef]  

19. B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014). [CrossRef]  

20. B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014). [CrossRef]  

21. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010). [CrossRef]  

22. B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, and C. M. Bender, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014). [CrossRef]  

23. H. l. Zhang, R. Huang, S. D. Zhang, Y. Li, C. W. Qiu, F. Nori, and H. Jing, “Breaking Anti-PT Symmetry by Spinning a Resonator,” Nano Lett. 20(10), 7594–7599 (2020). [CrossRef]  

24. J. Zhang, B. Peng, Ş. K. Özdemir, Y. X. Liu, H. Jing, X. Y. Lü, Y. L Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92(11), 115407 (2015). [CrossRef]  

25. X. W. Xu and Y. Li, “Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems,” Phys. Rev. A 91(5), 053854 (2015). [CrossRef]  

26. M. Schmidt, S. Kessler, V. Peano, O. Painter, and F. Marquardt, “Optomechanical creation of magnetic fields for photons on a lattice,” Optica 2(7), 635 (2015). [CrossRef]  

27. Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo, and C. H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016). [CrossRef]  

28. F. Ruesink, M. A. Miri, A. Alù, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7(1), 13662 (2016). [CrossRef]  

29. K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13(5), 465–471 (2017). [CrossRef]  

30. Y. Chen, Y. L. Zhang, Z. Shen, C. L. Zou, G. C. Guo, and C. H. Dong, “Synthetic Gauge Fields in a Single Optomechanical Resonator,” Phys. Rev. Lett. 126(12), 123603 (2021). [CrossRef]  

31. M. S. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5(9), 549–553 (2011). [CrossRef]  

32. A. Kamal, J. Clarke, and M. H. Devoret, “Noiseless non-reciprocity in a parametric active device,” Nat. Phys. 7(4), 311–315 (2011). [CrossRef]  

33. M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, “Quantum optical circulator controlled by a single chirally coupled atom,” Science 354(6319), 1577–1580 (2016). [CrossRef]  

34. W. B. Yan, W. Y. Ni, J. Zhang, F. Y. Zhang, and H. Fan, “Tunable single-photon diode by chiral quantum physics,” Phys. Rev. A 98(4), 043852 (2018). [CrossRef]  

35. K. Y. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A 83(2), 021803 (2011). [CrossRef]  

36. X. Wang, T. Liu, A. F. Kockum, H. R. Li, and F. Nori, “Tunable Chiral Bound States with Giant Atoms,” Phys. Rev. Lett. 126(4), 043602 (2021). [CrossRef]  

37. R. Huang, Ş. K. Özdemir, J. Q. Liao, F. Minganti, L. M. Kuang, F. Nori, and H. Jing, “Exceptional Photon Blockade: Engineering Photon Blockade with Chiral Exceptional Points,” Laser Photonics Rev. 16(7), 2100430 (2022). [CrossRef]  

38. Y. Jiang, S. Maayani, T. Carmon, F. Nori, and H. Jing, “Nonreciprocal Phonon Laser,” Phys. Rev. Appl. 10(6), 064037 (2018). [CrossRef]  

39. D. G. Lai, J. F. Huang, X. L. Yin, B. P. Hou, W. Li, D. Vitali, F. Nori, and J. Q. Liao, “Nonreciprocal ground-state cooling of multiple mechanical resonators,” Phys. Rev. A 102(1), 011502 (2020). [CrossRef]  

40. L. Bao, B. Qi, D. Dong, and F. Nori, “Fundamental limits for reciprocal and nonreciprocal non-Hermitian quantum sensing,” Phys. Rev. A 103(4), 042418 (2021). [CrossRef]  

41. W. Nie, T. Shi, F. Nori, and Y. X. Liu, “Topology-Enhanced Nonreciprocal Scattering and Photon Absorption in a Waveguide,” Phys. Rev. Appl. 15(4), 044041 (2021). [CrossRef]  

42. J. S. Tang, W. Nie, L. Tang, M. Chen, X. Su, Y. Lu, F. Nori, and K. Xia, “Nonreciprocal Single-Photon Band Structure,” Phys. Rev. Lett. 128(20), 203602 (2022). [CrossRef]  

43. S. Barzanjeh, M. Aquilina, and A. Xuereb, “Manipulating the Flow of Thermal Noise in Quantum Devices,” Phys. Rev. Lett. 120(6), 060601 (2018). [CrossRef]  

44. Y. F. Jiao, S. D. Zhang, Y. L. Zhang, A. Miranowicz, L. M. Kuang, and H. Jing, “Nonreciprocal Optomechanical Entanglement against Backscattering Losses,” Phys. Rev. Lett. 125(14), 143605 (2020). [CrossRef]  

