Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultrafast laser-induced strain waves in thin ruthenium layers

Open Access Open Access

Abstract

We report on the time-dependent optical diffraction from ultra-high frequency laser-induced acoustic waves in thin layers of ruthenium deposited on glass substrates. We show that the thermo-optic and strain-optic effects dominate the optical response of Ru layers to a traveling longitudinal strain wave. In addition, we show the generation and detection of acoustic waves with a central frequency ranging from 130 GHz to 750 GHz on ultra-thin layers with thicknesses in the range of 1.2 - 20 nm. For these ultra-thin layers we measure a strong dependency of the speed of sound on the layer thickness and, thus, the frequency. This frequency-dependent speed of sound results in a frequency-dependent acoustic impedance mismatch between the ruthenium and the glass substrate, leading to a faster decay of the measured signals for increasing frequency. Furthermore, for these extremely high-frequency oscillations, we find that the frequency and phase remain constant for times longer than about 2 ps after optical excitation. Back extrapolation of the acquired acoustic signals to t = 0 gives a starting phase of −π/2. As this seems unlikely, we interpret this as an indication of possible dynamic changes in the phase/frequency of the acoustic wave in the first 2 ps after excitation.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
High acoustic strains in Si through ultrafast laser excitation of Ti thin-film transducers

Eirini Tzianaki, Makis Bakarezos, George D. Tsibidis, Yannis Orphanos, Panagiotis A. Loukakos, Constantine Kosmidis, Panos Patsalas, Michael Tatarakis, and Nektarios A. Papadogiannis
Opt. Express 23(13) 17191-17204 (2015)

Ultrafast formation of quantized interlayer vibrations in Bi2Se3 by photoinduced strain waves

Tae Gwan Park, Eon-Taek Oh, Sungwon Kim, Yunbo Ou, Jagadeesh Moodera, Hyunjung Kim, and Fabian Rotermund
Opt. Express 30(20) 35988-35998 (2022)

Time-frequency analysis assisted determination of ruthenium optical constants in the sub-EUV spectral range 8 nm – 23.75 nm

Qais Saadeh, Philipp Naujok, Vicky Philipsen, Philipp Hönicke, Christian Laubis, Christian Buchholz, Anna Andrle, Christian Stadelhoff, Heiko Mentzel, Anja Schönstedt, Victor Soltwisch, and Frank Scholze
Opt. Express 29(25) 40993-41013 (2021)

References

  • View by:

