Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Unified performance analysis of interference-limited and interference-free dual-hop mixed RF/FSO systems with partial relay selection under pointing errors

Open Access Open Access

Abstract

This paper investigates the performance of interference-limited and interference-free dual-hop mixed radio frequency (RF)/free space optical (FSO) systems with partial relay selection (PRS) for the variable-gain (VG) amplify-and-forward (AF) relaying scenario. We concentrate on the generalized channel model that not only describes different application scenarios but also allows a more accurate description of the channel characteristics. Specifically, the PRS-aided RF link is modeled by the κ-μ shadowed distribution, and the FSO link is expressed in terms of Fox’s H-function, which unifies Fisher-Snedecor $\mathcal {F}$, Gamma-Gamma (GG), and Malága ($\mathcal {M}$) distributions for atmospheric turbulence along with pointing errors and detection modes. The interference signals at the selected relay are modeled by independent identically κ-μ shadowed distributions. Using our analytical framework, new unified closed-form expressions for the cumulative distribution function (CDF), the average bit error rate (BER), and the ergodic capacity are derived. Additionally, we provide asymptotic expressions of the average BER at high SNR. The analysis quantifies the impact of co-channel interference, pointing errors, number of relays, and rank of the selected relay on the considered system’s performance. Finally, numerical results and Monte Carlo (MC) simulations are presented to confirm the effectiveness of the derived expressions. Note that our results provide a generalized framework for comprehensive studies of this kind of systems.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Relay communication in wireless networks offers many benefits, including reliability enhancement and coverage extension. To meet data rate and bandwidth requirements, dual-hop mixed radio frequency (RF)/free space optical (FSO) relaying systems were proposed [1,2]. This kind of systems achieve inherent complementary benefits of both RF and FSO systems. Therefore, the study of dual-hop mixed RF/FSO relaying systems has been the focus of many works [14].

In dual-hop mixed RF/FSO relaying systems, a single relay can assist the communication between a source and a destination [114]. In the FSO hop, atmospheric turbulence and pointing errors are two major factors which need to be considered. To characterize the atmospheric turbulence, the range of applications and mathematical tractability of the models are often considered. In this end, gamma-gamma (GG) distribution is widely used for moderate-to-strong turbulence conditions [15], whereas $\mathcal {M}$ model is applicable for all irradiance conditions in homogeneous and isotropic turbulence [16]. Recently, the Fisher-Snedecor $\mathcal {F}$ distribution was introduced due to its mathematical tractability [17]. On the other hand, to characterize the pointing errors, the Beckmann distribution approximated by the modified Rayleigh distribution is widely used in the literature due to generalizability and mathematical tractability of the model [18,19]. In addition, two main detection modes, i.e., heterodyne detection (HD) and direct detection (DD), are often studied in FSO systems.

In the RF hop, popular fading models include the Rayleigh, Rician and Nakagami-m distributions. The $\kappa$-$\mu$ shadowed distribution is more general and can accurately describe the signal propagation for a line-of-sight (LOS) propagation scenario in the presence of shadowing [20]. In addition, due to aggressive frequency reuse, the system performance will be adversely affected by co-channel interferences (CCIs) [2125]. These works studied the effects of CCIs on the performance of dual-hop relay networks, but they assumed that the network under consideration consists of a single relay.

On the other hand, multiple relays can improve the system performance through relay selection techniques. In multi-relay systems, the performance depends on the relaying protocol and the relay selection. There are two main protocols, i.e., decoded forwarding (DF) and amplify-and-forward (AF). In addition, the AF relaying is categorized as either fixed gain (FG) or variable gain (VG) relaying. As for relay selection, three schemes are studied, namely, opportunistic relay selection (ORS) [26], best relay selection (BRS), and partial relay selection (PRS) [2730]. In ORS and BRS, the relay is selected according to the instantaneous global (two hop) channel state information (CSI), while in PRS, the relay is activated based on the only local (single-hop) CSI information [31]. In order to highlight the research gap between this work and existing literatures, some typical works of dual-hop mixed RF/FSO systems with multiple relays or CCIs have been summarized in Table 1. Due to brevity and space limitations, the summary of dual-hop mixed RF/FSO systems with single relay and without CCIs (see Table 1 in [9,14] for more details) will not be displayed in this work.

Tables Icon

Table 1. Summary of dual-hop mixed RF/FSO systems with multiple relays or CCIs

While previous works have investigated the impact of relaying protocols and relay selection schemes on the performance of multi-relay systems by using different channel models, the limitation of them is that the models they adopt lack generality and flexibility. Specifically, for PRS-aided RF and interference links, they simply assume Rayleigh and Nakagami-m distributions. However, these models don’t accurately describe the fading statistics of RF and interference links in practical applications such as device-to-device communications [36], 5G communications [37] and satellite relaying systems [38]. On the other hand, to characterize atmospheric turbulence along with pointing errors for different detection modes, numerous models were proposed and applied separately to different scenarios [1519]. When considering different application scenarios, the model needs to be changed accordingly, increasing the complexity of the design. Therefore, in order to carry out a unified performance analysis, the PRS-aided RF link, the interference link, and the FSO link should adopt the generalized channel models that not only account for different application scenarios but also allow a more accurate description of the channel characteristics. However, the mathematical complexity of the generalized channel model leads to the difficulty in obtaining unified closed-form expressions for the end-to-end signal-to-noise ratio (SNR) or the end-to-end signal-to-interference plus noise ratio (SINR) statistics. To date, such a unified model in closed-form has not been reported.

Inspired by the aforementioned work, by concentrating on the generalized channel models, which capture a wide range of propagation conditions, this paper derives unified models to evaluate the performances of interference-limited and interference-free dual-hop mixed RF/FSO AF relaying systems with PRS, assuming that the PRS-aided RF link and the interference link undergo $\kappa$-$\mu$ shadowed fading while the FSO link unifies GG, $\mathcal {M}$, and $\mathcal {F}$ distributions for atmospheric turbulence along with pointing errors for different detection modes. These new unified models can account for different application scenarios compared to previous works. The major contributions of this work are listed as follows: considering interference-limited and interference-free scenarios, we derive new unified closed-form expressions for the cumulative distribution function (CDF). Using the derived CDF, we analyze the performance of VG AF relaying systems with PRS by developing exact closed-form expressions of the average bit-error-rate (BER) and ergodic capacity (EC). In addition, an asymptotic BER analysis is obtained and the diversity order is also provided.

2. System and channel models

2.1 Mixed RF/FSO system model

We consider a dual-hop mixed RF/FSO AF relaying system with a source $S$, a destination $D$ and ${{N}_{r}}$ relays. $S$ and $D$ have no direct link. The $i^{\rm th}$ relay node between $S$ and $D$ is denoted by ${{R}_{i}}$ for $i=1,\ldots, {{N}_{r}}$. The links $S-{{R}_{i}}$ and ${{R}_{i}}-D$ are RF and FSO links, respectively. Moreover, the selected relay suffers from $N$ independent and identically distributed (i.i.d) interfering signals. We further assume that a perfect CSI can be obtained for each relay. According to the PRS protocol, S selects the $k^{\rm th}$ worst relay ${{R}_{k}}$ based on the collected RF link CSI. After that, $S$ communicates with $D$ via ${{R}_{k}}$. The received signal at ${{R}_{k}}$ can be expressed as

$${{r}_{1\left( k \right)}}={{h}_{sr\left( k \right)}}x+\sum_{i=1}^{N}{{{h}_{i}}{{x}_{i}}}+{{n}_{sr\left( k \right)}} ,$$
where ${{h}_{sr\left ( k \right )}}$ is the fading coefficient of the $S-{{R}_{k}}$ link; $x$ is the information signal with an average power ${{P}_{s}}$; $\left \{ {{x}_{i}} \right \}_{i=1}^{N}$ is the interference signals; $\left \{ {{h}_{i}} \right \}_{i=1}^{N}$ and $\left \{ {{P}_{i}} \right \}_{i=1}^{N}$ are the fading coefficients and the average power of the interfering signals, respectively; ${{n}_{sr\left ( k \right )}}$ is the additive white Gaussian noise (AWGN) with zero-mean and variance of ${{N}_{0}}$. The relay ${{R}_{k}}$ converts the electrical signal into optical signal and multiplies it by a scaling gain $G$, and transmits the output to $D$.

To compensate for the fading of the $S-{{R}_{k}}$ link, the VG AF relaying is considered with the scaling gain at ${{R}_{k}}$ given by

$$G={1}/{\sqrt{{{\left| {{h}_{sr\left( k \right)}} \right|}^{2}}{{P}_{s}}+\sum\nolimits_{i=1}^{N}{{{\left| {{h}_{i}} \right|}^{2}}{{P}_{i}}+{{N}_{0}}}}}.$$

The resulting end-to-end SINR can be expressed as [29]

$${{\gamma }_{V}}= \frac{{{\gamma }_{1\left( k \right)}}{{\gamma }_{2\left( k \right)}}}{{{\gamma }_{1\left( k \right)}}+{{\gamma }_{2\left( k \right)}}+{{\gamma }_{2\left( k \right)}}{{\gamma }_{I}}+{{\gamma }_{I}}+1}=\frac{{{\gamma }_{1\left( k \right)}}^{\rm eff}{{\gamma }_{2\left( k \right)}}}{{{\gamma }_{1\left( k \right)}}^{\rm eff}+{{\gamma }_{2\left( k \right)}}+1},$$
where ${{\gamma }_{1\left ( k \right )}}^{\rm eff}={{{\gamma }_{1\left ( k \right )}}}/{\left ( {{\gamma }_{I}}+1 \right )}$; ${{\gamma }_{I}}$ is the total interference-to-noise ratio (INR); and ${{\gamma }_{1\left ( k \right )}}$ and ${{\gamma }_{2\left ( k \right )}}$ are the instantaneous SNRs for the selected RF and FSO links, respectively.

2.2 RF channel model

The RF link experiences the $\kappa$-$\mu$ shadowed fading, the CDF of ${{\gamma }_{1\left ( \ell \right )}}$ can be reformulated as follows [39,40]

$\bullet$ If $\mu$ >$m$

$$\begin{aligned} {{F}_{{{\gamma }_{1\left( \ell \right)}}}}\left( \gamma \right)=& 1-\sum_{j=1}^{\mu -m}{{{\left( \frac{\gamma }{{{\Delta }_{1}}} \right)}^{\mu -m-j}}}\frac{\exp \left( -\frac{\gamma }{{{\Delta }_{1}}} \right)}{\left( \mu -m-j \right)!}\sum_{z=\mu -m+1-j}^{\mu -m}{{{A}_{1,\mu -m+1-z}}} \\ & -\sum_{j=1}^{m}{{{\left( \frac{\gamma }{{{\Delta }_{2}}} \right)}^{m-j}}}\frac{\exp \left( -\frac{\gamma }{{{\Delta }_{2}}} \right)}{\left( m-j \right)!}\sum_{z=m+1-j}^{m}{{{A}_{2,m+1-z}}}, \end{aligned}$$
where $\mu$ represents the number of clusters; $m$ denotes the shape parameter; ${{\Delta }_{1}}=\frac {{{{\bar {\gamma }}}_{1}}}{\mu \left ( 1+\kappa \right )}$; ${{\Delta }_{2}}=\frac {\mu \kappa +m}{m}\frac {{{{\bar {\gamma }}}_{1}}}{\mu \left ( 1+\kappa \right )}$; ${{\bar {\gamma }}_{1}}$ is the average SNR; $\kappa$ denotes the ratio between the total power of LOS components and that of the scattered waves; and the parameters ${{A}_{1,j}}$ and ${{A}_{2,j}}$ are written as Eq. (6) in [40].

$\bullet$ If $\mu$ $\le$ $m$

$${{F}_{{{\gamma }_{1\left( \ell \right)}}}}\left( \gamma \right)=1-\sum_{j=0}^{m-1}{{{\left( \frac{\gamma }{{{\Delta }_{2}}} \right)}^{m-1-j}}}\frac{{{e}^{-\frac{\gamma }{{{\Delta }_{2}}}}}}{\left( m-1-j \right)!}\sum_{z=m-\mu +1-\mathcal{T}\left( j \right)}^{m-\mu }{{{B}_{m-\mu -z}}},$$
where ${{B}_{j}}$ can be expressed as Eq. (6) in [40], and $\mathcal {T}\left ( j \right )$
$$\mathcal{T}\left( j \right)=\left\{ \begin{array}{ll} j+1, & \text{ for }0\le j\le m-\mu \\ m-\mu +1, & \text{otherwise}. \\ \end{array} \right.$$

Based on partial relay selection protocol, the CDF of ${{\gamma }_{1\left ( k \right )}}$ can be written as [41]

$${{F}_{{{\gamma }_{1\left( k \right)}}}}\left( \gamma \right)={{\left[ {{F}_{{{\gamma }_{1\left( \ell \right)}}}}\left( \gamma \right) \right]}^{k}}\sum_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)}{{\left[ 1-{{F}_{{{\gamma }_{1\left( \ell \right)}}}}\left( \gamma \right) \right]}^{{{l}_{1}}}}.$$

However, Eq. (7) might be intractable which causes mathematical complexity in deriving unified expressions for the considered system. Therefore, we reformulate ${{F}_{{{\gamma }_{1\left ( \ell \right )}}}}\left ( \gamma \right )$ in Eq. (7) as Eq. (4) and Eq. (5), respectively, for subsequent derivations. In what follows, inserting Eq. (4) and Eq. (5) into Eq. (7) and using Eq. (1.111) in [42] and Eq. (26.4.9) in [43], we derive ${{F}_{{{\gamma }_{1\left ( k \right )}}}}\left ( \gamma \right )$ for $\mu$>$m$ and $\mu$ $\le$ $m$ as follows

$\bullet$ If $\mu$ >$m$

$${{F}_{{{\gamma }_{1\left( k \right)}}}}\left( \gamma \right)=\sum_{{{n}_{1}}=0}^{k}{{{\left({-}1 \right)}^{{{n}_{1}}}}\left( \begin{matrix} k \\ {{n}_{1}} \\ \end{matrix} \right)}\sum_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)}\sum_{{{c}_{1}}=0}^{{{n}_{1}}+{{l}_{1}}}{\left( \begin{matrix} {{n}_{1}}+{{l}_{1}} \\ {{c}_{1}} \\ \end{matrix} \right)}{{\varsigma}_{A}}{{\varsigma}_{B1}}{{\gamma }^{{{\mathcal{R}}_{1}}}}{{e}^{-{{\mathcal{O}}_{1}}\gamma }},$$
where ${{\mathcal {O}}_{1}}=\frac {{{c}_{1}}}{{{\Delta }_{1}}}+\frac {\left ( {{n}_{1}}+{{l}_{1}}-{{c}_{1}} \right )}{{{\Delta }_{2}}}$, ${{\mathcal {R}}_{1}}=\sum\limits _{i=1}^{\mu -m}{\left ( \mu -m-i \right ){{p}_{i}}}+\sum\limits _{t=1}^{m}{\left ( m-t \right ){{s}_{t}}}$ where ${{s}_{1}}+\cdots +{{s}_{m}}={{n}_{1}}+{{l}_{1}}-{{c}_{1}}$ and ${{p}_{1}}+\cdots +{{p}_{\mu -m}}={{c}_{1}}$, and
$$\begin{aligned} &{{\varsigma}_{A}}=\sum_{{{p}_{1}}+\cdots +{{p}_{\mu -m}}={{c}_{1}}}{\left( \begin{matrix} {{c}_{1}} \\ {{p}_{1}},{{p}_{2}},\ldots ,{{p}_{\mu -m}} \\ \end{matrix} \right)} \\ & \times \left[ \prod_{i=1}^{\mu -m}{{{\left( \frac{1}{\left( \mu -m-i \right)!{{\Delta }_{1}}^{\left( \mu -m-i \right)}}\sum_{z=\mu -m+1-i}^{\mu -m}{{{A}_{1,\mu -m+1-z}}} \right)}^{{{p}_{i}}}}} \right], \end{aligned}$$
and
$${{\varsigma}_{B1}}=\sum_{{{s}_{1}}+\cdots +{{s}_{m}}={{n}_{1}}+{{l}_{1}}-{{c}_{1}}}{\left( \begin{matrix} {{n}_{1}}+{{l}_{1}}-{{c}_{1}} \\ {{s}_{1}},{{s}_{2}},\ldots ,{{s}_{m}} \\ \end{matrix} \right)} \left[ \prod_{t=1}^{m}{{{\left( \frac{1}{\left( m-t \right)!{{\Delta }_{2}}^{\left( m-t \right)}}\sum_{z=m+1-t}^{m}{{{A}_{2,m+1-z}}} \right)}^{{{s}_{t}}}}} \right]. \\$$
$\bullet$ If $\mu$ $\le$ $m$
$$\begin{aligned} {{F}_{{{\gamma }_{1\left( k \right)}}}}\left( \gamma \right)=\sum_{{{n}_{1}}=0}^{k}{{{\left({-}1 \right)}^{{{n}_{1}}}}\left( \begin{matrix} k \\ {{n}_{1}} \\ \end{matrix} \right)}\sum_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)} {{\varsigma}_{B2}}{{\gamma }^{{{\mathcal{R}}_{2}}}}{{e}^{-{{\mathcal{O}}_{2}}\gamma }}, \end{aligned}$$
where ${{\mathcal {O}}_{2}}=\frac {{{n}_{1}}+{{l}_{1}}}{{{\Delta }_{2}}}$, ${{\mathcal {R}}_{2}}=\sum _{i=0}^{m-1}{\left ( m-1-i \right ){{p}_{i}}}$ where ${{p}_{0}}+{{p}_{1}}+\cdots +{{p}_{m-1}}={{n}_{1}}+{{l}_{1}}$, and
$$\begin{aligned} & {{\varsigma}_{B2}}=\sum_{{{p}_{0}}+{{p}_{1}}+\cdots +{{p}_{m-1}}={{n}_{1}}+{{l}_{1}}}{\left( \begin{matrix} {{n}_{1}}+{{l}_{1}} \\ {{p}_{0}},{{p}_{1}},\ldots ,{{p}_{m-1}} \\ \end{matrix} \right)} \\ & \times \left[ \prod_{i=0}^{m-1}{{{\left( \frac{1}{\left( m-1-i \right)!{{\Delta }_{2}}^{m-1-i}}\sum_{z=m-\mu +1-\mathcal{T}\left( i \right)}^{m-\mu }{{{B}_{m-\mu -z}}} \right)}^{{{p}_{i}}}}} \right]. \end{aligned}$$

Proof : The detailed derivation of ${{F}_{{{\gamma }_{1\left ( k \right )}}}}\left ( \gamma \right )$ can be found in section 1 in Supplement 1.

Moreover, the relay receives i.i.d interfering signals from $N$ interfering terminals. Assuming that the instantaneous INR follows $\kappa$-$\mu$ shadowed distribution, i.e., ${{\gamma }_{I,i}}\sim \left ( {{\bar {\gamma }}_{I}},{{\kappa }_{I}},{{\mu }_{I}},{{m}_{I}} \right )$, the total instantaneous INR, ${{\gamma }_{I}}=\sum\limits _{i=1}^{N}{\frac {{{\left | {{h}_{i}} \right |}^{2}}{{P}_{i}}}{{{N}_{0}}}}$, follows another $\kappa$-$\mu$ shadowed distribution with scaled parameters, i.e., ${{\gamma }_{I}}\sim \left ( N{{{\bar {\gamma }}}_{I}},{{\kappa }_{I}},N{{\mu }_{I}},N{{m}_{I}} \right )$, with the PDF given by [39]

$${{f}_{{{\gamma }_{I}}}}\left( \gamma \right)=\sum_{\ell =0}^{{{M}_{X}}}{\frac{{{C}_{X,\ell }}{{\gamma }^{{{m}_{X,\ell }}-1}}}{\left( {{m}_{X,\ell }}-1 \right)!{{\Omega }_{X,\ell }}^{{{m}_{X,\ell }}}}{{e}^{-\frac{\gamma }{{{\Omega }_{X,\ell }}}}}},$$
where ${{\bar {\gamma }}_{I}}$ is the average INR per CCI link. The CDF of ${{\gamma }_{I}}$ is given by
$${{F}_{{{\gamma }_{I}}}}\left( \gamma \right)=1-\sum_{\ell =0}^{{{M}_{X}}}{{{C}_{X,\ell }}{{e}^{-\frac{\gamma }{{{\Omega }_{X,\ell }}}}}\sum_{t=0}^{{{m}_{X,\ell }}-1}{\frac{1}{t!}{{\left( \frac{\gamma }{{{\Omega }_{X,\ell }}} \right)}^{t}}}}.$$

2.3 FSO channel model

When considering the joint effects of atmospheric turbulence and pointing errors, a unified PDF expression under both HD and DD technique cases can be expressed as

$${{f}_{{{\gamma }_{2\left( k \right)}}}}\left( \gamma \right)=\psi {{\gamma }^{{-}1}}\sum_{v=1}^{P}{{{\zeta }_{v}}}{\rm H}_{p,q}^{m',n}\left[ {{C}_{T,v}}{{\gamma }^{\frac{1}{r}}}\left| \begin{matrix} {{\left( {{a}_{v,w}},{{\alpha }_{v,w}} \right)}_{w=1:p}} \\ {{\left( {{b}_{v,w}},{{\beta }_{v,w}} \right)}_{w=1:q}} \\ \end{matrix} \right. \right],$$
where ${\rm H}_{\cdot,\cdot }^{\cdot,\cdot }\left ( \cdot \right )$ is the Fox’s H function [44]; $r=1$ and $r=2$ represent HD and DD, respectively; and other parameters are shown in Table 2. Equation (15) can be regarded as a general fading model and describe different models including GG, $\mathcal {M}$ and $\mathcal {F}$ distributions, as given in Table 2. Note that in order to avoid the sign conflict with Eq. (4) and Eq. (5), we use $m'$ to represent $m$ in Eq. (15).

Tables Icon

Table 2. Unified parameters for the PDF of ${{f}_{{{\gamma }_{2\left ( k \right )}}}}\left ( \gamma \right )$

Proof : The detailed derivation of ${{f}_{{{\gamma }_{2\left ( k \right )}}}}\left ( \gamma \right )$ can be found in section 2 in Supplement 1.

Using Eq. (2.54) in [45], the CDF of ${{\gamma }_{2\left ( k \right )}}$ is derived by

$${{F}_{{{\gamma }_{2\left( k \right)}}}}\left( \gamma \right)=1-\psi \sum_{v=1}^{P}{{{\zeta }_{v}}}{\rm H}_{p+1,q+1}^{m'+1,n} \left[ {{C}_{T,v}}{{\gamma }^{\frac{1}{r}}}\left| \begin{matrix} {{\left( {{a}_{v,w}},{{\alpha }_{v,w}} \right)}_{w=1:p}},\left( 1,\frac{1}{r} \right) \\ \left( 0,\frac{1}{r} \right),{{\left( {{b}_{v,w}},{{\beta }_{v,w}} \right)}_{w=1:q}} \\ \end{matrix} \right. \right].$$

3. Statistical characteristics

3.1 Cumulative distribution function

Since the SINR statistic in Eq. (3) is mathematically intractable, we use an upper bound as ${{\gamma }_{V}} \cong \min \left ( {{\gamma }_{1\left ( k \right )}}^{\rm eff},{{\gamma }_{2\left ( k \right )}} \right )$ as in [21,29]. Based on this upper bound, the CDF of ${{\gamma }_{V}}$ for the VG relaying system with PRS can be expressed as

$${{F}_{{{\gamma }_{V}}}}\left( \gamma \right)={{F}_{{{\gamma }_{1\left( k \right)}}^{\rm eff}}}\left( \gamma \right)+{{F}_{{{\gamma }_{2\left( k \right)}}}}\left( \gamma \right)-{{F}_{{{\gamma }_{1\left( k \right)}}^{\rm eff}}}\left( \gamma \right){{F}_{{{\gamma }_{2\left( k \right)}}}}\left( \gamma \right),$$
where ${{F}_{{{\gamma }_{1\left ( k \right )}}^{\rm eff}}}\left ( \gamma \right )$ is divided into two cases: $\mu >m$ and $\mu \le m$. Substituting Eq. (8), Eq. (11), and Eq. (13) into Eq. (C.1) in [25] and employing Eq. (9.211.4) in [42], ${{F}_{{{\gamma }_{1\left ( k \right )}}^{\rm eff}}}\left ( \gamma \right )$ can be derived as follows

