Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wavelength conversion bandwidth in fiber based optical parametric amplifiers

Open Access Open Access

Abstract

We propose a systematic approach to evaluating and optimising the wavelength conversion bandwidth and gain ripple of four-wave mixing based fiber optical wavelength converters. Truly tunable wavelength conversion in these devices requires a highly tunable pump. For a given fiber dispersion slope, we find an optimum dispersion curvature that maximises the wavelength conversion bandwidth.

©2003 Optical Society of America

1. Introduction

Future optical networks are likely to operate at data rates in excess of 100 Gb/s. Wavelength conversion will be essential for optical routing [1] and will provide a means to prevent blocking [2] in these networks. Traditionally this involves an intermediate electronic step, however present progress suggests that electronics technology will not be feasible for such speeds.

All-optical signal processing is a promising means to overcome the speed limitations imposed by electronics. The large optical nonlinearities in semiconductor optical amplifiers make them attractive for use in all-optical wavelength converters. However, semiconductor devices have a significant noise figure and require complex configurations [3] to achieve the sub-picosecond response times necessary for operation above 100 Gb/s. Fiber-based nonlinear wavelength converters can operate at much higher bit-rates, because their operation is based on non-resonant glass nonlinearities that have response times well below 1 ps [4].

A major advantage of parametric wavelength converters (PWCs) over other all-optical, fiber-based technologies is that for the ideal case of a truly continuous-wave pump, their operation is independent of the data modulation format and bit rate. This independence arises because the parametric conversion process transfers both the amplitude and phase information of the original signal to the converted wave [5]. In contrast, other all-optical techniques rely on intensity modulation schemes to transfer information to copropagating waves. This makes parametric wavelength conversion more broadly applicable and allows for easier upgrades of transmission equipment than if other fiber-based techniques were used. Additionally, fiber-based PWCs can be polarisation independent [6] and provide broadband conversion [7, 8]. Fiber wavelength converters can also be constructed with low noise-figures [9].

A WDM router must be able to convert the data carried by one wavelength within a band, to any other wavelength within that same band. Conversion from a fixed signal wavelength λs, to any converted wavelength λc, within a wavelength range Δλ, can be represented by a vertical line of length Δλ on Fig. 1(a), which is a plot of λc against λs. A horizontal line on this diagram represents conversion to a fixed λc from any λs. Therefore conversion from any λs to any λc within that range is contained within a solid square with side length Δλ. Because here we are only concerned with conversion within the same band, this square must lie symmetrically about the line λcs, as shown in Fig. 1(c). Furthermore, the conversion efficiency from λs to λc should ideally be constant, that is independent of both λs and λc.

 figure: Fig. 1.

Fig. 1. Schematic of the operation of an ideal wavelength converter. a) Conversion from a fixed λs to an arbitrary λc, within a range Δλ. b) Conversion from a fixed λc to an arbitrary λs, within a range Δλ. c) Boundary for the region representing conversion from an arbitrary λs to an arbitrary λc, both within the same range Δλ.

Download Full Size | PDF

In a fiber parametric amplifier, a signal and strong pump are launched simultaneously. Power is transferred from the pump to the signal wavelength, resulting in signal gain [10]. A new converted wave is also generated at λc=1/(2/λp-1/λs), where λp is the pump wavelength. Therefore a tunable λc is obtained by moving λp. Different design considerations apply to fiber parametric amplifiers depending on whether their final application is as wavelength converters (possibly with gain) or as broadband amplifiers. PWCs require a tunable λc, and so need a tunable λp, whereas parametric amplifiers designed solely for amplification [11] are optimised for gain bandwidth and flatness at a single pump wavelength only.

Work using novel fiber designs [7, 8] has demonstrated PWCs with wide tunability. Contour plots of wavelength converter gain surfaces in (λsc) space have appeared previously [7], but have not, to our knowledge, been used to design devices. Our work maps the response of a fiber PWC on to (λsc) space and systematically investigates methods to maximise the size of the square by tailoring device parameters.

Two spectra for a typical [11] fiber parametric amplifier are shown in Fig. 2(a), with parameters as shown in Table 1. Figure 2(b) shows the ideal profiles that would be required to generate Fig. 1(c). Comparing the shapes in Figs. 2(a) and 2(b), it is evident that typical OPAs used for wavelength conversion (Fig. 2(a)) do not have perfectly flat profiles. The gain ripple in Fig. 2(a) must be quantified so that it can be minimised by design. If the dotted line in Fig. 2(a) is the minimum acceptable gain, G thresh, and the local maxima are denoted G max, then the gain ripple is given by R=G max/G thresh.

 figure: Fig. 2.