  1. J. Wang and C. Guo, “Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals,” Phys. Rev. B 75(18), 184304 (2007).
    [Crossref]
  2. P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
    [Crossref]
  3. H. Zhang, A. Antoncecchi, S. Edward, I. Setija, P. Planken, and S. Witte, “Unravelling phononic, opto-acoustic and mechanical properties of metals with light-driven hypersound,” Phys. Rev. Appl. 10, 1–12 (2020).
    [Crossref]
  4. S. Edward, H. Zhang, I. Setija, V. Verrina, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Detection of Hidden Gratings through Multilayer Nanostructures Using Light and Sound,” Phys. Rev. Appl. 14(1), 014015 (2020).
    [Crossref]
  5. S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Laser-induced ultrasonics for detection of low-amplitude grating through metal layers with finite roughness,” Opt. Express 28(16), 23374 (2020).
    [Crossref]
  6. V. Verrina, S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Photoacoustic detection of low duty cycle gratings through optically opaque layers,” Appl. Phys. Lett. 117(5), 051104 (2020).
    [Crossref]
  7. V. Verrina, S. Edward, H. Zhang, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Role of scattering by surface roughness in the photoacoustic detection of hidden micro-structures,” Appl. Opt. 59(30), 9499 (2020).
    [Crossref]
  8. A. Antoncecchi, H. Zhang, S. Edward, V. Verrina, P. C. M. Planken, and S. Witte, “High-resolution microscopy through optically opaque media using ultrafast photoacoustics,” Opt. Express 28(23), 33937 (2020).
    [Crossref]
  9. B. C. Daly, N. C. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, “Imaging nanostructures with coherent phonon pulses,” Appl. Phys. Lett. 84(25), 5180–5182 (2004).
    [Crossref]
  10. T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B 67(20), 205421 (2003).
    [Crossref]
  11. J. L. Arlein, S. E. Palaich, B. C. Daly, P. Subramonium, and G. A. Antonelli, “Optical pump-probe measurements of sound velocity and thermal conductivity of hydrogenated amorphous carbon films,” J. Appl. Phys. 104(3), 033508 (2008).
    [Crossref]
  12. G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49(21), 15046–15054 (1994).
    [Crossref]
  13. V. E. Gusev and O. B. Wright, “Ultrafast nonequilibrium dynamics of electrons in metals,” Phys. Rev. B 57(5), 2878–2888 (1998).
    [Crossref]
  14. O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69(11), 1668–1671 (1992).
    [Crossref]
  15. A. Devos and C. Lerouge, “Evidence of laser-wavelength effect in picosecond ultrasonics: Possible connection with interband transitions,” Phys. Rev. Lett. 86(12), 2669–2672 (2001).
    [Crossref]
  16. A. Devos, R. Cote, G. Caruyer, and A. Lefvre, “A different way of performing picosecond ultrasonic measurements in thin transparent films based on laser-wavelength effects,” Appl. Phys. Lett. 86(21), 211903 (2005).
    [Crossref]
  17. D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Technol. 126(2-3), 136–141 (2000).
    [Crossref]
  18. H. T. Grahn, H. J. Maris, and J. Tauc, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38(9), 6066–6074 (1988).
    [Crossref]
  19. B. Perrin, B. Bonello, J. C. Jeannet, and E. Romatet, “Picosecond ultrasonics study of metallic multilayers,” Phys. B 219-220, 681–683 (1996).
    [Crossref]
  20. A. Devos and A. Le Louarn, “Strong effect of interband transitions in the picosecond ultrasonics response of metallic thin films,” Phys. Rev. B 68(4), 045405 (2003).
    [Crossref]
  21. A. Devos and R. Cote, “Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect,” Phys. Rev. B 70(12), 125208 (2004).
    [Crossref]
  22. R. I. Tobey, E. H. Gershgoren, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, T. Feurer, and K. A. Nelson, “Nanoscale photothermal and photoacoustic transients probed with extreme ultraviolet radiation,” Appl. Phys. Lett. 85(4), 564–566 (2004).
    [Crossref]
  23. R. I. Tobey, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, D. H. Torchinsky, and K. A. Nelson, “Transient grating measurement of surface acoustic waves in thin metal films with extreme ultraviolet radiation,” Appl. Phys. Lett. 89(9), 091108 (2006).
    [Crossref]
  24. G. A. Antonelli, P. Zannitto, and H. J. Maris, “New method for the generation of surface acoustic waves of high frequency,” Phys. B 316-317, 377–379 (2002).
    [Crossref]
  25. T. Saito, O. Matsuda, M. Tomoda, and O. B. Wright, “Imaging gigahertz surface acoustic waves through the photoelastic effect,” J. Opt. Soc. Am. B 27(12), 2632 (2010).
    [Crossref]
  26. M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5(4), 285–288 (2009).
    [Crossref]
  27. R. M. Slayton, K. A. Nelson, and A. A. Maznev, “Transient grating measurements of film thickness in multilayer metal films,” J. Appl. Phys. 90(9), 4392–4402 (2001).
    [Crossref]
  28. J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111(2), 024902 (2012).
    [Crossref]
  29. M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61(2), 1101–1105 (2000).
    [Crossref]
  30. I. Nedelcu, R. W. Van De Kruijs, A. E. Yakshin, and F. Bijkerk, “Temperature-dependent nanocrystal formation in Mo Si multilayers,” Phys. Rev. B 76(24), 245404 (2007).
    [Crossref]
  31. A. Haase, V. Soltwisch, F. Scholze, and S. Braun, “Characterization of Mo/Si mirror interface roughness for different Mo layer thickness using resonant diffuse EUV scattering,” Proc. SPIE 9628, 962804 (2015).
    [Crossref]
  32. J. Hrbek, D. G. van Campen, and I. J. Malik, “The early stages of ruthenium oxidation,” J. Vac. Sci. Technol., A 13(3), 1409–1412 (1995).
    [Crossref]
  33. H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
    [Crossref]
  34. S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42(28), 5750 (2003).
    [Crossref]
  35. S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
    [Crossref]
  36. P. J. van Zwol, D. F. Vles, W. P. Voorthuijzen, M. Péter, H. Vermeulen, W. J. van der Zande, J. M. Sturm, R. W. van de Kruijs, and F. Bijkerk, “Emissivity of freestanding membranes with thin metal coatings,” J. Appl. Phys. 118(21), 213107 (2015).
    [Crossref]
  37. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings, vol. 50 of Springer Series in Optical Sciences (Springer Berlin Heidelberg, Berlin, Heidelberg, 1986).
  38. S. Edward, A. Antoncecchi, H. Zhang, H. Sielcken, S. Witte, and P. C. M. Planken, “Detection of periodic structures through opaque metal layers by optical measurements of ultrafast electron dynamics,” Opt. Express 26(18), 23380–23396 (2018).
    [Crossref]
  39. C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
    [Crossref]
  40. O. Matsuda, M. C. Larciprete, R. Li Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
    [Crossref]
  41. G. Samsonov, Handbook of the physicochemical properties of the elements (IFI-Plenum, New York - Washington, 1968).
  42. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” J. Exp. Theor. Phys. 39, 375–377 (1974).
  43. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34(6), 4129–4138 (1986).
    [Crossref]
  44. G. de Haan, V. Verrina, A. J. L. Adam, H. Zhang, and P. C. M. Planken, “Plasmonic enhancement of photoacoustic-induced reflection changes,” Appl. Opt. 60(24), 7304–7313 (2021).
    [Crossref]
  45. T. F. Crimmins, A. A. Maznev, and K. A. Nelson, “Transient grating measurements of picosecond acoustic pulses in metal films,” Appl. Phys. Lett. 74(9), 1344–1346 (1999).
    [Crossref]
  46. K. Uozumi, T. Nakada, and A. Kinbara, “Sound velocity and internal friction in vacuum deposited gold films,” Thin Solid Films 12(1), 67–70 (1972).
    [Crossref]
  47. P. J. Wang, C. C. Shen, K. Y. Chou, M. H. Ho, J. K. Sheu, and C. K. Sun, “Studying time-dependent contribution of hot-electron versus lattice-induced thermal-expansion response in ultra-Thin Au-nanofilms,” Appl. Phys. Lett. 117(15), 154101 (2020).
    [Crossref]
  48. K. Y. Chou, C. L. Wu, C. C. Shen, J. K. Sheu, and C. K. Sun, “Terahertz Photoacoustic Generation Using Ultrathin Nickel Nanofilms,” J. Phys. Chem. C 125(5), 3134–3142 (2021).
    [Crossref]
  49. C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser. Mater. Sci. Eng. 147, 012021 (2016).
    [Crossref]
  50. H. Zhang, A. Antoncecchi, S. Edward, P. Planken, and S. Witte, “Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane,” Phys. Rev. B 103(6), 064303 (2021).
    [Crossref]
  51. N. Medvedev and I. Milov, “Electron-phonon coupling in metals at high electronic temperatures,” Phys. Rev. B 102(6), 064302 (2020).
    [Crossref]
  52. I. Milov, I. A. Makhotkin, R. Sobierajski, N. Medvedev, V. Lipp, J. Chalupský, J. M. Sturm, K. Tiedtke, G. de Vries, M. Störmer, F. Siewert, R. van de Kruijs, E. Louis, I. Jacyna, M. Jurek, L. Juha, V. Hájková, V. Vozda, T. Burian, K. Saksl, B. Faatz, B. Keitel, E. Plönjes, S. Schreiber, S. Toleikis, R. Loch, M. Hermann, S. Strobel, H.-K. Nienhuys, G. Gwalt, T. Mey, H. Enkisch, and F. Bijkerk, “Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser,” Opt. Express 26(15), 19665 (2018).
    [Crossref]
  53. V. E. Gusev, “On the duration of acoustic pulses excited by subpicosecond laser action on metals,” Opt. Commun. 94(1-3), 76–78 (1992).
    [Crossref]
  54. M. Perner, S. Gresillon, J. März, G. Von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett. 85(4), 792–795 (2000).
    [Crossref]
  55. Y. Petrov, K. Migdal, N. Inogamov, V. Khokhlov, D. Ilnitsky, I. Milov, N. Medvedev, V. Lipp, and V. Zhakhovsky, “Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling,” Data Br. 28, 104980 (2020).
    [Crossref]
  56. J. H. Poynting, “On the transfer of energy in the electromagnetic field,” Philos. Trans. R. Soc. London 175, 343–361 (1884).
    [Crossref]

