Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 13,
  • pp. 4307-4317
  • (2021)

Eigenvalue-Domain Neural Network Demodulator for Eigenvalue-Modulated Signal

Open Access Open Access

Abstract

Optical eigenvalue communication is a promising technique for overcoming the Kerr nonlinear limit in optical communication systems. The optical eigenvalue associated with the nonlinear Schrödinger equation remains invariant during fiber-based nonlinear dispersive transmission. However, practical applications involving use of such systems are limited by the occurrence of fiber loss and amplified noise that induce eigenvalue distortion. Thus, several time-domain neural-network-based approaches have been proposed and demonstrated to enhance receiver sensitivity toward eigenvalue-modulated signals. However, despite the substantial improvement in power margin realized using time-domain neural-network-based demodulators compared to their conventional counterparts, these devices require rigorous training for each transmission distance owing to changes in time-domain pulses during transmission. This paper presents a method for demodulation of eigenvalue-modulated signals using an eigenvalue-domain neural network and demonstrates its utility through simulation and experimental results. Simulation results obtained in this study reveal that the proposed demodulator demonstrates superior generalization performance compared to its time-domain counterpart with regard to the transmission distance. Moreover, experimental results demonstrate successful demodulation over distances from zero to 3000 km without training for each distance.

PDF Article
More Like This
Robust neural network receiver for multiple-eigenvalue modulated nonlinear frequency division multiplexing system

Yue Wu, Lixia Xi, Xulun Zhang, Zibo Zheng, Jiacheng Wei, Shucheng Du, Wenbo Zhang, and Xiaoguang Zhang
Opt. Express 28(12) 18304-18316 (2020)

Convolutional neural network-based signal demodulation method for NOMA-PON

Bangjiang Lin, Hui Yang, Rui Wang, Zabih Ghassemlooy, and Xuan Tang
Opt. Express 28(10) 14357-14365 (2020)

Dilated convolutional neural networks for fiber Bragg grating signal demodulation

Baocheng Li, Zhi-Wei Tan, Perry Ping Shum, Chenlu Wang, Yu Zheng, and Liang jie Wong
Opt. Express 29(5) 7110-7123 (2021)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.