45. D. Malz, L. D. Tóth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, “Quantum-Limited Directional Amplifiers with Optomechanics,” Phys. Rev. Lett. 120(2), 023601 (2018). [CrossRef]  

46. R. Huang, A. Miranowicz, J. Q. Liao, F. Nori, and H. Jing, “Nonreciprocal Photon Blockade,” Phys. Rev. Lett. 121(15), 153601 (2018). [CrossRef]  

47. G. Adesso, T. R. Bromley, and M. Cianciaruso, “Measures and applications of quantum correlations,” J. Phys. A: Math. Theor. 49(47), 473001 (2016). [CrossRef]  

48. J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80(4), 044102 (2009). [CrossRef]  

49. M. Navascués, S. Pironio, and A. Acín, “Bounding the Set of Quantum Correlations,” Phys. Rev. Lett. 98(1), 010401 (2007). [CrossRef]  

50. J. Oppenheim, M. Horodecki, P. Horodecki, and R. Horodecki, “Thermodynamical Approach to Quantifying Quantum Correlations,” Phys. Rev. Lett. 89(18), 180402 (2002). [CrossRef]  

51. A. Streltsov, H. Kampermann, and D. Bruß, “Behavior of Quantum Correlations under Local Noise,” Phys. Rev. Lett. 107(17), 170502 (2011). [CrossRef]  

52. M. Navascués, Y. Guryanova, M. J. Hoban, and A. Acín, “Almost quantum correlations,” Nat. Commun. 6(1), 6288 (2015). [CrossRef]  

53. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum Metrology,” Phys. Rev. Lett. 96(1), 010401 (2006). [CrossRef]  

54. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91(1), 015006 (2019). [CrossRef]  

55. J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, “Dynamical Casimir effect in a superconducting coplanar waveguide,” Phys. Rev. Lett. 103(14), 147003 (2009). [CrossRef]  

56. J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, “Dynamical Casimir effect in superconducting microwave circuits,” Phys. Rev. A 82(5), 052509 (2010). [CrossRef]  

57. C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479(7373), 376–379 (2011). [CrossRef]  

58. P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori, “Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits,” Rev. Mod. Phys. 84(1), 1–24 (2012). [CrossRef]  

59. J. R. Johansson, G. Johansson, C. M. Wilson, P. Delsing, and F. Nori, “Nonclassical microwave radiation from the dynamical Casimir effect,” Phys. Rev. A 87(4), 043804 (2013). [CrossRef]  

60. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21(23), 1936 (1996). [CrossRef]  

61. A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly Interacting Photons in a Nonlinear Cavity,” Phys. Rev. Lett. 79(8), 1467–1470 (1997). [CrossRef]  

62. S. E. Harris and Y. Yamamoto, “Photon Switching by Quantum Interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998). [CrossRef]  

63. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005). [CrossRef]  

64. S. Xu and S. H. Fan, “Fano interference in two-photon transport,” Phys. Rev. A 94(4), 043826 (2016). [CrossRef]  

65. D. Roy, “Two-Photon Scattering by a Driven Three-Level Emitter in a One-Dimensional Waveguide and Electromagnetically Induced Transparency,” Phys. Rev. Lett. 106(5), 053601 (2011). [CrossRef]  

66. H. X. Zheng, D. J. Gauthier, and H. U. Baranger, “Strongly correlated photons generated by coupling a three- or four-level system to a waveguide,” Phys. Rev. A 85(4), 043832 (2012). [CrossRef]  

67. T. Y. Li, J. F. Huang, and C. K. Law, “Scattering of two distinguishable photons by a ≡-type three-level atom in a one-dimensional waveguide,” Phys. Rev. A 91(4), 043834 (2015). [CrossRef]  

68. C. Muller, J. Combes, A. R. Hamann, A. Fedorov, and T. M. Stace, “Nonreciprocal atomic scattering: A saturable, quantum Yagi-Uda antenna,” Phys. Rev. A 96(5), 053817 (2017). [CrossRef]  

69. E. Rephaeli, S. E. Kocabas, and S. H. Fan, “Few-photon transport in a waveguide coupled to a pair of colocated two-level atoms,” Phys. Rev. A 84(6), 063832 (2011). [CrossRef]  

70. D. Roy, “Two-photon scattering of a tightly focused weak light beam from a small atomic ensemble: An optical probe to detect atomic level structures,” Phys. Rev. A 87(6), 063819 (2013). [CrossRef]  