Fig. 2. a) Theoretical gain spectra for a typical parametric amplifier at two different pump wavelengths. b) Ideal wavelength conversion spectra for two different pump wavelengths. Pump wavelengths are 1553 nm (black) and 1558 nm (red). G thresh (dotted) was chosen to be the gain at λsp. Other parameters are in Table 1.

Download Full Size | PDF

Tables Icon

Table 1. Table of parameters used in calculations [11]. λ0 is the dispersion zero wavelength of the fiber, γ is the fiber nonlinearity, L the fiber length, Pp the pump power, and β3 and β4 are the third and fourth order dispersion parameters at λ0.

The intersections of the gain profiles with the minimum acceptable gain can be plotted as a function of (λsp). This plot would show the boundaries of the regions for which the converter gain is above G thresh. The plot is then made compatible with Fig. 1(c) by converting the λp axis to λc using λc=1/(2/λp-1/λs), as has been done for Fig. 3. Therefore Fig. 3 shows that a PWC is far from an ideal device because it does not map to a square that is similar to Fig. 1(c). However, by fitting the largest possible square within the solid lines on this figure, one defines a region in which the PWC operates close to an ideal device. This square is a contour enclosing the combinations of λs and λc for which the power of λc is above G thresh. The bandwidth of the PWC is then given by the side length of this inscribed square.

2. Theory

Four-wave mixing in fiber parametric amplifiers, which makes use of the cubic nonlinearity in glass, requires a strong pump of frequency ωp and power Pp . The four-wave mixing process then generates two photons of frequencies ωs and ωc that are symmetric around ωp, from the annihilation of two photons at ωp. Thus

2ωp=ωs+ωc,

that is, energy is conserved. This process requires phase matching, and its efficiency depends on the wavenumber mismatch, Δβ, defined by

Δβ=2βpβsβc.
 figure: Fig. 3.

Fig. 3. Black contours show the intersection of gain curves for a PWC with G thresh=G 0. Fiber parameters are shown in Table 1. A square of maximum area (green) has been fitted and indicates the useful device wavelength coverage for a fixed band.

Download Full Size | PDF

In a wavelength converter based on four-wave mixing, the process is seeded with a signal of frequency ωs (wavelength λs), so the frequency of the converted wave ωc (wavelength λc) is then determined by pump frequency from Eq. (1). Thus ωc can be chosen from a range Δω by varying the pump frequency ωp over a range Δω/2. The gain, G, of this process is given by

G=(γPPgsinh(gL))2,

where γ is the nonlinear parameter of the fiber [10], L is the fiber length, and the parametric gain, g, is given by

g2=14[Δβ(4γPPΔβ)].

Note that g is maximum when Δβ=2γPp , and the corresponding value fo G. and the The maximum value of g occurs when Δβ=2γPp and the corresponding G is the maximum gain for a parametric amplifier. We choose this maximum gain to be the G max for PWCs, so therefore

Gmax=sinh2(γPPL).

We also note that for Δβ=0, which is true when λcsp, the gain equals

G0=(γPPL)2.

Over the operating frequency range of these devices, G max and G 0 can be considered constant because Eqs. (5) and (6) both depend on the fiber only through γ, which is slowly varying with ω. In fact, as is customary in this field of research, γ is assumed constant over the limited wavelength ranges that we are considering (see Table 1). This is consistent with Fig. 2(a), which shows that, for our parameters, the gain in the central minimum (at Δβ=0) and the maximum gain do not depend on λp.

Here we consider a fiber in which the quadratic dispersion (β2) vanishes at frequency ω0 and with cubic (β3) and quartic (β4) dispersions defined at ω0. Ignoring higher-order dispersion, Δβ can be rewritten as

Δβ=(β3(ωpω0)+β42[(ωpω0)2+16(ωpωs)2])(ωpωs)2.

Contours like that in Fig. 3 can be found by inverting Eqs. (3) and (4) to find Δβ, which in general leads to two solutions indicated Δβ (G thresh)±. An analytic solution to these equations is possible with careful selection of G thresh. For G 0<G thresh<G max, the gain G 0 at λcs is, by assumption, below the minimum acceptable gain and so the requirements described by Fig. 1(c) cannot be met. In contrast, for G threshG 0, the requirements of Fig. 1(c) can always be satisfied. We choose G thresh=G 0 because this leads to the smallest ripple,

R=GmaxG0=(sinh(γPPL)γPPL)2.