$\bullet$ If $\mu$ >$m$

$$\begin{aligned} & {{F}_{{{\gamma }_{1\left( k \right)}}^{\rm eff}}}\left( \gamma \right)=1+\sum_{\substack{{{n}_{1}}=0 \\ {{n}_{1}}\ne 0\vee {{l}_{1}}\ne 0}}^{k}{{{\left({-}1 \right)}^{{{n}_{1}}}}\left( \begin{matrix} k \\ {{n}_{1}} \\ \end{matrix} \right)}\sum_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)}\sum_{{{c}_{1}}=0}^{{{n}_{1}}+{{l}_{1}}}{\left( \begin{matrix} {{n}_{1}}+{{l}_{1}} \\ {{c}_{1}} \\ \end{matrix} \right)} \\ & \times{{\eta }_{A}} {{\eta }_{B1}}\sum_{\ell =0}^{{{M}_{X}}}{\sum_{s=0}^{{{\mathcal{S}}_{1}}}{\left( \begin{matrix} {{\mathcal{S}}_{1}} \\ s \\ \end{matrix} \right)\frac{{{C}_{X,\ell }}{{\Omega }_{X,\ell }}^{s}{{\gamma }^{{{\mathcal{S}}_{1}}}}{{e}^{-{{\mathcal{P}}_{1}}\gamma }}}{\Gamma \left( {{m}_{X,\ell }} \right)}}}{\rm G}_{1,1}^{1,1}\left[ {{\mathcal{P}}_{1}}{{\Omega }_{X,\ell }}\gamma \left| \begin{matrix} 1-{{m}_{X,\ell }}-s \\ 0 \\ \end{matrix} \right. \right], \end{aligned}$$
where $\vee$ is logical OR operator, ${\rm G}_{\cdot,\cdot }^{\cdot,\cdot }\left ( \cdot \right )$ is the Meijer’s G function [42], ${{\mathcal {P}}_{1}}=\frac {{{c}_{1}}}{{{\Delta }_{1}}}+\frac {{{n}_{1}}+{{l}_{1}}-{{c}_{1}}}{{{\Delta }_{2}}}$, ${{\mathcal {S}}_{1}}=\sum _{i=1}^{\mu -m}{\left ( \mu -m-i \right ){{p}_{i}}}+\sum _{t=1}^{m}{\left ( m-t \right ){{s}_{t}}}$ where ${{s}_{1}}+\cdots +{{s}_{m}}={{n}_{1}}+{{l}_{1}}-{{c}_{1}}$ and ${{p}_{1}}+\cdots +{{p}_{\mu -m}}={{c}_{1}}$, and
$$\begin{aligned} &{{\eta}_{A}}=\sum_{{{p}_{1}}+\cdots +{{p}_{\mu -m}}={{c}_{1}}}{\left( \begin{matrix} {{c}_{1}} \\ {{p}_{1}},{{p}_{2}},\ldots ,{{p}_{\mu -m}} \\ \end{matrix} \right)} \\ & \times \left[ \prod_{i=1}^{\mu -m}{{{\left( \frac{1}{\left( \mu -m-i \right)!{{\Delta }_{1}}^{\left( \mu -m-i \right)}}\sum_{z=\mu -m+1-i}^{\mu -m}{{{A}_{1,\mu -m+1-z}}} \right)}^{{{p}_{i}}}}} \right], \end{aligned}$$
and
$${{\eta}_{B1}}=\sum_{{{s}_{1}}+\cdots +{{s}_{m}}={{n}_{1}}+{{l}_{1}}-{{c}_{1}}}{\left( \begin{matrix} {{n}_{1}}+{{l}_{1}}-{{c}_{1}} \\ {{s}_{1}},{{s}_{2}},\ldots ,{{s}_{m}} \\ \end{matrix} \right)} \left[ \prod_{t=1}^{m}{{{\left( \frac{1}{\left( m-t \right)!{{\Delta }_{2}}^{\left( m-t \right)}}\sum_{z=m+1-t}^{m}{{{A}_{2,m+1-z}}} \right)}^{{{s}_{t}}}}} \right].\\$$
$\bullet$ If $\mu$ $\le$ $m$
$$\begin{aligned} & {{F}_{{{\gamma }_{1\left( k \right)}}^{\rm eff}}}\left( \gamma \right)=1+\sum_{\substack{{{n}_{1}}=0 \\ {{n}_{1}}\ne 0\vee {{l}_{1}}\ne 0}}^{k}{{{\left({-}1 \right)}^{{{n}_{1}}}}\left( \begin{matrix} k \\ {{n}_{1}} \\ \end{matrix} \right)}\sum_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)} \\ & \times {{\eta }_{B2}}\sum_{\ell =0}^{{{M}_{X}}}{\sum_{s=0}^{{{\mathcal{S}}_{2}}}{\left( \begin{matrix} {{\mathcal{S}}_{2}} \\ s \\ \end{matrix} \right)\frac{{{C}_{X,\ell }}{{\Omega }_{X,\ell }}^{s}{{\gamma }^{{{\mathcal{S}}_{2}}}}{{e}^{-{{\mathcal{P}}_{2}}\gamma }}}{\Gamma \left( {{m}_{X,\ell }} \right)}}} {\rm G}_{1,1}^{1,1}\left[ {{\Omega }_{X,\ell }}{{\mathcal{P}}_{2}}\gamma \left| \begin{matrix} 1-{{m}_{X,\ell }}-s \\ 0 \\ \end{matrix} \right. \right], \end{aligned}$$
where ${{\mathcal {P}}_{2}}=\frac {{{n}_{1}}+{{l}_{1}}}{{{\Delta }_{2}}}$, ${{\mathcal {S}}_{2}}=\sum _{i=0}^{m-1}{\left ( m-1-i \right ){{p}_{i}}}$ where ${{p}_{0}}+{{p}_{1}}+\cdots +{{p}_{m-1}}={{n}_{1}}+{{l}_{1}}$, and
$$\begin{aligned} & {{\eta}_{B2}}=\sum_{{{p}_{0}}+{{p}_{1}}+\cdots +{{p}_{m-1}}={{n}_{1}}+{{l}_{1}}}{\left( \begin{matrix} {{n}_{1}}+{{l}_{1}} \\ {{p}_{0}},{{p}_{1}},\ldots ,{{p}_{m-1}} \\ \end{matrix} \right)} \\ & \times \left[ \prod_{i=0}^{m-1}{{{\left( \frac{1}{\left( m-1-i \right)!{{\Delta }_{2}}^{m-1-i}}\sum_{z=m-\mu +1-\mathcal{T}\left( i \right)}^{m-\mu }{{{B}_{m-\mu -z}}} \right)}^{{{p}_{i}}}}} \right]. \end{aligned}$$

Proof : The detailed derivation of ${{F}_{{{\gamma }_{1\left ( k \right )}}^{\rm eff}}}\left ( \gamma \right )$ can be found in section 3 in Supplement 1.

Similiarly, when CCIs are neglected, the end-to-end SNR is reduced to ${{\gamma }_{V}} =\frac {{{\gamma }_{1\left ( k \right )}}{{\gamma }_{2\left ( k \right )}}}{{{\gamma }_{1\left ( k \right )}}+{{\gamma }_{2\left ( k \right )}}+1}$. To facilitate the mathematical treatment, we also use the upper bound as ${{\gamma }_{V}}\cong \min \left ( {{\gamma }_{1\left ( k \right )}},{{\gamma }_{2\left ( k \right )}} \right )$. This leads to the CDF of ${{\gamma }_{V}}$ as

$${{F}_{{{\gamma }_{V}}}}\left( \gamma \right)={{F}_{{{\gamma }_{1\left( k \right)}}}}\left( \gamma \right)+{{F}_{{{\gamma }_{2\left( k \right)}}}}\left( \gamma \right)-{{F}_{{{\gamma }_{1\left( k \right)}}}}\left( \gamma \right){{F}_{{{\gamma }_{2\left( k \right)}}}}\left( \gamma \right). \\$$

In order to show effectiveness of the proposed system model, we make comparisons between our derived expressions (${{F}_{{{\gamma }_{1\left ( k \right )}}}}\left ( \gamma \right )$ and ${{F}_{{{\gamma }_{1\left ( k \right )}}^{\rm eff}}}\left ( \gamma \right )$) and that used in the existing literatures. It should be pointed out that ${{F}_{{{\gamma }_{1\left ( k \right )}}}}\left ( \gamma \right )$ in Eq. (23) and ${{F}_{{{\gamma }_{1\left ( k \right )}}^{\rm eff}}}\left ( \gamma \right )$ in Eq. (17) can be regarded as generalized distributions because they can describe different fading models by setting different parameter combinations. This provides the basis for further analysis of the performance of systems with PRS and BRS in the presence and absence of CCIs. As examples, in Fig. 1, ${{F}_{{{\gamma }_{1\left ( k \right )}}}}\left ( \gamma \right )$ and ${{F}_{{{\gamma }_{1\left ( k \right )}}^{\rm eff}}}\left ( \gamma \right )$ are plotted for different parameter combinations in comparison with existing models. From Fig. 1, we observed that the previously reported results in [29,31,47,48] are included in our results when PRS-aided RF link and interference link are modelled as Nakagami-m distributions (Note that K users are equivalent to ${{N}_{r}}$ relays in [47]). In addition, our models can also be used to analyze the system performance, when the RF and interference links are modelled as Rayleigh, Rician, $\kappa$-$\mu$, or Rician shadowed distributions.

 figure: Fig. 1.

Fig. 1. CDF of $\left ( a \right )$ ${{\gamma }_{1\left ( k \right )}}$ and $\left ( b \right )$ ${{\gamma }_{1\left ( k \right )}}^{\rm eff}$ for different parameter combinations in comparison with existing models.

Download Full Size | PDF

4. End-to-end performance metrics

In this section, we derive two important performance metrics: the average BER and the ergodic capacity for VG relaying systems with PRS in the absence and presence of CCIs.

4.1 Average bit error rate

The average BER for many binary modulation formats can be represented as [49]

$${{\bar{P}}_{e}}^{V}=\frac{{{q}_{e}}^{{{p}_{e}}}}{2\Gamma \left( {{p}_{e}} \right)}\int_{0}^{\infty }{\exp \left( -{{q}_{e}}\gamma \right){{\gamma }^{{{p}_{e}}-1}}{{F}_{{{\gamma }_{V}}}}\left( \gamma \right)d\gamma }, \\$$
where ${{p}_{e}}$ and ${{q}_{e}}$ are constants depending on different modulation formats: $\left ( {{p}_{e}},{{q}_{e}} \right )=\left ( 0.5,1 \right )$ for binary phase shift keying (BPSK) and $\left ( {{p}_{e}},{{q}_{e}} \right )=\left (1,1 \right )$ for differential BPSK (DBPSK).

Substituting Eq. (17) into Eq. (24), and using Eq. (8.4.3.1) in [50], Eq. (07.34.21.0012.01) in [51], and Eq. (2.3) in [52], we obtain ${{\bar {P}}_{e}}^{V}$ for the VG relaying system with PRS as follows

$\bullet$ If $\mu$ >$m$

$$\begin{aligned} & {{\bar{P}}_{e}}^{V}=\frac{1}{2}+\frac{\psi {{q}_{e}}^{{{p}_{e}}}}{2\Gamma \left( {{p}_{e}} \right)}\sum_{\substack{{{n}_{1}}=0 \\ {{n}_{1}}\ne 0\vee {{l}_{1}}\ne 0}}^{k}{{{\left({-}1 \right)}^{{{n}_{1}}}}\left( \begin{matrix} k \\ {{n}_{1}} \\ \end{matrix} \right)}\sum_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)}\sum_{{{c}_{1}}=0}^{{{n}_{1}}+{{l}_{1}}}{\left( \begin{matrix} {{n}_{1}}+{{l}_{1}} \\ {{c}_{1}} \\ \end{matrix} \right)}{{\eta }_{A}}{{\eta }_{B1}} \\ & \times \sum_{\ell =0}^{{{M}_{X}}}{\sum_{s=0}^{{{\mathcal{S}}_{1}}}{\left( \begin{matrix} {{\mathcal{S}}_{1}} \\ s \\ \end{matrix} \right)\frac{{{C}_{X,\ell }}{{\Omega }_{X,\ell }}^{s}}{\Gamma \left( {{m}_{X,\ell }} \right){{\left( {{q}_{e}}+{{\mathcal{P}}_{1}} \right)}^{{{p}_{e}}+{{\mathcal{S}}_{1}}}}}}}\sum_{v=1}^{P}{{{\zeta }_{v}}}{\rm H}_{1,0:p+1,q+1:1,1}^{0,1:m'+1,n:1,1} \\ & \left[ \left. \begin{matrix} \left( 1-{{p}_{e}}-{{\mathcal{S}}_{1}},\frac{1}{r},1 \right):{{\left( {{a}_{v,w}},{{\alpha }_{v,w}} \right)}_{w=1:p}},\left( 1,\frac{1}{r} \right):\left( 1-{{m}_{X,\ell }}-s,1 \right) \\ -:\left( 0,\frac{1}{r} \right),{{\left( {{b}_{v,w}},{{\beta }_{v,w}} \right)}_{w=1:q}}:\left( 0,1 \right) \\ \end{matrix} \right|\frac{{{C}_{T,v}}}{{{\left( {{q}_{e}}+{{\mathcal{P}}_{1}} \right)}^{\frac{1}{r}}}},\frac{{{\mathcal{P}}_{1}}{{\Omega }_{X,\ell }}}{{{q}_{e}}+{{\mathcal{P}}_{1}}} \right], \end{aligned}$$
where ${\rm H}_{.,.:.,.:.,.}^{.,.:.,.:.,.} \left (\cdot,\cdot \right )$ represents the bivariate Fox’s H function.