2021 (3)

G. de Haan, V. Verrina, A. J. L. Adam, H. Zhang, and P. C. M. Planken, “Plasmonic enhancement of photoacoustic-induced reflection changes,” Appl. Opt. 60(24), 7304–7313 (2021).
[Crossref]

K. Y. Chou, C. L. Wu, C. C. Shen, J. K. Sheu, and C. K. Sun, “Terahertz Photoacoustic Generation Using Ultrathin Nickel Nanofilms,” J. Phys. Chem. C 125(5), 3134–3142 (2021).
[Crossref]

H. Zhang, A. Antoncecchi, S. Edward, P. Planken, and S. Witte, “Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane,” Phys. Rev. B 103(6), 064303 (2021).
[Crossref]

2020 (9)

N. Medvedev and I. Milov, “Electron-phonon coupling in metals at high electronic temperatures,” Phys. Rev. B 102(6), 064302 (2020).
[Crossref]

P. J. Wang, C. C. Shen, K. Y. Chou, M. H. Ho, J. K. Sheu, and C. K. Sun, “Studying time-dependent contribution of hot-electron versus lattice-induced thermal-expansion response in ultra-Thin Au-nanofilms,” Appl. Phys. Lett. 117(15), 154101 (2020).
[Crossref]

Y. Petrov, K. Migdal, N. Inogamov, V. Khokhlov, D. Ilnitsky, I. Milov, N. Medvedev, V. Lipp, and V. Zhakhovsky, “Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling,” Data Br. 28, 104980 (2020).
[Crossref]

H. Zhang, A. Antoncecchi, S. Edward, I. Setija, P. Planken, and S. Witte, “Unravelling phononic, opto-acoustic and mechanical properties of metals with light-driven hypersound,” Phys. Rev. Appl. 10, 1–12 (2020).
[Crossref]

S. Edward, H. Zhang, I. Setija, V. