Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultrahigh extinction ratio and a low power silicon thermo-optic switch

Not Accessible

Your library or personal account may give you access

Abstract

The silicon thermo-optic switch (TOS) is one of the most fundamental and crucial blocks in large-scale silicon photonic integrated circuits (PICs). An energy-efficient silicon TOS with ultrahigh extinction ratio can effectively mitigate cross talk and reduce power consumption in optical systems. In this Letter, we demonstrate a silicon TOS based on cascading Mach–Zehnder interferometers (MZIs) with spiral thermo-optic phase shifters. The experimental results show that an ultrahigh extinction ratio of 58.8 dB is obtained, and the switching power consumption is as low as 2.32 mW/π without silicon air trench. The rise time and fall time of the silicon TOS are about 10.8 and 11.2 µs, respectively. Particularly, the figure of merit (FOM) has been improved compared with previously reported silicon TOS. The proposed silicon TOS may find potential applications in optical switch arrays, on-chip optical delay lines, etc.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Low-power and high-speed 2 × 2 thermo-optic MMI-MZI switch with suspended phase arms and heater-on-slab structure

Fei Duan, Kai Chen, Da Chen, and Yonglin Yu
Opt. Lett. 46(2) 234-237 (2021)

Silicon–organic hybrid thermo-optic switch based on a slot waveguide directional coupler

Li-Yuan Chiang, Chun-Ta Wang, Steve Pappert, and Paul K. L. Yu
Opt. Lett. 47(15) 3940-3943 (2022)

Low-loss and power-efficient phase shifter based on an optimized multimode spiral silicon waveguide

Shi Zhao, Jingye Chen, Daoxin Dai, and Yaocheng Shi
Opt. Lett. 48(17) 4653-4656 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.