For G thresh=G 0, Eq. (3) gives an analytic solution for g and Eq. (7) is then used to give analytic expressions for the contours. When β4≠0, the contours are:

ωS=ωp±12Φβ4,ωs=ωpand
ωs=ωp±6Φ±Φ2(163)β4γPpβ4,

where Φ=(β4/2)(ωp0)23p0). The ± sign inside the square-root in Eq. (9) is independent of the one outside it. Applying Eq. (1) then gives the equivalent expression for ωc. Note that if β3=0 or β4=0, then the last of Eqs. (9) simplifies considerably. We have also found similar equations for the case β4=0.

3. Results

Two adjacent sides of the largest square, that fits within the contour described by Eqs. (9), are tangents to the turning points of Eqs. (9) closest to λs0. These lines intersect with each other and with the original curve. The other two sides can then be found geometrically. We find that when β3=0,

Δω=2(48γPpβ4)14,andwhenβ4=0,Δω=2(4γPpβ3)13.

For non-zero β3 and β4, however, the critical points and intersections used to find the bandwidth have to be found numerically from Eq. (9).

For a given bandwidth, the value of G 0, G max or R can be freely chosen. The remaining device parameters are then completely defined by Eqs. (8) and the appropriate solutions to Eq. (10). Equation (10) shows that doubling the bandwidth requires an eight (β4=0) or sixteenfold (β3=0) increase in the γPp to dispersion-parameter ratio, making it difficult to increase the bandwidth.We have found a novel way to contribute to a further increase in this bandwidth.

The animation in Fig. 4(a) shows the effect of changing β4 on the G=G 0 contour, and therefore the bandwidth, of a PWC. β4opt is the value of β4 that maximises the conversion bandwidth for a fiber with a β3 given in Table 1 and the corresponding maximum bandwidth square is shown in red. The blue square in Fig. 4(a) is the bandwidth for β4=0. The black bandwidth contours fall inside this blue square when β4<0. Therefore only values of β4>0 contribute to an increase in the conversion bandwidth.

Numerical investigations of Eq. (9) reveal a β4opt for each β3. Figure 4(b) shows these β4opt and their corresponding maximum bandwidths. For typical β3, the values of β4opt are close to two orders of magnitude larger than those reported in highly nonlinear fiber [8]. The bandwidth with β4=β4opt was consistently found to be 1.4 times greater than when β4=0, in the wavelength range investigated. The red dashed line on Fig. 4 shows the effect on conversion bandwidth when β4 is perturbed by 10% from β4opt. Such variations from β4opt cause a mean reduction in bandwidth of approximately 8%. The PWCs discussed here operate in the anomalous dispersion regime, bounded on one side by the zero dispersion wavelength (see, e.g., Fig. 4(a)). Therefore to get the most use out of these devices, the fiber zero dispersion wavelength should be located at the normal corner of the desired operating range.

 figure: Fig. 4.

Fig. 4. a) Animation showing how G=G 0 contours (black) change with decreasing β4 and corresponding device bandwidth (green). The red square is the maximum bandwidth, for β4=β4opt≈4.11×10-54s4m-1. The blue square represents the bandwidth when β4=0. b) Plot of β4opt (black) and corresponding bandwidth maxima (red) for fibers with different β3 values. The dashed red line shows the worst effect of a 10% perturbation from β4opt. γ, Pp and L are as in Table 1. [Media 1]

Download Full Size | PDF

4. Discussion and conclusions

This work has investigated ways to increase wavelength conversion bandwidth, while minimising the gain ripple in fiber PWCs. The bandwidths in Eq. (10) increase with increasing γPp and decrease with increasing dispersion. However, the bandwidth only grows sub-linearly with these parameters. We have also found this to be true in the general case β3≠0 and β4≠0. However, optimisation of fiber dispersion parameters can provide a significant further increase in gain bandwidth. Within the square defining the region of operation, and for the particular choice of G thresh=G 0, Eq. (8) shows that the gain ripple of these devices depends on γPpL. This allows independent selection of ripple and bandwidth because for a given piece of fiber, the bandwidth is selected by choosing Pp and the ripple is fixed by the device length. For other choices of G thresh, this may not be the case.

Acknowledgements

Justin Blows and Ross McKerracher acknowledge the support of the Australian Photonics Co-operative Research Centre.