$\bullet$ If $\mu$ $\le$ $m$

$$\begin{aligned} & {{\bar{P}}_{e}}^{V}=\frac{1}{2}+\frac{\psi {{q}_{e}}^{{{p}_{e}}}}{2\Gamma \left( {{p}_{e}} \right)}\sum_{\substack{{{n}_{1}}=0 \\ {{n}_{1}}\ne 0\vee {{l}_{1}}\ne 0}}^{k}{{{\left({-}1 \right)}^{{{n}_{1}}}}\left( \begin{matrix} k \\ {{n}_{1}} \\ \end{matrix} \right)}\sum_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)} {{\eta }_{B2}} \\ & \times\sum_{\ell =0}^{{{M}_{X}}}{\sum_{s=0}^{{{\mathcal{S}}_{2}}}{\left( \begin{matrix} {{\mathcal{S}}_{2}} \\ s \\ \end{matrix} \right)\frac{{{C}_{X,\ell }}{{\Omega }_{X,\ell }}^{s}}{\Gamma \left( {{m}_{X,\ell }} \right){{\left( {{q}_{e}}+{{\mathcal{P}}_{2}} \right)}^{{{p}_{e}}+{{\mathcal{S}}_{2}}}}}}}\sum_{v=1}^{P}{{{\zeta }_{v}}}{\rm H}_{1,0:p+1,q+1:1,1}^{0,1:m'+1,n:1,1} \\ &\left[ \left. \begin{matrix} \left( 1-{{p}_{e}}-{{\mathcal{S}}_{2}},\frac{1}{r},1 \right):{{\left( {{a}_{v,w}},{{\alpha }_{v,w}} \right)}_{w=1:p}},\left( 1,\frac{1}{r} \right):\left( 1-{{m}_{X,\ell }}-s,1 \right) \\ -:\left( 0,\frac{1}{r} \right),{{\left( {{b}_{v,w}},{{\beta }_{v,w}} \right)}_{w=1:q}}:\left( 0,1 \right) \\ \end{matrix} \right|\frac{{{C}_{T,v}}}{{{\left( {{q}_{e}}+{{\mathcal{P}}_{2}} \right)}^{\frac{1}{r}}}},\frac{{{\mathcal{P}}_{2}}{{\Omega }_{X,\ell }}}{{{q}_{e}}+{{\mathcal{P}}_{2}}} \right]. \end{aligned}$$

Similarly, when CCIs are ignored, substituting Eq. (23) into Eq. (24) and performing the integration with the aid of Eq. (3.381.4) in [42] and Eq. (07.34.21.0012.01) in [51] yields:

$\bullet$ If $\mu$ >$m$

$${{\bar{P}}_{e}}^{V}={{P}_{V,1}}+{{P}_{V,2}},$$
where
$${{P}_{V,1}}=\frac{1}{2}-\frac{\psi }{2\Gamma \left( {{p}_{e}} \right)}\sum_{v=1}^{P}{{{\zeta }_{v}}}{\rm H}_{p+2,q+1}^{m'+1,n+1} \left[ \frac{{{C}_{T,v}}}{{{q}_{e}}^{\frac{1}{r}}}\left| \begin{matrix} \left( 1-{{p}_{e}},\frac{1}{r} \right),{{\left( {{a}_{v,w}},{{\alpha }_{v,w}} \right)}_{w=1:p}},\left( 1,\frac{1}{r} \right) \\ \left( 0,\frac{1}{r} \right),{{\left( {{b}_{v,w}},{{\beta }_{v,w}} \right)}_{w=1:q}} \\ \end{matrix} \right. \right], \\$$
and
$$\begin{aligned} & {{P}_{V,2}}=\frac{\psi {{q}_{e}}^{{{p}_{e}}}}{2\Gamma \left( {{p}_{e}} \right)}\sum_{{{n}_{1}}=0}^{k}{{{\left({-}1 \right)}^{{{n}_{1}}}}\left( \begin{matrix} k \\ {{n}_{1}} \\ \end{matrix} \right)}\sum_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)}\sum_{{{c}_{1}}=0}^{{{n}_{1}}+{{l}_{1}}}{\left( \begin{matrix} {{n}_{1}}+{{l}_{1}} \\ {{c}_{1}} \\ \end{matrix} \right)}{{\varsigma}_{A}} {{\varsigma}_{B1}}{{\left( {{q}_{e}}+{{\mathcal{O}}_{1}} \right)}^{-{{p}_{e}}-{{\mathcal{R}}_{1}}}} \\ & \times\sum_{v=1}^{P}{{{\zeta }_{v}}}{\rm H}_{p+2,q+1}^{m'+1,n+1}\left[ \left. \frac{{{C}_{T,v}}}{{{\left( {{q}_{e}}+{{\mathcal{O}}_{1}} \right)}^{\frac{1}{r}}}} \right|\begin{matrix} \left( 1-{{p}_{e}}-{{\mathcal{R}}_{1}},\frac{1}{r} \right),{{\left( {{a}_{v,w}},{{\alpha }_{v,w}} \right)}_{w=1:p}},\left( 1,\frac{1}{r} \right) \\ \left( 0,\frac{1}{r} \right),{{\left( {{b}_{v,w}},{{\beta }_{v,w}} \right)}_{w=1:q}} \\ \end{matrix} \right]. \end{aligned}$$
$\bullet$ If $\mu$ $\le$ $m$
$${{\bar{P}}_{e}}^{V}={{P}_{V,1}}+{{P}_{V,3}},$$
where
$$\begin{aligned} & {{P}_{V,3}}=\frac{\psi {{q}_{e}}^{{{p}_{e}}}}{2\Gamma \left( {{p}_{e}} \right)}\sum_{{{n}_{1}}=0}^{k}{{{\left({-}1 \right)}^{{{n}_{1}}}}\left( \begin{matrix} k \\ {{n}_{1}} \\ \end{matrix} \right)}\sum_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)}{{\varsigma}_{B2}} {{\left( {{q}_{e}}+{{\mathcal{O}}_{2}} \right)}^{-{{p}_{e}}-{{\mathcal{R}}_{2}}}} \\& \times \sum_{v=1}^{P}{{{\zeta }_{v}}}{\rm H}_{p+2,q+1}^{m'+1,n+1}\left[ \left. \frac{{{C}_{T,v}}}{{{\left( {{q}_{e}}+{{\mathcal{O}}_{2}} \right)}^{\frac{1}{r}}}} \right|\begin{matrix} \left( 1-{{p}_{e}}-{{\mathcal{R}}_{2}},\frac{1}{r} \right),{{\left( {{a}_{v,w}},{{\alpha }_{v,w}} \right)}_{w=1:p}},\left( 1,\frac{1}{r} \right) \\ \left( 0,\frac{1}{r} \right),{{\left( {{b}_{v,w}},{{\beta }_{v,w}} \right)}_{w=1:q}} \\ \end{matrix} \right]. \end{aligned}$$

4.2 Asymptotic analysis of the average BER

Using Eq. (1.8.4) in [44] and Eq. (3.381.4) in [42], ${{\bar {P}}_{e}}^{V}$ can be asymptotically expressed at high SNR as

$${{\bar{P}}_{e}}^{V}\approx {{P}_{asyV,1}}+{{P}_{asyV,2}},$$
where ${{P}_{asyV,1}}$ without CCIs can be written as
$$ \begin{aligned} {{P}_{asyV,1}}\approx& \frac{1}{2\Gamma \left( {{p}_{e}} \right)}\sum\limits_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)}\sum\limits_{j=0}^{{{l}_{1}}}{{{\left( -1 \right)}^{j}}\left( \begin{aligned} & {{l}_{1}} \\ & j \\ \end{aligned} \right)\Gamma \left( \mu \left( k+j \right)+{{p}_{e}} \right)} \\ & \times {{q}_{e}}^{-\mu \left( k+j \right)}{{\left[ \frac{{{\mu }^{\mu -1}}{{m}^{m}}{{\left( 1+\kappa \right)}^{\mu }}}{\Gamma \left( \mu \right){{\left( \mu \kappa +m \right)}^{m}}}{{\left( \frac{1}{{\bar{\gamma }}} \right)}^{\mu }} \right]}^{k+j}}. \end{aligned}$$
and ${{P}_{asyV,1}}$ with CCIs can be expressed as
$$ \begin{aligned} {{P}_{asyV,1}}\approx & \frac{1}{2\Gamma \left( {{p}_{e}} \right)}\sum\limits_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)} \\ & \times \sum\limits_{j=0}^{{{l}_{1}}}{{{\left( -1 \right)}^{j}}\left( \begin{aligned} & {{l}_{1}} \\ & j \\ \end{aligned} \right)}{{\left[ \frac{{{\mu }^{\mu -1}}{{m}^{m}}{{\left( 1+\kappa \right)}^{\mu }}}{\Gamma \left( \mu \right){{\left( \mu \kappa +m \right)}^{m}}}{{\left( \frac{1}{{\bar{\gamma }}} \right)}^{\mu }} \right]}^{k+j}}\Gamma \left( \mu \left( k+j \right)+{{p}_{e}} \right) \\ & \times {{q}_{e}}^{-\mu \left( k+j \right)}\sum\limits_{\ell =0}^{{{M}_{X}}}{{{C}_{X,\ell }}}\sum\limits_{s=0}^{\mu \left( k+j \right)}{\frac{\left[ \mu \left( k+j \right) \right]!}{s!\left( \mu \left( k+j \right)-s \right)!}\frac{\Gamma \left( {{m}_{X,\ell }}+s \right){{\Omega }_{X,\ell }}^{s}}{\Gamma \left( {{m}_{X,\ell }} \right)}}. \end{aligned}$$

In Eq. (32), ${{P}_{asyV,2}}$ can be expressed as the following 3 cases:

a) When the FSO link experiences GG fading, ${{P}_{asyV,2}}$ can be derived as

$$ \begin{aligned} {{P}_{asyV,2}}\approx & \frac{\Gamma \left( {{\alpha }_{G}}-{{\xi }_{\bmod }}^{2} \right)\Gamma \left( {{\beta }_{G}}-{{\xi }_{\bmod }}^{2} \right)\Gamma \left( \frac{{{\xi }_{\bmod }}^{2}}{r}+{{p}_{e}} \right)}{2\Gamma \left( {{p}_{e}} \right)\Gamma \left( {{\alpha }_{G}} \right)\Gamma \left( {{\beta }_{G}} \right){{q}_{e}}^{\frac{{{\xi }_{\bmod }}^{2}}{r}}}{{\left( \frac{{{\alpha }_{G}}{{\beta }_{G}}\varphi }{{{\mu }_{r}}^{\frac{1}{r}}} \right)}^{{{\xi }_{\bmod }}^{2}}} \\ & +\frac{{{\xi }_{\bmod }}^{2}\Gamma \left( {{\beta }_{G}}-{{\alpha }_{G}} \right)\Gamma \left( \frac{{{\alpha }_{G}}}{r}+{{p}_{e}} \right){{q}_{e}}^{-\frac{{{\alpha }_{G}}}{r}}}{2{{\alpha }_{G}}\Gamma \left( {{p}_{e}} \right)\Gamma \left( {{\alpha }_{G}} \right)\Gamma \left( {{\beta }_{G}} \right)\left( {{\xi }_{\bmod }}^{2}-{{\alpha }_{G}} \right)}{{\left( \frac{{{\alpha }_{G}}{{\beta }_{G}}\varphi }{{{\mu }_{r}}^{\frac{1}{r}}} \right)}^{{{\alpha }_{G}}}} \\ & +\frac{{{\xi }_{\bmod }}^{2}\Gamma \left( {{\alpha }_{G}}-{{\beta }_{G}} \right)\Gamma \left( \frac{{{\beta }_{G}}}{r}+{{p}_{e}} \right){{q}_{e}}^{-\frac{{{\beta }_{G}}}{r}}}{2{{\beta }_{G}}\Gamma \left( {{p}_{e}} \right)\Gamma \left( {{\alpha }_{G}} \right)\Gamma \left( {{\beta }_{G}} \right)\left( {{\xi }_{\bmod }}^{2}-{{\beta }_{G}} \right)}{{\left( \frac{{{\alpha }_{G}}{{\beta }_{G}}\varphi }{{{\mu }_{r}}^{\frac{1}{r}}} \right)}^{{{\beta }_{G}}}}. \end{aligned}$$

