Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Conference on Lasers and Electro-Optics Europe
  • Technical Digest Series (Optica Publishing Group, 2000),
  • paper CFF2

Development of thermally fixed holograms in photorefractive lithium-niobate crystals without light

Open Access Open Access

Abstract

Holographic gratings are recorded at room temperature in photorefractive iron-doped congruently-melting lithium-niobate crystals (LiNbO3). Afterwards the diffraction efficiency of these gratings is measured from time to time to monitor the dark decay. Samples with different iron contents are investigated, and the Fe2+/Fe3+concentration ratio is varied. Time constants x of the decay range from minutes to years, and the dark conductivities σd= εε0/t are deduced, where ε = 28 is the dielectric constant. The major outcomes are: (1) There is a small, iron-independent background conductivity (τ = 1 year) which arises from mobile ions. (2) For Fe concentrations in excess of about 20×1018cm-3(0.05 wt. % Fe2O3): The dark conductivity is proportional to the effective trap density Neff =(1/CFe2++1/CFee3+)1 (see Fig. 1) and the normalized dark conductivity σd/Neffraises exponentially with (CFe)1/3.

© 2000 IEEE

PDF Article
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.