71. D. Roy, “Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters,” Sci. Rep. 3(1), 2337 (2013). [CrossRef]  

72. X. W. Xu and Y. Li, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a weakly nonlinear cavity,” Phys. Rev. A 90(3), 033832 (2014). [CrossRef]  

73. J. Q. Liao and C. K. Law, “Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity,” Phys. Rev. A 82(5), 053836 (2010). [CrossRef]  

74. J. L. Tan, X. W. Xu, J. Lu, and L. Zhou, “Few-photon optical diode in a chiral waveguide,” Opt. Express 30(16), 28696 (2022). [CrossRef]  

75. Z. R. Gong, H. Ian, Y. X. Liu, C. P. Sun, and F. Nori, “Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system,” Phys. Rev. A 80(6), 065801 (2009). [CrossRef]  

76. X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, “Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,” Sci. Rep. 3(1), 2943 (2013). [CrossRef]  

77. C. G. Ballestero, E. Moreno, F. J. G. Vidal, and A. G. Tudela, “Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings,” Phys. Rev. A 94(6), 063817 (2016). [CrossRef]  

78. Y. Yang, J. Lu, and L. Zhou, “Few-photon routing via chiral light-matter couplings,” Commun. Theor. Phys. 74(2), 025101 (2022). [CrossRef]  

79. L. Wang, Z. Yi, L. H. Sun, and W. J. Gu, “Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system,” Chin. Phys. B 31(5), 054206 (2022). [CrossRef]  

80. T. Li, A. Miranowicz, X. D. Hu, K. Y. Xia, and F. Nori, “Quantum memory and gates using a -type quantum emitter coupled to a chiral waveguide,” Phys. Rev. A 97(6), 062318 (2018). [CrossRef]  

81. S. Sun, H. Kim, Z. Luo, G. S. Solomon, and E. Waks, “A single-photon switch and transistor enabled by a solid-state quantum memory,” Science 361(6397), 57–60 (2018). [CrossRef]  

82. M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, “Quantum-Dot Spin-State Preparation with Near-Unity Fidelity,” Science 312(5773), 551–553 (2006). [CrossRef]  

83. X. Xu, Y. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast Spin State Initialization in a Singly Charged InAs-GaAs Quantum Dot by Optical Cooling,” Phys. Rev. Lett. 99(9), 097401 (2007). [CrossRef]  

84. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4(9), 692–695 (2008). [CrossRef]  

85. P. M. Vora, A. S. Bracker, S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, L. Yang, P. G. Brereton, S. E. Economou, and D. Gammon, “Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity,” Nat. Commun. 6(1), 7665 (2015). [CrossRef]  

86. C. K. Yong, J. Horng, Y. Shen, H. Cai, A. Wang, C. S. Yang, C. K. Lin, S. Zhao, K. Watanabe, T. Taniguchi, S. Tongay, and F. Wang, “Biexcitonic optical Stark effects in monolayer molybdenum diselenide,” Nat. Phys. 14(11), 1092–1096 (2018). [CrossRef]  

87. Z. Ye, D. Sun, and T. F. Heinz, “Optical manipulation of valley pseudospin,” Nat. Phys. 13(1), 26–29 (2017). [CrossRef]  

88. D. Giovanni, W. K. Chong, H. A. Dewi, K. Thirumal, I. Neogi, R. Ramesh, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites,” Sci. Adv. 2(6), e1600477 (2016). [CrossRef]  

89. K. Xia and J. Twamley, “All-Optical Switching and Router via the Direct Quantum Control of Coupling between Cavity Modes,” Phys. Rev. X 3(3), 031013 (2013). [CrossRef]  

90. K. Xia, G. K. Brennen, D. Ellinas, and J. Twamley, “Deterministic generation of an on-demand Fock state,” Opt. Express 20(24), 27198 (2012). [CrossRef]  

91. L. Zhou, S. Yang, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum Zeno switch for single-photon coherent transport,” Phys. Rev. A 80(6), 062109 (2009). [CrossRef]  

92. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007). [CrossRef]  

93. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008). [CrossRef]  

94. L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78(6), 063827 (2008). [CrossRef]  

95. J. T. Shen and S. H. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79(2), 023837 (2009). [CrossRef]  

96. P. Facchi, M. S. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94(4), 043839 (2016). [CrossRef]  

97. J. F. M. Werra, P. Longo, and K. Busch, “Spectra of coherent resonant light pulses interacting with a two-level atom in a waveguide,” Phys. Rev. A 87(6), 063821 (2013). [CrossRef]  

98. X. F. Zang, T. Zhou, B. Cai, and Y. M. Zhu, “Controlling single-photon transport properties in a waveguide coupled with two separated atoms,” J. Phys. B: At., Mol. Opt. Phys. 46(14), 145504 (2013). [CrossRef]  

99. P. Facchi, S. Pascazio, F. V. Pepe, and D. Pomarico, “Correlated photon emission by two excited atoms in a waveguide,” Phys. Rev. A 98(6), 063823 (2018). [CrossRef]  

100. P. Domokos, P. Horak, and H. Ritsch, “Quantum description of light-pulse scattering on a single atom in waveguides,” Phys. Rev. A 65(3), 033832 (2002). [CrossRef]  

101. K. Y. Bliokh and F. Nori, “Transverse spin and surface waves in acoustic metamaterials,” Phys. Rev. B 99(2), 020301 (2019). [CrossRef]  

102. D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-Optical Switch Controlled by a Single Atom,” Phys. Rev. Lett. 111(19), 193601 (2013). [CrossRef]  

103. C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong Coupling between Single Atoms and Nontransversal Photons,” Phys. Rev. Lett. 110(21), 213604 (2013). [CrossRef]  

104. K. Y. Xia, G. W. Lu, G. W. Lin, Y. Q. Cheng, Y. P. Niu, S. Q. Gong, and J. Twamley, “Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling,” Phys. Rev. A 90(4), 043802 (2014). [CrossRef]  

105. L. Tang, J. S Tang, W. D Zhang, G. W. Lu, H. Zhang, Y. Zhang, K. Y. Xia, and M. Xiao, “On-chip chiral single-photon interface: Isolation and unidirectional emission,” Phys. Rev. A 99(4), 043833 (2019). [CrossRef]  

106. J. T. Shen and S. H. Fan, “Strongly Correlated Two-Photon Transport in a One-Dimensional Waveguide Coupled to a Two-Level System,” Phys. Rev. Lett. 98(15), 153003 (2007). [CrossRef]  

107. J. T. Shen and S. H. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76(6), 062709 (2007). [CrossRef]  

108. H. X. Zheng, D. J. Gauthier, and H. U. Baranger, “Cavity-Free Photon Blockade Induced by Many-Body Bound States,” Phys. Rev. Lett. 107(22), 223601 (2011). [CrossRef]  

109. J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom,” Phys. Rev. A 79(2), 023838 (2009). [CrossRef]  

110. J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30(15), 2001 (2005). [CrossRef]  

111. G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, “Perfect Reflection of Light by an Oscillating Dipole,” Phys. Rev. Lett. 101(18), 180404 (2008). [CrossRef]  

112. D. Witthaut and A. S. Sørensen, “Photon scattering by a three-level emitter in a one dimensional waveguide,” New J. Phys. 12(4), 043052 (2010). [CrossRef]  

113. D. Pinotsi and A. Imamoglu, “Single Photon Absorption by a Single Quantum Emitter,” Phys. Rev. Lett. 100(9), 093603 (2008). [CrossRef]  

114. Y. Shen, M. Bradford, and J. T. Shen, “Single-Photon Diode by Exploiting the Photon Polarization in a Waveguide,” Phys. Rev. Lett. 107(17), 173902 (2011). [CrossRef]  

115. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of Conditional Phase Shifts for Quantum Logic,” Phys. Rev. Lett. 75(25), 4710–4713 (1995). [CrossRef]  

116. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010). [CrossRef]  

117. Y. Zhou, S. L. Ma, B. Li, X. X. Li, F. L. Li, and P. B. Li, “Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system,” Phys. Rev. A 96(6), 062333 (2017). [CrossRef]  

118. Y. Zhou, B. Li, X. X. Li, F. L. Li, and P. B. Li, “Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions,” Phys. Rev. A 98(5), 052346 (2018). [CrossRef]  

119. L. Li and J. Sun, “Theoretical investigation of phase-based all-optical logic gates based on AlGaAs microring resonators,” J. Mod. Opt. 59(13), 1149–1153 (2012). [CrossRef]  

120. T. Sato and A. Enokihara, “Ultrasmall design of a universal linear circuit based on microring resonators,” Opt. Express 27(23), 33005 (2019). [CrossRef]  

121. J. Y. Li, B. X. Tan, M. Tian, and A. W. Poon, “Heterogeneously integrated III–V-on-Si microring resonators: a building block for programmable photonic integrated circuits,” J. Opt. Microsyst. 1(03), 034002-1 (2021). [CrossRef]  

122. Y. W. Jing, “Quantum spinning photonic circulator,” Sci. Rep. 12(1), 5844 (2022). [CrossRef]  

123. Q. F. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924 (2007). [CrossRef]  

124. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553 (2007). [CrossRef]  

125. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-µm radius,” Opt. Express 16(6), 4309 (2008). [CrossRef]  

126. D. G. Rabus and C. Sada, Integrated Ring Resonators: The Compendium, (Springer, Berlin, 2007)

127. X. B. Zhang, D. X. Huang, and X. L Zhang, “Transmission characteristics of dual microring resonators coupled via 3×3 couplers,” Opt. Express 15(21), 13557 (2007). [CrossRef]  

128. A. C. Mahoney, J. I. Colless, S. J. Pauka, J. M. Hornibrook, J. D. Watson, G. C. Gardner, M. J. Manfra, A. C. Doherty, and D. J. Reilly, “On-Chip Microwave Quantum Hall Circulator,” Phys. Rev. X 7(1), 011007 (2017). [CrossRef]  

129. J. C. Williams, H. Chandrahalim, J. S. Suelzer, and N. G. Usechak, “Multiphoton Nanosculpting of Optical Resonant and Nonresonant Microsensors on Fiber Tips,” ACS Appl. Mater. Interfaces 14(17), 19988–19999 (2022). [CrossRef]  

130. R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016). [CrossRef]  

131. F. Lecocq, F. Quinlan, K. Cicak, J. Aumentado, S. A. Diddams, and J. D. Teufel, “Control and readout of a superconducting qubit using a photonic link,” Nature 591(7851), 575–579 (2021). [CrossRef]  

132. B. Hacker, S. Welte, G. Rempe, and S. Ritter, “A photon–photon quantum gate based on a single atom in an optical resonator,” Nature 536(7615), 193–196 (2016). [CrossRef]  

133. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997). [CrossRef]  

134. F. Kaneda, F. H. Xu, J. Chapman, and P. G. Kwiat, “Quantum-memory-assisted multi-photon generation for efficient quantum information processing,” Optica 4(9), 1034 (2017). [CrossRef]  

135. J. W. Smith, J. C. Williams, J. S. Suelzer, N. G. Usechak, and H. Chandrahalim, “Three-dimensional Fabry–Pérot cavities sculpted on fiber tips using a multiphoton polymerization process,” J. Micromech. Microeng. 30(12), 125007 (2020). [CrossRef]  

136. D. Vega, D. Galvez, Z. Adams, S. P. Santaniello, N. Y. Pham, K. Kiekens, R. Cordova, J. Montague, and J. K. Barton, “A co-registered multimodal imaging system for reflectance, multiphoton, and optical coherence microscopy,” Proc. SPIE 11634, 116340Q (2021). [CrossRef]  

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The system is schematically represented by a microring resonator filled with Kerr-type nonlinear medium, which couples to a nearby waveguide, with either a single negatively charged QE in (a) or two negatively charged QEs in (b). When photons are incident from port 1 (or port 2), they are scattered by the nonlinear resonator and QEs, which results in reflection or transmission of the photons in the waveguide.
Fig. 2.
Fig. 2. The transmittance (blue solid) and reflectance (red dotted) as a function of $\Delta _k$. (a,b),(c,d),(e,f) are shown for $D= 0, -0.5, -1$, respectively. (b),(d),(f) are the zoom in of (a),(c),(e), respectively. Other parameter is set as $g=0.1$, all parameters are in units of $\beta$.
Fig. 3.
Fig. 3. The isolation contrast $\eta$ as a function of $D$, for $g=0.1$, $\Delta _k=0.1$, all parameters are in units of $\beta$.
Fig. 4.
Fig. 4. (a), (c), (e) are plots of $|\phi r^{rr}_{kk^{'}}|^2$ , $|\phi l^{ll}_{kk^{'}}|^2$ and $|\phi r^{ll}_{kk^{'}}|^2$ of the two transmitted photons as functions of $\Delta _k$, $\Delta _k^{'}$, when $\delta =0$. (b), (d), (f) are plots of $|\phi r^{rr}_{kk^{'}}|^2$ , $|\phi l^{ll}_{kk^{'}}|^2$ and $|\phi r^{ll}_{kk^{'}}|^2$ of the two transmitted photons as functions of $\Delta _k$, $\Delta _k^{'}$, when $\delta =5$. Other parameters are set as $g=0.1$, $D=-0.1$, $U=10$ and $\epsilon =0.1$, all parameters are in units of $\beta$.
Fig. 5.
Fig. 5. (a) The two photon isolation contrast $\eta ^2$ as a function of $\Delta _\mu$, for $\delta =5$, $g=0.1$, $D=-1$, $U=10$ and $\epsilon =0.1$, (b) is the zoom in of (a), all parameters are in units of $\beta$.
Fig. 6.
Fig. 6. (a) The norm square of the amplitude of $\phi r^{rr}_{kk^{'}}$ as a function of $\delta$ for $U=10$. (b) The norm square of the amplitude of $\phi r^{rr}_{kk^{'}}$ as a function of $U$ for $\delta =5$. Other parameter are set as $(\Delta _k , \Delta _{k^{'}})=(10,0)$ or $(0,10)$, $g = 0.1$, $D=-1$ and $\epsilon =0.1$, all parameters are in units of $\beta$.
Fig. 7.
Fig. 7. The norm square of the amplitudes of $\phi r^{rr}_{kk^{'}}$ and $\phi l^{ll}_{kk^{'}}$ as functions of $D$ for (a) $\Delta _k=\Delta _{k^{'}}=\delta =0$, (b) $(\Delta _k , \Delta _{k^{'}})=(10,0)$ or $(0,10),\delta =5$. The norm square of the NP part and IP part as functions of $D$ for (c) $\Delta _k=\Delta _{k^{'}}=\delta =0$, (d) $(\Delta _k , \Delta _{k^{'}})=(10,0)$ or $(0,10),\delta =5$. Other parameter are set as $g = 0.1, U=10$ and $\epsilon =0.1$, all parameters are in units of $\beta$.
Fig. 8.
Fig. 8. The polarization dependent transition (a) and the energy level (b) for NV center.

Equations (52)

Equations on this page are rendered with MathJax. Learn more.

| g | = 1 D 2 g , | g | = 1 + D 2 g .
H = U 2 a a a a + 0 d k ω k ( r k r k + l k l k ) + V 0 d k [ ( r k + l k ) a + a ( r k + l k ) ] + g a S + g S + a + w c a a + w q a e a e .
H = U 2 a a a a + 0 d k Δ k ( r k r k + l k l k ) + V 0 d k [ ( r k + l k ) a + a ( r k + l k ) ] + g a S + g S + a + Δ q a e a e ,
H a = U 2 a a a a + 0 d k Δ k [ b k b k + ( b k ) b k ] + V ¯ 0 d k ( b k a + a b k ) + g a S + g S + a + Δ q a e a e .
H b = U 2 a a a a + 0 d k Δ k [ b k b k + ( b k ) b k ] + V ¯ 0 d k ( b k a + a b k ) + g a ( S 1 + S 2 ) + g ( S 1 + + S 2 + ) a + Δ q ( a 1 e a 1 e + a 2 e a 2 e ) .
| ψ ( t ) = 0 d k ϕ k ( t ) b k | + [ e c ( t ) a + e q ( t ) a e a g ] | .
i ϕ ˙ k ( t ) = Δ k ϕ k ( t ) + V ¯ e c ( t ) ,
i e ˙ c ( t ) = V ¯ 0 d k ϕ k ( t ) + g e q ( t ) ,
i e ˙ q ( t ) = Δ q e q ( t ) + g e c ( t ) .
( s + i Δ k ) ϕ ~ k ( s ) = ϕ k ( 0 ) i V ¯ e ~ c ( s ) ,
s e ~ c ( s ) = e c ( 0 ) i V ¯ 0 d k ϕ ~ k ( s ) i g e ~ q ( s ) ,
( s + i Δ q ) e ~ q ( s ) = e q ( 0 ) i g e ~ c ( s ) .
ϕ k ( 0 ) = ϵ / π Δ k δ + i ϵ , e c ( 0 ) = e q ( 0 ) = 0 ,
ϕ ~ k ( s ) = ϵ / π s + i Δ k ( 1 Δ k δ + i ϵ + 1 s + α 4 α δ i ( s + ϵ ) ) ,
e ~ c ( s ) = 1 V ¯ ( s + α ) 4 i α ϵ / π δ i ( s + ϵ ) ,
e ~ q ( s ) = g V ¯ ( s + α ) 4 i α ϵ / π δ i ( s + ϵ ) 1 ( s + i Δ q ) ,
e c ( t ) = e q ( t ) = 0 , ϕ k ( t ) = t ¯ k ϕ k ( 0 ) e i Δ k t .
t ¯ k = Δ k i β g 2 Δ k Δ k + i β g 2 Δ k , β = π V ¯ 2 .
| ψ ( 0 ) = 0 d k ϕ k ( 0 ) r k | .
t k = Δ k ( | g | 2 | g | 2 ) Δ k Δ k + i β g 2 Δ k = Δ k D g 2 Δ k Δ k + i β g 2 Δ k , r k ( i β + 2 | g | | g | Δ k ) Δ k + i β g 2 Δ k = ( i β + 1 D 2 g 2 Δ k ) Δ k + i β g 2 Δ k .
| ψ ( 0 ) = 0 d k ϕ k ( 0 ) l k | .
t k = Δ k + D g 2 Δ k Δ k + i β g 2 Δ k .
| Φ ( t ) = 0 d k d k ϕ k k ( t ) b k b k | + e c c ( t ) a a 2 | + e q q ( t ) a 1 e a 1 g a 2 e a 2 g | + [ 0 d k ϕ k c ( t ) b k a + e c q 1 ( t ) a a 1 e a 1 g + e c q 2 ( t ) a a 2 e a 2 g ] | .
i ϕ ˙ k k ( t ) = ( Δ k + Δ k ) ϕ k k ( t ) + V ¯ [ ϕ k c ( t ) + ϕ k c ( t ) ] ,
i e ˙ c c ( t ) = U e c c ( t ) + 2 V ¯ 0 d k ϕ k c ( t ) + 2 g [ e c q 1 ( t ) + e c q 2 ( t ) ] ,
i e ˙ q q ( t ) = 2 Δ q e q q ( t ) + g [ e c q 1 ( t ) + e c q 2 ( t ) ] ,
i ϕ ˙ k c ( t ) = Δ k ϕ k c ( t ) + 2 V ¯ e c c ( t ) + V ¯ 0 d k ϕ k k ( t ) ,
i e ˙ c q 1 ( t ) = Δ q e c q 1 ( t ) + 2 g e c c ( t ) + g e q q ( t ) ,
i e ˙ c q 2 ( t ) = Δ q e c q 2 ( t ) + 2 g e c c ( t ) + g e q q ( t ) .
e c c ( 0 ) = e q q ( 0 ) = ϕ k c ( 0 ) = e c q 1 ( 0 ) = e c q 2 ( 0 ) = 0 , ϕ k k ( 0 ) = B ( 1 Δ k δ 1 + i ϵ 1 1 Δ k δ 2 + i ϵ 2 + 1 Δ k δ 1 + i ϵ 1 1 Δ k δ 2 + i ϵ 2 ) ,
B = ϵ 1 ϵ 2 2 π 2 [ 1 + 4 ϵ 1 ϵ 2 ( δ 1 δ 2 ) 2 + ( ϵ 1 + ϵ 2 ) 2 ] 1 / 2 .
ϕ k k ( 0 ) = ϵ π 1 Δ k δ + i ϵ 1 Δ k δ + i ϵ .
ϕ k k ( t ) = [ t ¯ k t ¯ k ϕ k k ( 0 ) + C k k ] e i ( Δ k + Δ k ) t .
C k k = 8 i β ϵ π { β [ 1 2 U ( Δ k + Δ k ) 2 + g 2 ( U 2 Δ k 2 Δ k ) ] ( 2 δ + Δ k + Δ k + 2 i ϵ ) [ 1 2 ( Δ k + Δ k ) 2 ( U + 2 i β + Δ k + Δ k ) + g 2 ( U 2 i β 3 Δ k 3 Δ k ) ] × 1 ( β + i δ i Δ k i Δ k + ϵ ) g 2 ( Δ k + Δ k ) [ 4 g 2 + 4 β 2 + 4 Δ k Δ k ] [ 2 g 2 i β ( Δ k + Δ k ) 2 Δ k Δ k ] 2 } × 1 ( β i Δ k ) ( β i Δ k ) ( 2 δ + Δ k + Δ k + 2 i ϵ ) 2 .
| Φ ( 0 ) = 0 d Δ k 0 d Δ k ϕ k k ( 0 ) r k r k | .
| Φ ( t ) = 0 d Δ k 0 d Δ k ( ϕ r k k r r r k r k + ϕ r k k l l l k l k ) e i ( Δ k + Δ k ) t | + 0 d Δ k 0 d Δ k ( ϕ r k k r l r k l k + ϕ r k k l r l k r k ) e i ( Δ k + Δ k ) t | ,
ϕ r k k r r = t k t k ϕ k k ( 0 ) + ( 1 D ) 2 4 C k k , ϕ r k k l l = r k r k ϕ k k ( 0 ) + 1 D 2 4 C k k ,
ϕ r k k r l = t k r k ϕ k k ( 0 ) + ( 1 D ) 1 D 2 4 C k k , ϕ r k k l r = r k t k ϕ k k ( 0 ) + ( 1 D ) 1 D 2 4 C k k .
| Φ ( 0 ) = 0 d Δ k 0 d Δ k ϕ k k ( 0 ) l k l k | .