b) When the FSO link is modelled as the ${\cal M}$ distribution, ${{P}_{asyV,2}}$ can be expressed as

$$ \begin{aligned} & {{P}_{asyV,2}}\approx \frac{{{\xi }_{\bmod }}^{2}{{A}_{M}}}{{{2}^{r+1}}\Gamma \left( {{p}_{e}} \right)}\sum\limits_{u=1}^{{{\beta }_{M}}}{{{b}_{u}}}\left[ \frac{r\Gamma \left( {{\alpha }_{M}}-{{\xi }_{\bmod }}^{2} \right)\Gamma \left( u-{{\xi }_{\bmod }}^{2} \right)\Gamma \left( \frac{{{\xi }_{\bmod }}^{2}}{r}+{{p}_{e}} \right)}{{{\xi }_{\bmod }}^{2}{{B}_{M}}^{-{{\xi }_{\bmod }}^{2}}{{q}_{e}}^{\frac{{{\xi }_{\bmod }}^{2}}{r}}}{{\mu }_{r}}^{-\frac{{{\xi }_{\bmod }}^{2}}{r}} \right. \\ & +\frac{r\Gamma \left( u-{{\alpha }_{M}} \right)\Gamma \left( \frac{{{\alpha }_{M}}}{r}+{{p}_{e}} \right){{B}_{M}}^{{{\alpha }_{M}}}}{{{\alpha }_{M}}\left( {{\xi }_{\bmod }}^{2}-{{\alpha }_{M}} \right){{q}_{e}}^{\frac{{{\alpha }_{M}}}{r}}}{{\mu }_{r}}^{-\frac{{{\alpha }_{M}}}{r}}\left. +\frac{r\Gamma \left( {{\alpha }_{M}}-u \right)\Gamma \left( \frac{u}{r}+{{p}_{e}} \right){{B}_{M}}^{u}}{u\left( {{\xi }_{\bmod }}^{2}-u \right){{q}_{e}}^{\frac{u}{r}}}{{\mu }_{r}}^{-\frac{u}{r}} \right]. \end{aligned}$$

c) When the FSO link follows the ${\cal F}$ distribution, ${{P}_{asyV,2}}$ can be obtained as

$$ \begin{aligned} {{P}_{asyV,2}}\approx & \frac{{{\xi }_{\bmod }}^{2}\Gamma \left( {{a}_{F}}+{{b}_{F}} \right)\Gamma \left( \frac{{{a}_{F}}}{r}+{{p}_{e}} \right){{q}_{e}}^{-\frac{{{a}_{F}}}{r}}}{2\Gamma \left( {{p}_{e}} \right){{a}_{F}}\Gamma \left( {{a}_{F}} \right)\Gamma \left( {{b}_{F}} \right)\left( {{\xi }_{\bmod }}^{2}-{{a}_{F}} \right)}{{\left[ \frac{{{a}_{F}}\varphi }{\left( {{b}_{F}}-1 \right){{\mu }_{r}}^{\frac{1}{r}}} \right]}^{{{a}_{F}}}} \\ & +\frac{\Gamma \left( {{a}_{F}}-{{\xi }_{\bmod }}^{2} \right)\Gamma \left( {{b}_{F}}+{{\xi }_{\bmod }}^{2} \right)\Gamma \left( \frac{{{\xi }_{\bmod }}^{2}}{r}+{{p}_{e}} \right)}{2\Gamma \left( {{p}_{e}} \right)\Gamma \left( {{a}_{F}} \right)\Gamma \left( {{b}_{F}} \right){{q}_{e}}^{\frac{{{\xi }_{\bmod }}^{2}}{r}}}{{\left[ \frac{{{a}_{F}}\varphi }{\left( {{b}_{F}}-1 \right){{\mu }_{r}}^{\frac{1}{r}}} \right]}^{{{\xi }_{\bmod }}^{2}}}. \end{aligned}$$

Using a method similar to the Ref. [53], from Eqs. (32)–(37), we can obtain the diversity order as $\min \left ( \frac {{{\xi }_{\bmod }}^{2}}{r}, \frac {{{\alpha }_{G}}}{r},\frac {{{\beta }_{G}}}{r},k\mu \right )$, $\min \left ( \frac {{{\xi }_{\bmod }}^{2}}{r},\frac {{{\alpha }_{M}}}{r},\frac {v}{r},k\mu \right )$, and $\min \left ( \frac {{{\xi }_{\bmod }}^{2}}{r},\frac {{{a}_{F}}}{r},k\mu \right )$ for GG, ${\cal M}$ and ${\cal F}$ distributions, respectively. Moreover, under the assumption that the interference power is scaled with the transmitted power, as the SNR approaches infinity, the INR approaches infinity. At high SNRs, the existence of CCIs leads to the occurence of BER floors and capacity ceilings, which reflects a zero diversity order.

Proof : The detailed derivation of the asymptotic BER can be found in section 4 in Supplement 1.

4.3 Ergodic capacity

From [12], the ergodic capacity can be represented as

$$ \begin{aligned} {{\bar{C}}^{V}}=\frac{\varrho }{2\ln 2}\int_{0}^{\infty }{\frac{1-{{F}_{{{\gamma }_{V}}}}\left( \gamma \right)}{1+\varrho \gamma }d\gamma }, \end{aligned}$$
where $\varrho =1$ for HD, and $\varrho ={e}/{\left ( 2\pi \right )}\;$ for DD. Unfortunately, substituting Eq. (17) into Eq. (38), such an integral is extremely complicated. Nevertheless, by performing the change of variables with $\gamma =\tan \theta$ and using a ${{N}_{p}}$-point Gauss Chebyshev Quadrature (GCQ) rule formula Eq. (25.4.39) in [54], ${{\bar {C}}^{V}}$ for the VG relaying system with PRS can be easily evaluated as
$$ \begin{aligned} {{\bar{C}}^{V}}\approx \frac{\varrho }{2\ln 2}\sum\limits_{i=1}^{{{N}_{p}}}{{{w}_{i}}}\frac{1-{{F}_{{{\gamma }_{V}}}}\left( {{x}_{i}} \right)}{1+\varrho {{x}_{i}}},\end{aligned}$$
where the abscissas $x_{i}$ and the weights $w_{i}$ are formulated as Eq. (22) and Eq. (23) in [55], respectively.

Similarly, when CCIs are absent, inserting Eq. (23) into Eq. (38) and employing Eq. (2.3) in [52], ${{\bar {C}}^{V}}$ can be derived as follows

$\bullet$ If $\mu$ >$m$

$$ \begin{aligned} & {{\bar{C}}^{V}}=-\frac{\varrho \psi }{2\ln 2}\sum\limits_{\substack{{{n}_{1}}=0 \\ {{n}_{1}}\ne 0\vee {{l}_{1}}\ne 0}}^{k}{{{\left( -1 \right)}^{{{n}_{1}}}}\left( \begin{matrix} k \\ {{n}_{1}} \\ \end{matrix} \right)}\sum\limits_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)}\sum\limits_{{{c}_{1}}=0}^{{{n}_{1}}+{{l}_{1}}}{\left( \begin{matrix} {{n}_{1}}+{{l}_{1}} \\ {{c}_{1}} \\ \end{matrix} \right)}{{\eta }_{A}} {{\eta }_{B1}} {{\mathcal{P}}_{1}}^{-1-{{\mathcal{S}}_{1}}}\\ & \times \sum\limits_{v=1}^{P}{{{\zeta }_{v}}}{\rm H}_{1,0:1,1:p+1,q+1}^{0,1:1,1:m'+1,n}\left[ \left. \begin{matrix} \left( -{{\mathcal{S}}_{1}},1,\frac{1}{r} \right):\left( 0,1 \right):{{\left( {{a}_{v,w}},{{\alpha }_{v,w}} \right)}_{w=1:p}},\left( 1,\frac{1}{r} \right) \\ -:\left( 0,1 \right):\left( 0,\frac{1}{r} \right),{{\left( {{b}_{v,w}},{{\beta }_{v,w}} \right)}_{w=1:q}} \\ \end{matrix} \right|\frac{\varrho }{{{\mathcal{P}}_{1}}},\frac{{{C}_{T,v}}}{{{\mathcal{P}}_{1}}{{}^{\frac{1}{r}}}} \right]. \end{aligned}$$

$\bullet$ If $\mu$ $\le$ $m$

$$ \begin{aligned} & {{\bar{C}}^{V}}=-\frac{\varrho \psi }{2\ln 2}\sum\limits_{\substack{{{n}_{1}}=0 \\ {{n}_{1}}\ne 0\vee {{l}_{1}}\ne 0}}^{k}{{{\left( -1 \right)}^{{{n}_{1}}}}\left( \begin{matrix} k \\ {{n}_{1}} \\ \end{matrix} \right)}\sum\limits_{{{l}_{1}}=0}^{{{N}_{r}}-k}{\left( \begin{matrix} k+{{l}_{1}}-1 \\ k-1 \\ \end{matrix} \right)} {{\eta }_{B2}}{{\mathcal{P}}_{2}}{{}^{-1-{{\mathcal{S}}_{2}}}}\\ & \times \sum\limits_{v=1}^{P}{{{\zeta }_{v}}}{\rm H}_{1,0:1,1:p+1,q+1}^{0,1:1,1:m'+1,n}\left[ \left. \begin{matrix} \left( -{{\mathcal{S}}_{2}},1,\frac{1}{r} \right):\left( 0,1 \right):{{\left( {{a}_{v,w}},{{\alpha }_{v,w}} \right)}_{w=1:p}},\left( 1,\frac{1}{r} \right) \\ -:\left( 0,1 \right):\left( 0,\frac{1}{r} \right),{{\left( {{b}_{v,w}},{{\beta }_{v,w}} \right)}_{w=1:q}} \\ \end{matrix} \right|\frac{\varrho }{{{\mathcal{P}}_{2}}},\frac{{{C}_{T,v}}}{{{\mathcal{P}}_{2}}{{}^{\frac{1}{r}}}} \right]. \end{aligned}$$

In order to demonstrate the effectiveness of our derived performance metrics, we compare our work with some existing literatures. We find that our results are consistent with the previous works, providing a generic description of this kind system and are inclusive about the previous works as special cases as follows: a) when taking the $\mathcal {F}$ distribution and setting ${{N}_{r}}=1$ and $k=1$ in the presence of CCIs, the BER and EC we derived can be simplified as the corresponding BER and EC in [25]; b) when taking the $\mathcal {M}$ distribution and setting ${{N}_{r}}=1$, $k=1$, $\mu =1$, ${{\mu }_{I}}=1$, $\kappa \to 0$, ${{\kappa }_{I}}\to 0$, $m\to \infty$ and ${{m}_{I}}\to \infty$, the BER we derived can be simplified as the corresponding BER in [23]; c) when taking the GG distribution and setting ${{N}_{r}}=1$, $k=1$, $\mu = \underline {m}$, $\kappa \to 0$ and $m\to \infty$, the BER and EC we derived can be simplified as the corresponding BER and EC in [6]; d) when taking the $\mathcal {F}$ distribution and setting ${{N}_{r}}=1$ and $k=1$ in the absence of CCIs, the BER and EC we derived can be simplified as the upper bounds of the corresponding BER and EC in [14].

5. Numerical results

In this section, we carry out numerical simulations to verify the accuracy of our proposed expressions. Without loss of generality, we assume ${{\bar {\gamma }}_{1}}={{\bar {\gamma }}_{2}}$. Unless otherwise stated, the simulation parameters are given in Table 3. It should be noted that the parameter values we adopted for PRS-aided RF and interference links include cases that cannot be described by models in previous works [29,31,47,48]. The FSO link can be modeled as either GG, $\mathcal {M}$, or Fisher-Snedecor $\mathcal {F}$ distribution for different parameter combinations. Here, we take the GG distribution as an example. Notice that when setting the parameters $g=0$ and $\Omega '=1$ in the $\mathcal {M}$ distribution, this $\mathcal {M}$ distribution reduces to the GG distribution. Due to brevity and space limitations, the analysis using the $\mathcal {M}$ distribution as an example will not be presented in this work. Moreover, we also take the $\mathcal {F}$ distribution as an example and add results and discussions (see Supplement 1 for more details). In the MC simulation, the number of random samples is set to $4\times {{10}^{6}}$. GG, ${\cal M}$ and ${\cal F}$ random samples can be generated using Eqs. (10–11) in [15], Eq. (18) in [16] and Eq. (2) in [17], respectively, while $\kappa -\mu$ shadowed random samples can be generated using Eq. (1) in [20]. In addition, the pointing error samples can be obtained based on Eq. (4) in [19] and Eq. (9) in [56].

