Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Approaching ultimate resolution for soft x-ray spectrometers

Not Accessible

Your library or personal account may give you access

Abstract

We explore the potential performance of soft x-ray spectrometers based on the use of varied-line-spacing spherical diffraction gratings (VLS-SG). The quantitative assessment is based on an optimization procedure to obtain both negligible optical aberrations at full illumination of the grating and a quasi linear focal curve. It involves high-order optical aberration cancellation to calculate the focal curves. We also examine the validity of small divergence closed-form formulas describing the light path function. Optimizing the optical and geometric parameters gives an ultimate resolving power, at 930 eV, of between 10 800 for a 3 m long instrument and 34 000 for an 11 m spectrometer according to the Rayleigh criterion. Typical fabrication tolerances would scale these values down by about 10%. The findings are validated by ray-tracing simulations.

©2012 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.