Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 68,
  • Issue 11,
  • pp. 1266-1273
  • (2014)

Laser-Induced Fluorescence Detection of Hot Molecular Oxygen in Flames Using an Alexandrite Laser

Not Accessible

Your library or personal account may give you access

Abstract

The use of an alexandrite laser for laser-induced fluorescence (LIF) spectroscopy and imaging of molecular oxygen in thermally excited vibrational states is demonstrated. The laser radiation after the third harmonic generation was used to excite the B-X (0-7) band at 257 nm in the Schumann-Runge system of oxygen. LIF emission was detected between 270 and 380 nm, revealing distinct bands of the transitions from B(0) to highly excited vibrational states in the electronic ground state, X (v > 7). At higher spectral resolution, these bands reveal the common P- and R-branch line splitting. Eventually, the proposed LIF approach was used for single-shot imaging of the two-dimensional distribution of hot oxygen molecules in flames.

PDF Article
More Like This
Laser-induced fluorescence spectroscopy and imaging of molecular oxygen in flames

J. E. M. Goldsmith and R. J. M. Anderson
Opt. Lett. 11(2) 67-69 (1986)

Two-dimensional imaging of molecular hydrogen in H2–air diffusion flames using two-photon laser-induced fluorescence

W. Lempert, G. Diskin, V. Kumar, I. Glesk, and R. Miles
Opt. Lett. 16(9) 660-662 (1991)

Laser-induced fluorescence of formaldehyde hot bands in flames

Robert J. H. Klein-Douwel, Jorge Luque, Jay B. Jeffries, Gregory P. Smith, and David R. Crosley
Appl. Opt. 39(21) 3712-3715 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.