Tables Icon

Table 3. Simulation parameter settings

Figure 2 shows the variations of the average BER in the presence and absence of CCIs for different detection modes. As observed, the derived expressions (Eqs. (25)–(31)) coincide with the MC simulations, verifying the accuracy of our derivation. It can be seen that a higher BER performance is obtained for the HD technology $\left ( r=1 \right )$ compared to the DD technology $\left ( r=2 \right )$. As expected, the existence of CCIs leads to degradation of BER performance. At high SNRs, for the same detection mode, the BER converges to the same values regardless of the value of CCIs. This result indicates that at a fixed average interference power, the impacts of CCIs are negligible at high SNR. Moreover, we observe that the asymptotic results given in Eq. (32) coincide with the exact results derived in Eqs. (25)–(31) at high SNR.

 figure: Fig. 2.

Fig. 2. The effect of CCIs on the average BER of DBPSK modulation for different detection modes with ${{N}_{r}}=5$ and $k=1$.

Download Full Size | PDF

Figure 3 shows the variations of the average BER in the presence and absence of CCIs for different turbulence conditions in Fig. 3(a) and pointing errors in Fig. 3(b) when the best relay ($k={{N}_{r}}$) is available. We observe that the interference-free system illustrates better BER performance compared to the interference-limited system. In addition, the BER performance will deteriorate as the turbulence strength increases. At high SNRs, for the same turbulence strength, the BER converges to the same values regardless of the value of CCIs. This result shows that the effects of CCIs can be ignored at high SNR when the average interference power is fixed. Moreover, we compare the BER performance between the case with less interference and the case without interference. It is observed that the BER curves with negligible CCIs (e.g., ${{\bar {\gamma }}_{I}}= -30 \ {\rm dB}$) coincide with the BER curves without CCIs, indicating that when the CCIs approach zero, interference-limited cases (Eqs. (2526)) converge to the interference-free cases (Eqs. (2731)), which further confirms the accuracy of our expressions. In Fig. 3(b), we observe that the system with CCIs (e.g., ${{\bar {\gamma }}_{I}}= 15 \ {\rm dB}$) yields worse BER performance compared to the system without CCIs. It is clear from the figure that as pointing errors decrease, the average BER drops. For the same pointing errors, as the average SNR increases, the BER difference between the interference-free system and interference-limited system gradually decreases; at high SNRs, the BER converges to the same values regardless of the value of CCIs. Again, the results show that the effects of CCIs are negligible at high SNR.

 figure: Fig. 3.

Fig. 3. The effect of CCIs on the average BER of BPSK modulation with $k={{N}_{r}}=5$ for (a) different turbulence conditions and (b) different pointing errors.

Download Full Size | PDF

Figure 4 plots the average BER with respect to the average SNR for different number of interferers $N$ under both the best relay ($k={{N}_{r}}$) and the worst relay ($k=1$) scenarios by considering fixed average interference power in Fig. 4(a) and the average interference power proportional to the transmitted power in Fig. 4(b). In Fig. 4(a), we observe that, for the same $N$, selecting the best relay results in the best system performance for a wide range of SNRs. In addition, increasing $N$ leads to the BER performance degradation for a wide range of SNRs. At high SNRs, we note that the BER converges to the same values and no BER floor appears. This result shows that the CCIs and rank of the selected relay have no impact on performance at high SNRs. This is because when the interference power is fixed, as the average SNR increases, the influence of the FSO link on the average BER dominates, while the influence of RF links on the average BER can be ignored. In addition, by computing the corresponding parameters, we find that the FSO link parameter determines the diversity order, which further confirms that the FSO link dominates at high SNR. In Fig. 4(b), it is observed that by increasing the average SNR, the BER performance improves; however, as the average SNR increases, the BER curve saturates, and BER floors take place, meaning that further increasing the average SNR will not improve the system BER performance. This is because that interference-limited RF link becomes dominant. Note that in this case, the BER does not converge to the same values.

 figure: Fig. 4.

Fig. 4. BER of BPSK modulation versus the average SNR for different number of interferers with (a) ${{\bar {\gamma }}_{I}}=15\ {\rm dB}$ and (b) ${{{P}_{s}}}/{{{P}_{i}}}=10\ {\rm dB}$.

Download Full Size | PDF

Figure 5 illustrates the variations of the ergodic capacity in the presence and absence of CCIs when $k={{N}_{r}}$ is available, and when only $k=1$ is available. The analytical results based on (Eqs. (3941)) match with the MC simulations, indicating the accuracy of our derivation. As observed, the system without CCIs shows better ergodic capacity performance than the system with CCIs. In addition, the best relay performs much better than the worst relay. Furthermore, compared to the system without CCIs, the difference in the ergodic capacity between the best relay and the worst relay increases when CCI is present. This result shows that implementing the PRS technique can combat the effects of CCIs.

 figure: Fig. 5.

Fig. 5. The effect of CCIs on the ergodic capacity for different rank of the selected relay with ${{N}_{r}}=5$ and ${{\bar {\gamma }}_{I}}=15\ {\rm dB}$.

Download Full Size | PDF

Figure 6 plots the ergodic capacity with respect to i) rank of the selected relay $k$ and ii) number of relays ${{N}_{r}}$ for fixed average interference power in Fig. 6(a) and the average interference power proportional to the transmitted power in Fig. 6(b). In Fig. 6(a), we observe that the increasing the interference power leads to decrease in the ergodic capacity. When $k$ is changed from 1 to 5 for ${{N}_{r}}=5$, $k=5$ outperforms $k=1$ in the system performance. Therefore, the rank of the selected relay has a significant impact on the system performance. When ${{N}_{r}}=k=1$, there will be no relay selection procedure. Compared to the system with single relay, when PRS with ${{N}_{r}}=k=5$ is implemented, the ergodic capacity increases. In fact, when increasing ${{N}_{r}}$, a stronger CSI is used for relay selection. Therefore, to serve the dense cells without throughput perturbation, the number of relays must be large enough to primarily handle possible power shortage/outage for further communications [29]. In Fig. 6(b), we observe that when $k$ is changed from 1 to 5 for ${{N}_{r}}=5$, $k=5$ has better capacity performance than $k=1$. Compared to the system with single relay for ${{N}_{r}}=k=1$, the ergodic capacity increases when implementing PRS with ${{N}_{r}}=k=5$. As the interference power increases, the ergodic capacity decreases. Furthermore, at high SNRs, capacity ceilings happen, meaning that increasing the average SNR further does not yield performance improvements. This phenomenon indicates that the diversity order is zero.

 figure: Fig. 6.

Fig. 6. Ergodic capacity versus the average SNR for different number of relays and rank of the selected relay with (a) ${{\bar {\gamma }}_{I}}=\left \{ 5,\ 15 \right \}\ {\rm dB}$ and (b) ${{{P}_{s}}}/{{{P}_{i}}}\;=\left \{ 5,\ 15 \right \}\ {\rm dB}$.

Download Full Size | PDF

6. Conclusion

We have investigated the performance of a dual-hop mixed RF/FSO VG AF relaying system with PRS in the absence and presence of co-channel interferences, where PRS-aided RF, interference, and FSO links are all characterized as generalized channel models. Specifically, the PRS-aided RF link and the CCIs at the relay node are all modeled by $\kappa$-$\mu$ shadowed distributions, whereas the FSO link unifies GG, $\mathcal {M}$, and Fisher-Snedecor $\mathcal {F}$ distributions for atmospheric turbulence along with pointing errors for different detection modes. For the considered system, we first derived unified closed-form expressions for the CDF with and without CCIs for different application scenarios. Based on the above expressions, both interference-free and interference-limited receptions at the relay node were studied by deriving new expressions for the average BER and ergodic capacity. Moreover, the asymptotic expressions of the average BER were also derived. We have verified the analytical results through the MC simulations. The results are consistent with previous findings, but due to adopting generalized channel models, our derived results are more general than previously reported results.

Funding

National Natural Science Foundation of China (61705053).

Disclosures

The authors declare no conflicts of interest.

Data Availability

Data underlying the results presented in this paper were generated using the equations herein.

Supplemental document

See Supplement 1 for supporting content.

References

1. E. Lee, J. Park, D. Han, et al., “Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links,” IEEE Photonics Technol. Lett. 23(21), 1642–1644 (2011). [CrossRef]  

2. I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “Impact of pointing errors on the performance of mixed RF/FSO dual-hop transmission systems,” IEEE Wireless Commun. Lett. 2(3), 351–354 (2013). [CrossRef]  

3. H. Samimi and M. Uysal, “End-to-end performance of mixed RF/FSO transmission systems,” J. Opt. Commun. Netw. 5(11), 1139–1144 (2013). [CrossRef]  

4. S. Anees and M. R. Bhatnagar, “Performance of an amplify-and-forward dual-hop asymmetric RF-FSO communication system,” J. Opt. Commun. Netw. 7(2), 124–135 (2015). [CrossRef]  

5. J. Zhang, L. Dai, Y. Zhang, et al., “Unified performance analysis of mixed radio frequency/free-space optical dual-hop transmission systems,” J. Lightwave Technol. 33(11), 2286–2293 (2015). [CrossRef]  

6. E. Zedini, I. S. Ansari, and M.-S. Alouini, “Performance analysis of mixed Nakagami-m and Gamma-Gamma dual-hop FSO transmission systems,” IEEE Photonics J. 7(1), 1–20 (2015). [CrossRef]  

7. L. Yang, M. O. Hasna, and I. S. Ansari, “Unified performance analysis for multiuser mixed η-μ and $\mathcal {M}$-distribution dual-hop RF/FSO systems,” IEEE Trans. Commun. 65(8), 1 (2017). [CrossRef]  

8. L. Yang, M. O. Hasna, and X. Gao, “Performance of mixed RF/FSO with variable gain over generalized atmospheric turbulence channels,” IEEE J. Sel. Areas Commun. 33(9), 1913–1924 (2015). [CrossRef]  

9. G. Xu and Z. Song, “Performance analysis for mixed κ-μ fading and $\mathcal {M}$-distribution dual-hop radio frequency/free space optical communication systems,” IEEE Trans. Wireless Commun. 20(3), 1517–1528 (2021). [CrossRef]  

10. P. V. Trinh, T. C. Thang, and A. T. Pham, “Mixed mmwave RF/FSO relaying systems over generalized fading channels with pointing errors,” IEEE Photonics J. 9, 1 (2016). [CrossRef]  

11. E. Zedini, H. Soury, and M.-S. Alouini, “On the performance analysis of dual-hop mixed FSO/RF systems,” IEEE Trans. Wireless Commun. 15(5), 3679–3689 (2016). [CrossRef]  

12. Q. Sun, Z. Zhang, Y. Zhang, et al., “Performance analysis of dual-hop wireless systems over mixed FSO/RF fading channel,” IEEE Access 9, 85529–85542 (2021). [CrossRef]  

13. J. Ding, X. Xie, L. Wang, et al., “Performance of dual-hop FSO/RF systems with fixed-gain relaying over fisher–snedecor $\mathcal {F}$ and κ-μ shadowed fading channels,” Appl. Opt. 61(8), 2079–2088 (2022). [CrossRef]  

14. J. Ding, X. Xie, L. Tan, et al., “Dual-hop RF/FSO systems over κ-μ shadowed and fisher-snedecor $\mathcal {F}$ fading channels with non-zero boresight pointing errors,” J. Lightwave Technol. 40(3), 708–719 (2022). [CrossRef]  

15. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001). [CrossRef]  

16. A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, et al., “A unifying statistical model for atmospheric optical scintillation,” Numer. simulations of physical and engineering processes 181, 181–205 (2011). [CrossRef]  

17. K. P. Peppas, G. C. Alexandropoulos, E. D. Xenos, et al., “The fischer-snedecor $\mathcal {F}$-distribution model for turbulence-induced fading in free-space optical systems,” J. Lightwave Technol. 38(6), 1286–1295 (2020). [CrossRef]  