| Φ ( t ) = 0 d Δ k 0 d Δ k ( ϕ l k k r r r k r k + ϕ l k k l l l k l k ) e i ( Δ k + Δ k ) t | + 0 d Δ k 0 d Δ k ( ϕ l k k r l r k l k + ϕ l k k l r l k r k ) e i ( Δ k + Δ k ) t | .
ϕ l k k l l = t k t k ϕ k k ( 0 ) + ( 1 + D ) 2 4 C k k , ϕ l k k r r = r k r k ϕ k k ( 0 ) + 1 D 2 4 C k k ,
ϕ l k k r l = t k r k ϕ k k ( 0 ) + ( 1 + D ) 1 D 2 4 C k k , ϕ l k k l r = r k t k ϕ k k ( 0 ) + ( 1 + D ) 1 D 2 4 C k k .
N P = t k t k ϕ k k ( 0 ) ,   I P = ( 1 D ) 2 4 C k k .
[ s + i ( Δ k + Δ k ) ] ϕ ~ k k ( s ) = ϕ k k ( 0 ) i V ¯ [ ϕ ~ k c ( s ) + ϕ ~ k c ( s ) ,
( s + i U ) e ~ c c ( s ) = i 2 V ¯ 0 d k ϕ ~ k c ( s ) i 2 g [ e ~ c q 1 ( s ) + e ~ c q 2 ( s ) ] ,
( s + 2 i Δ q ) e ~ q q ( s ) = i g [ e ~ c q 1 ( s ) + e ~ c q 2 ( s ) ] ,
( s + i Δ k ) ϕ ~ k c ( s ) = i 2 V ¯ e ~ c c ( s ) i V ¯ 0 d k ϕ ~ k k ( s ) ,
( s + i Δ q ) e ~ c q 1 ( s ) = i 2 g e ~ c c ( s ) i g e ~ q q ( s ) ,
( s + i Δ q ) e ~ c q 2 ( s ) = i 2 g e ~ c c ( s ) i g e ~ q q ( s ) .
ϕ ~ k k ( s ) = ϵ / ( 2 π ) s + i ( Δ k + Δ k ) { 4 i β ( s + β + i Δ k ) ( δ + Δ k + i ϵ ) ( s + i δ + i Δ k + ϵ ) + 4 i β ( s + β + i Δ k ) ( δ + Δ k + i ϵ ) ( s + i δ + i Δ k + ϵ ) + 2 ( δ + Δ k + i ϵ ) ( δ + Δ k + i ϵ ) 8 β 2 [ 1 ( s + β + i Δ k ) ( s + i δ + i Δ k + ϵ ) + 1 ( s + β + i Δ k ) ( s + i δ + i Δ k + ϵ ) ] × 1 ( s + β + i δ + ϵ ) ( s + 2 i δ + 2 ϵ ) 16 β 2 ( 1 s + β + i Δ k + 1 s + β + i Δ k ) × 1 ( s + 4 g 2 s 2 g 2 + s 2 + i U + 2 β ) ( s + β + i δ + ϵ ) ( s + 2 i δ + 2 ϵ ) } .
ϕ k k ( t ) = [ t ¯ k t ¯ k ϕ k k ( 0 ) + C k k ] e i ( Δ k + Δ k ) t ,
C k k = 8 i β ϵ π { β [ 1 2 U ( Δ k + Δ k ) 2 + g 2 ( U 2 Δ k 2 Δ k ) ] ( 2 δ + Δ k + Δ k + 2 i ϵ ) [ 1 2 ( Δ k + Δ k ) 2 ( U + 2 i β + Δ k + Δ k ) + g 2 ( U 2 i β 3 Δ k 3 Δ k ) ] × 1 ( β + i δ i Δ k i Δ k + ϵ ) g 2 ( Δ k + Δ k ) [ 4 g 2 + 4 β 2 + 4 Δ k Δ k ] [ 2 g 2 i β ( Δ k + Δ k ) 2 Δ k Δ k ] 2 } × 1 ( β i Δ k ) ( β i Δ k ) ( 2 δ + Δ k + Δ k + 2 i ϵ ) 2 .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.