References and links

1. T. Yamamoto, T. Imai, Y. Miyajima, and M. Nakazawa, “High speed optical path routing by using four-wave mixing and a wavelength router with fiber gratings and optical circulators,” Opt. Commun. 120, 245–248 (1995). [CrossRef]  

2. N. Antoniades, S. J. B. Yoo, K. Bala, G. Ellinas, and T. E. Stern, “An architecture for a wavelength-interchanging cross-connect utilizing parametric wavelength converters,” IEEE J. Lightwave Tech. 17, 1113–1125 (1999). [CrossRef]  

3. S. Nakamura, Y. Ueno, and K. Tajima, “168-Gb/s All-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch,” IEEE Photonics Tech. Lett. 13, 1091–1093 (2001). [CrossRef]  

4. S. Spälter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.-W. Cheong, and R. E. Slusher, “Strong self-phase modulation in planar chalcogenide glass waveguides,” Opt. Lett. 27, 363–365 (2002). [CrossRef]  

5. N. Chi, L. Xu, L. Christiansen, K. Yvind, J. Zhang, P. Holm-Nielsen, C. Peucheret, C. Zhang, and P. Jeppesen, “Optical label swapping and packet transmission based on ASK/DPSK orthogonal modulation format in IP-over-WDM networks,” in Proceedings of OFC 2003, Paper FS2 (2003), pp. 792–794.

6. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent one-pump fiber-optical parametric amplifier,” IEEE Photonics Tech. Lett. 14, 1506–1508 (2002). [CrossRef]  

7. M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, “Transparent wavelength conversion in fibre with 24nm pump tuning range,” Electron. Lett. 38, 85–86 (2002). [CrossRef]  

8. J. Hiroishi, N. Kumano, K. Mukasa, R. Sugizaki, R. Miyabe, S.-I. Matsushita, H. Tobioka, S. Namaki, and T. Yagi, “Dispersion slope controlled HNL-DSF with high γ of 25W-1km-1 and band conversion experiment using this fibre,” in ECOC 2002 Post deadline proceedings (2002), p. PD1.5.

9. J. L. Blows and S. E. French, “Low-noise-figure optical parametric amplifier with a continuous-wave frequency modulated pump,” Opt. Lett. 27, 491–493 (2002). [CrossRef]  

10. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995), 2nd edn.

11. L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, “Broadband and flat parametric gain with a single low-power pump in a multi-section fiber arrangement,” in Proceedings of OFC 2002, Paper TuS2 (2002), pp. 125–126.

Supplementary Material (1)

Media 1: GIF (32 KB)     

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of the operation of an ideal wavelength converter. a) Conversion from a fixed λ s to an arbitrary λ c , within a range Δλ. b) Conversion from a fixed λ c to an arbitrary λ s , within a range Δλ. c) Boundary for the region representing conversion from an arbitrary λ s to an arbitrary λ c , both within the same range Δλ.
Fig. 2.
Fig. 2. a) Theoretical gain spectra for a typical parametric amplifier at two different pump wavelengths. b) Ideal wavelength conversion spectra for two different pump wavelengths. Pump wavelengths are 1553 nm (black) and 1558 nm (red). G thresh (dotted) was chosen to be the gain at λ s p . Other parameters are in Table 1.
Fig. 3.
Fig. 3. Black contours show the intersection of gain curves for a PWC with G thresh=G 0. Fiber parameters are shown in Table 1. A square of maximum area (green) has been fitted and indicates the useful device wavelength coverage for a fixed band.
Fig. 4.
Fig. 4. a) Animation showing how G=G 0 contours (black) change with decreasing β4 and corresponding device bandwidth (green). The red square is the maximum bandwidth, for β4=β4opt≈4.11×10-54s4m-1. The blue square represents the bandwidth when β4=0. b) Plot of β4opt (black) and corresponding bandwidth maxima (red) for fibers with different β3 values. The dashed red line shows the worst effect of a 10% perturbation from β4opt. γ, Pp and L are as in Table 1. [Media 1]

Tables (1)

Tables Icon

Table 1. Table of parameters used in calculations [11]. λ0 is the dispersion zero wavelength of the fiber, γ is the fiber nonlinearity, L the fiber length, Pp the pump power, and β3 and β4 are the third and fourth order dispersion parameters at λ0.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2 ω p = ω s + ω c ,
Δ β = 2 β p β s β c .
G = ( γ P P g sinh ( g L ) ) 2 ,
g 2 = 1 4 [ Δ β ( 4 γ P P Δ β ) ] .
G max = sinh 2 ( γ P P L ) .
G 0 = ( γ P P L ) 2 .
Δ β = ( β 3 ( ω p ω 0 ) + β 4 2 [ ( ω p ω 0 ) 2 + 1 6 ( ω p ω s ) 2 ] ) ( ω p ω s ) 2 .
R = G max G 0 = ( sinh ( γ P P L ) γ P P L ) 2 .
ω S = ω p ± 12 Φ β 4 , ω s = ω p and
ω s = ω p ± 6 Φ ± Φ 2 ( 16 3 ) β 4 γ P p β 4 ,
Δ ω = 2 ( 48 γ P p β 4 ) 1 4 , and when β 4 = 0 , Δ ω = 2 ( 4 γ P p β 3 ) 1 3 .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.