18. H. AlQuwaiee, H.-C. Yang, and M.-S. Alouini, “On the asymptotic capacity of dual-aperture FSO systems with generalized pointing error model,” IEEE Trans. Wireless Commun. 15(9), 6502–6512 (2016). [CrossRef]  

19. R. Boluda-Ruiz, A. García-Zambrana, C. Castillo-Vázquez, et al., “Novel approximation of misalignment fading modeled by Beckmann distribution on free-space optical links,” Opt. Express 24(20), 22635–22649 (2016). [CrossRef]  

20. J. F. Paris, “Statistical characterization of κ-μ shadowed fading,” IEEE Trans. Veh. Technol. 63(2), 518–526 (2014). [CrossRef]  

21. E. Soleimani-Nasab and M. Uysal, “Generalized performance analysis of mixed RF/FSO cooperative systems,” IEEE Trans. Wireless Commun. 15(1), 714–727 (2016). [CrossRef]  

22. A. Upadhya, V. K. Dwivedi, and G. K. Karagiannidis, “On the effect of interference and misalignment error in mixed RF/FSO systems over generalized fading channels,” IEEE Trans. Commun. 68(6), 3681–3695 (2020). [CrossRef]  

23. Z. Wang, W. Shi, and W. Liu, “Performance analysis of mixed RF/FSO system with CCI,” IET Commun. 13(14), 2199–2206 (2019). [CrossRef]  

24. I. Trigui, P. D. Diamantoulakis, S. Affes, et al., “Shadowed FSO/mmWave systems with interference,” IEEE Trans. Commun. 67(9), 6256–6267 (2019). [CrossRef]  

25. J. Ding, D. Kang, X. Xie, et al., “Joint effects of co-channel interferences and pointing errors on dual-hop mixed RF/FSO fixed-gain and variable-gain relaying systems,” IEEE Photonics J. 15(1), 1–11 (2023). [CrossRef]  

26. S. S. Ikki and M. H. Ahmed, “Performance of multiple-relay cooperative diversity systems with best relay selection over rayleigh fading channels,” EURASIP J. Adv. Signal Process. 2008(1), 580368 (2008). [CrossRef]  

27. M. I. Petkovic, A. M. Cvetkovic, G. T. Djordjevic, et al., “Partial relay selection with outdated channel state estimation in mixed RF/FSO systems,” J. Lightwave Technol. 33(13), 2860–2867 (2015). [CrossRef]  

28. I. Krikidis, J. Thompson, S. Mclaughlin, et al., “Amplify-and-forward with partial relay selection,” IEEE Commun. Lett. 12(4), 235–237 (2008). [CrossRef]  

29. E. Balti and M. Guizani, “Mixed RF/FSO cooperative relaying systems with co-channel interference,” IEEE Trans. Commun. 66(9), 4014–4027 (2018). [CrossRef]  

30. S. B. Bambiwal, A. Upadhya, R. S. Yaduvanshi, et al., “Partial relay selection for combating the effects of co-channel interference in RF/FSO cooperative relaying,” Opt. Commun. 475, 126186 (2020). [CrossRef]  

31. G. N. Kamga, S. Aïssa, T. R. Rasethuntsa, et al., “Mixed RF/FSO communications with outdated-CSI-based relay selection under double generalized gamma turbulence, generalized pointing errors, and nakagami-m fading,” IEEE Trans. Wireless Commun. 20(5), 2761–2775 (2021). [CrossRef]  

32. M. I. Petkovic, A. M. Cvetkovic, G. T. Djordjevic, et al., “Outage performance of the mixed RF/FSO relaying channel in the presence of interference,” Wireless Pers. Commun. 96(2), 2999–3014 (2017). [CrossRef]  

33. A. H. Abd El-Malek, A. M. Salhab, S. A. Zummo, et al., “Effect of RF interference on the security-reliability tradeoff analysis of multiuser mixed RF/FSO relay networks with power allocation,” J. Lightwave Technol. 35(9), 1490–1505 (2017). [CrossRef]  

34. O. M. S. Al-Ebraheemy, A. M. Salhab, M. El-Absi, et al., “Performance analysis of mixed interference aligned MIMO RF/unified FSO DF relaying with heterodyne detection and two IMDD models,” IEEE Access 8, 93297–93308 (2020). [CrossRef]  

35. A. Goel and R. Bhatia, “Joint impact of interference and hardware impairments on the performance of mixed RF/FSO cooperative relay networks,” Opt. Quantum Electron. 53(9), 530 (2021). [CrossRef]  

36. S. L. Cotton, “Human body shadowing in cellular device-to-device communications: channel modeling using the shadowed κ-μ fading model,” IEEE J. Sel. Areas Commun. 33(1), 111–119 (2015). [CrossRef]  

37. Y. J. Chun, S. L. Cotton, H. S. Dhillon, et al., “A comprehensive analysis of 5G heterogeneous cellular systems operating over κ-μ shadowed fading channels,” IEEE Trans. Wireless Commun. 16(11), 6995–7010 (2017). [CrossRef]  

38. M. Arti, “Beamforming and combining based scheme over κ-μ shadowed fading satellite channels,” IET Commun. 10(15), 2001–2009 (2016). [CrossRef]  

39. J. D. V. Sánchez, D. P. M. Osorio, F. J. López-Martínez, et al., “Information-theoretic security of MIMO networks under κ-μ shadowed fading channels,” IEEE Trans. Veh. Technol. 70(7), 6302–6318 (2021). [CrossRef]  

40. F. J. Lopez-Martinez, J. F. Paris, and J. M. Romero-Jerez, “The κ- μ shadowed fading model with integer fading parameters,” IEEE Trans. Veh. Technol. 66(9), 7653–7662 (2017). [CrossRef]  

41. H. A. David and H. N. Nagaraja, Order statistics (John Wiley & Sons, 2004).

42. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products (Academic Press, New York, NY, USA, 2014).

43. F. W. Olver, D. W. Lozier, R. F. Boisvert, et al., NIST handbook of mathematical functions hardback and CD-ROM (Cambridge university press, 2010).

44. A. A. Kilbas, H-transforms: Theory and Applications (CRC Press, Boca Raton, FL, USA, 2004).

45. A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-function: theory and applications (Springer, Berlin, Germany, 2009).

46. I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “Performance analysis of free-space optical links over málaga ($\mathcal {M}$) turbulence channels with pointing errors,” IEEE Trans. Wireless Commun. 15(1), 91–102 (2016). [CrossRef]  

47. A. Upadhya, V. K. Dwivedi, and G. Singh, “Multiuser diversity for mixed RF/FSO cooperative relaying in the presence of interference,” Opt. Commun. 442, 77–83 (2019). [CrossRef]  

48. N. S. Ferdinand, N. Rajatheva, and M. Latva-aho, “Effects of feedback delay in partial relay selection over nakagami-m fading channels,” IEEE Trans. Veh. Technol. 61(4), 1620–1634 (2012). [CrossRef]  

49. I. S. Ansari, S. Al-Ahmadi, F. Yilmaz, et al., “A new formula for the BER of binary modulations with dual-branch selection over generalized-K composite fading channels,” IEEE Trans. Commun. 59(10), 2654–2658 (2011). [CrossRef]  

50. A. Prudnikov, Y. A. Brychkov, and O. Marichev, Integrals and series Volume 3: More special functions (Taylor and Francis, Oxford, U.K., 2003).

51. Wolfram Research Inc., “The Wolfram Functions Site,” [Online]. Available: http://functions.wolfram.com.

52. P. Mittal and K. Gupta, “An integral involving generalized function of two variables,” in Proc. Indian Acad. Sci.-Section A, Springer, vol. 75 (1972), pp. 117–123.

53. S. Malik, P. Saxena, and Y. H. Chung, “Performance analysis of a UAV-based IRS-assisted hybrid RF/FSO link with pointing and phase shift errors,” J. Opt. Commun. Netw. 14(4), 303–315 (2022). [CrossRef]  

54. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, 10th ed. (Academic, New York, NY, USA, 1972).

55. F. Yilmaz and M.-S. Alouini, “An MGF-based capacity analysis of equal gain combining over fading channels,” in 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, (2010), pp. 945–950.

56. A. A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” J. Lightwave Technol. 25(7), 1702–1710 (2007). [CrossRef]  

Supplementary Material (1)

NameDescription
Supplement 1       Supplement 1

Data Availability

Data underlying the results presented in this paper were generated using the equations herein.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. CDF of $\left ( a \right )$ ${{\gamma }_{1\left ( k \right )}}$ and $\left ( b \right )$ ${{\gamma }_{1\left ( k \right )}}^{\rm eff}$ for different parameter combinations in comparison with existing models.
Fig. 2.
Fig. 2. The effect of CCIs on the average BER of DBPSK modulation for different detection modes with ${{N}_{r}}=5$ and $k=1$.
Fig. 3.
Fig. 3. The effect of CCIs on the average BER of BPSK modulation with $k={{N}_{r}}=5$ for (a) different turbulence conditions and (b) different pointing errors.
Fig. 4.
Fig. 4. BER of BPSK modulation versus the average SNR for different number of interferers with (a) ${{\bar {\gamma }}_{I}}=15\ {\rm dB}$ and (b) ${{{P}_{s}}}/{{{P}_{i}}}=10\ {\rm dB}$.
Fig. 5.
Fig. 5. The effect of CCIs on the ergodic capacity for different rank of the selected relay with ${{N}_{r}}=5$ and ${{\bar {\gamma }}_{I}}=15\ {\rm dB}$.
Fig. 6.
Fig. 6. Ergodic capacity versus the average SNR for different number of relays and rank of the selected relay with (a) ${{\bar {\gamma }}_{I}}=\left \{ 5,\ 15 \right \}\ {\rm dB}$ and (b) ${{{P}_{s}}}/{{{P}_{i}}}\;=\left \{ 5,\ 15 \right \}\ {\rm dB}$.

Tables (3)

Tables Icon

Table 1. Summary of dual-hop mixed RF/FSO systems with multiple relays or CCIs

Tables Icon

Table 2. Unified parameters for the PDF of f γ 2 ( k ) ( γ )

Tables Icon

Table 3. Simulation parameter settings

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

r 1 ( k ) = h s r ( k ) x + i = 1 N h i x i + n s r ( k ) ,
G = 1 / | h s r ( k ) | 2 P s + i = 1 N | h i | 2 P i + N 0 .
γ V = γ 1 ( k ) γ 2 ( k ) γ 1 ( k ) + γ 2 ( k ) + γ 2 ( k ) γ I + γ I + 1 = γ 1 ( k ) e f f γ 2 ( k ) γ 1 ( k ) e f f + γ 2 ( k ) + 1 ,
F γ 1 ( ) ( γ ) = 1 j = 1 μ m ( γ Δ 1 ) μ m j exp ( γ Δ 1 ) ( μ m j ) ! z = μ m + 1 j μ m A 1 , μ m + 1 z j = 1 m ( γ Δ 2 ) m j exp ( γ Δ 2 ) ( m j ) ! z = m + 1 j m A 2 , m + 1 z ,
F γ 1 ( ) ( γ ) = 1 j = 0 m 1 ( γ Δ 2 ) m 1 j e γ Δ 2 ( m 1 j ) ! z = m μ + 1 T ( j ) m μ B m μ z ,
T ( j ) = { j + 1 ,  for  0 j m μ m μ + 1 , otherwise .
F γ 1 ( k ) ( γ ) = [ F γ 1 ( ) ( γ ) ] k l 1 = 0 N r k ( k + l 1 1 k 1 ) [ 1 F γ 1 ( ) ( γ ) ] l 1 .
F γ 1 ( k ) ( γ ) = n 1 = 0 k ( 1 ) n 1 ( k n 1 ) l 1 = 0 N r k ( k + l 1 1 k 1 ) c 1 = 0 n 1 + l 1 ( n 1 + l 1 c 1 ) ς A ς B 1 γ R 1 e O 1 γ ,
ς A = p 1 + + p μ m = c 1 ( c 1 p 1 , p 2 , , p μ m ) × [ i = 1 μ m ( 1 ( μ m i ) ! Δ 1 ( μ m i ) z = μ m + 1 i μ m A 1 , μ m + 1 z ) p i ] ,
ς B 1 = s 1 + + s m = n 1 + l 1 c 1 ( n 1 + l 1 c 1 s 1 , s 2 , , s m ) [ t = 1 m ( 1 ( m t ) ! Δ 2 ( m t ) z = m + 1 t m A 2 , m + 1 z ) s t ] .
F γ 1 ( k ) ( γ ) = n 1 = 0 k ( 1 ) n 1 ( k n 1 ) l 1 = 0 N r k ( k + l 1 1 k 1 ) ς B 2 γ R 2 e O 2 γ ,
ς B 2 = p 0 + p 1 + + p m 1 = n 1 + l 1 ( n 1 + l 1 p 0 , p 1 , , p m 1 ) × [ i = 0 m 1 ( 1 ( m 1 i ) ! Δ 2 m 1 i z = m μ + 1 T ( i ) m μ B m μ z ) p i ] .
f γ I ( γ ) = = 0 M X C X , γ m X , 1 ( m X , 1 ) ! Ω X , m X , e γ Ω X , ,
F γ I ( γ ) = 1 = 0 M X C X , e γ Ω X , t = 0 m X , 1 1 t ! ( γ Ω X , ) t .
f γ 2 ( k ) ( γ ) = ψ γ 1 v = 1 P ζ v H p , q m , n [ C T , v γ 1 r | ( a v , w , α v , w ) w = 1 : p ( b v , w , β v , w ) w = 1 : q ] ,
F γ 2 ( k ) ( γ ) = 1 ψ v = 1 P ζ v H p + 1 , q + 1 m + 1 , n [ C T , v γ 1 r | ( a v , w , α v , w ) w = 1 : p , ( 1 , 1 r ) ( 0 , 1 r ) , ( b v , w , β v , w ) w = 1 : q ] .
F γ V ( γ ) = F γ 1 ( k ) e f f ( γ ) + F γ 2 ( k ) ( γ ) F γ 1 ( k ) e f f ( γ ) F γ 2 ( k ) ( γ ) ,
F γ 1 ( k ) e f f ( γ ) = 1 + n 1 = 0 n 1 0 l 1 0 k ( 1 ) n 1 ( k n 1 ) l 1 = 0 N r k ( k + l 1 1 k 1 ) c 1 = 0 n 1 + l 1 ( n 1 + l 1 c 1 ) × η A η B 1 = 0 M X s = 0 S 1 ( S 1 s ) C X , Ω X , s γ S 1 e P 1 γ Γ ( m X , ) G 1 , 1 1 , 1 [ P 1 Ω X , γ | 1 m X , s 0 ] ,
η A = p 1 + + p μ m = c 1 ( c 1 p 1 , p 2 , , p μ m ) × [ i = 1 μ m ( 1 ( μ m i ) ! Δ 1 ( μ m i ) z = μ m + 1 i μ m A 1 , μ m + 1 z ) p i ] ,
η B 1 = s 1 + + s m = n 1 + l 1 c 1 ( n 1 + l 1 c 1 s 1 , s 2 , , s m ) [ t = 1 m ( 1 ( m t ) ! Δ 2 ( m t ) z = m + 1 t m A 2 , m + 1 z ) s t ] .
F γ 1 ( k ) e f f ( γ ) = 1 + n 1 = 0 n 1 0 l 1 0 k ( 1 ) n 1 ( k n 1 ) l 1 = 0 N r k ( k + l 1 1 k 1 ) × η B 2 = 0 M X s = 0 S 2 ( S 2 s ) C X , Ω X , s γ S 2 e P 2 γ Γ ( m X , ) G 1 , 1 1 , 1 [ Ω X , P 2 γ | 1 m X , s 0 ] ,
η B 2 = p 0 + p 1 + + p m 1 = n 1 + l 1 ( n 1 + l 1 p 0 , p 1 , , p m 1 ) × [ i = 0 m 1 ( 1 ( m 1 i ) ! Δ 2 m 1 i z = m μ + 1 T ( i ) m μ B m μ z ) p i ] .
F γ V ( γ ) = F γ 1 ( k ) ( γ ) + F γ 2 ( k ) ( γ ) F γ 1 ( k ) ( γ ) F γ 2 ( k ) ( γ ) .
P ¯ e V = q e p e 2 Γ ( p e ) 0 exp ( q e γ ) γ p e 1 F γ V ( γ ) d γ ,
P ¯ e V = 1 2 + ψ q e p e 2 Γ ( p e ) n 1 = 0 n 1 0 l 1 0 k ( 1 ) n 1 ( k n 1 ) l 1 = 0 N r k ( k + l 1 1 k 1 ) c 1 = 0 n 1 + l 1 ( n 1 + l 1 c 1 ) η A η B 1 × = 0 M X s = 0 S 1 ( S 1 s ) C X , Ω X , s Γ ( m X , ) ( q e + P 1 ) p e + S 1 v = 1 P ζ v H 1 , 0 : p + 1 , q + 1 : 1 , 1 0 , 1 : m + 1 , n : 1 , 1 [ ( 1 p e S 1 , 1 r , 1 ) : ( a v , w , α v , w ) w = 1 : p , ( 1 , 1 r ) : ( 1 m X , s , 1 ) : ( 0 , 1 r ) , ( b v , w , β v , w ) w = 1 : q : ( 0 , 1 ) | C T , v ( q e + P 1 ) 1 r , P 1 Ω X , q e + P 1 ] ,
P ¯ e V = 1 2 + ψ q e p e 2 Γ ( p e ) n 1 = 0 n 1 0 l 1 0 k ( 1 ) n 1 ( k n 1 ) l 1 = 0 N r k ( k + l 1 1 k 1 ) η B 2 × = 0 M X s = 0 S 2 ( S 2 s ) C X , Ω X , s Γ ( m X , ) ( q e + P 2 ) p e + S 2 v = 1 P ζ v H 1 , 0 : p + 1 , q + 1 : 1 , 1 0 , 1 : m + 1 , n : 1 , 1 [ ( 1 p e S 2 , 1 r , 1 ) : ( a v , w , α v , w ) w = 1 : p , ( 1 , 1 r ) : ( 1 m X , s , 1 ) : ( 0 , 1 r ) , ( b v , w , β v , w ) w = 1 : q : ( 0 , 1 ) | C T , v ( q e + P 2 ) 1 r , P 2 Ω X , q e + P 2 ] .
P ¯ e V = P V , 1 + P V , 2 ,
P V , 1 = 1 2 ψ 2 Γ ( p e ) v = 1 P ζ v H p + 2 , q + 1 m + 1 , n + 1 [ C T , v q e 1 r | ( 1 p e , 1 r ) , ( a v , w , α v , w ) w = 1 : p , ( 1 , 1 r ) ( 0 , 1 r ) , ( b v , w , β v , w ) w = 1 : q ] ,
P V , 2 = ψ q e p e 2 Γ ( p e ) n 1 = 0 k ( 1 ) n 1 ( k n 1 ) l 1 = 0 N r k ( k + l 1 1 k 1 ) c 1 = 0 n 1 + l 1 ( n 1 + l 1 c 1 ) ς A ς B 1 ( q e + O 1 ) p e R 1 × v = 1 P ζ v H p + 2 , q + 1 m + 1 , n + 1 [ C T , v ( q e + O 1 ) 1 r | ( 1 p e R 1 , 1 r ) , ( a v , w , α v , w ) w = 1 : p , ( 1 , 1 r ) ( 0 , 1 r ) , ( b v , w , β v , w ) w = 1 : q ] .
P ¯ e V = P V , 1 + P V , 3 ,
P V , 3 = ψ q e p e 2 Γ ( p e ) n 1 = 0 k ( 1 ) n 1 ( k n 1 ) l 1 = 0 N r k ( k + l 1 1 k 1 ) ς B 2 ( q e + O 2 ) p e R 2 × v = 1 P ζ v H p + 2 , q + 1 m + 1 , n + 1 [ C T , v ( q e + O 2 ) 1 r | ( 1 p e R 2 , 1 r ) , ( a v , w , α v , w ) w = 1 : p , ( 1 , 1 r ) ( 0 , 1 r ) , ( b v , w , β v , w ) w = 1 : q ] .
P ¯ e V P a s y V , 1 + P a s y V , 2 ,
P a s y V , 1 1 2 Γ ( p e ) l 1 = 0 N r k ( k + l 1 1 k 1 ) j = 0 l 1 ( 1 ) j ( l 1 j ) Γ ( μ ( k + j ) + p e ) × q e μ ( k + j ) [ μ μ 1 m m ( 1 + κ ) μ Γ ( μ ) ( μ κ + m ) m ( 1 γ ¯ ) μ ] k + j .
P a s y V , 1 1 2 Γ ( p e ) l 1 = 0 N r k ( k + l 1 1 k 1 ) × j = 0 l 1 ( 1 ) j ( l 1 j ) [ μ μ 1 m m ( 1 + κ ) μ Γ ( μ ) ( μ κ + m ) m ( 1 γ ¯ ) μ ] k + j Γ ( μ ( k + j ) + p e ) × q e μ ( k + j ) = 0 M X C X , s = 0 μ ( k + j ) [ μ ( k + j ) ] ! s ! ( μ ( k + j ) s ) ! Γ ( m X , + s ) Ω X , s Γ ( m X , ) .
P a s y V , 2 Γ ( α G ξ mod 2 ) Γ ( β G ξ mod 2 ) Γ ( ξ mod 2 r + p e ) 2 Γ ( p e ) Γ ( α G ) Γ ( β G ) q e ξ mod 2 r ( α G β G φ μ r 1 r ) ξ mod 2 + ξ mod 2 Γ ( β G α G ) Γ ( α G r + p e ) q e α G r 2 α G Γ ( p e ) Γ ( α G ) Γ ( β G ) ( ξ mod 2 α G ) ( α G β G φ μ r 1 r ) α G + ξ mod 2 Γ ( α G β G ) Γ ( β G r + p e ) q e β G r 2 β G Γ ( p e ) Γ ( α G ) Γ ( β G ) ( ξ mod 2 β G ) ( α G β G φ μ r 1 r ) β G .
P a s y V , 2 ξ mod 2 A M 2 r + 1 Γ ( p e ) u = 1 β M b u [ r Γ ( α M ξ mod 2 ) Γ ( u ξ mod 2 ) Γ ( ξ mod 2 r + p e ) ξ mod 2 B M ξ mod 2 q e ξ mod 2 r μ r ξ mod 2 r + r Γ ( u α M ) Γ ( α M r + p e ) B M α M α M ( ξ mod 2 α M ) q e α M r μ r α M r + r Γ ( α M u ) Γ ( u r + p e ) B M u u ( ξ mod 2 u ) q e u r μ r u r ] .
P a s y V , 2 ξ mod 2 Γ ( a F + b F ) Γ ( a F r + p e ) q e a F r 2 Γ ( p e ) a F Γ ( a F ) Γ ( b F ) ( ξ mod 2 a F ) [ a F φ ( b F 1 ) μ r 1 r ] a F + Γ ( a F ξ mod 2 ) Γ ( b F + ξ mod 2 ) Γ ( ξ mod 2 r + p e ) 2 Γ ( p e ) Γ ( a F ) Γ ( b F ) q e ξ mod 2 r [ a F φ ( b F 1 ) μ r 1 r ] ξ mod 2 .
C ¯ V = ϱ 2 ln 2 0 1 F γ V ( γ ) 1 + ϱ γ d γ ,
C ¯ V ϱ 2 ln 2 i = 1 N p w i 1 F γ V ( x i ) 1 + ϱ x i ,
C ¯ V = ϱ ψ 2 ln 2 n 1 = 0 n 1 0 l 1 0 k ( 1 ) n 1 ( k n 1 ) l 1 = 0 N r k ( k + l 1 1 k 1 ) c 1 = 0 n 1 + l 1 ( n 1 + l 1 c 1 ) η A η B 1 P 1 1 S 1 × v = 1 P ζ v H 1 , 0 : 1 , 1 : p + 1 , q + 1 0 , 1 : 1 , 1 : m + 1 , n [ ( S 1 , 1 , 1 r ) : ( 0 , 1 ) : ( a v , w , α v , w ) w = 1 : p , ( 1 , 1 r ) : ( 0 , 1 ) : ( 0 , 1 r ) , ( b v , w , β v , w ) w = 1 : q | ϱ P 1 , C T , v P 1 1 r ] .
C ¯ V = ϱ ψ 2 ln 2 n 1 = 0 n 1 0 l 1 0 k ( 1 ) n 1 ( k n 1 ) l 1 = 0 N r k ( k + l 1 1 k 1 ) η B 2 P 2 1 S 2 × v = 1 P ζ v H 1 , 0 : 1 , 1 : p + 1 , q + 1 0 , 1 : 1 , 1 : m + 1 , n [ ( S 2 , 1 , 1 r ) : ( 0 , 1 ) : ( a v , w , α v , w ) w = 1 : p , ( 1 , 1 r ) : ( 0 , 1 ) : ( 0 , 1 r ) , ( b v , w , β v , w ) w = 1 : q | ϱ P 2 , C T , v P 2 1 r ] .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.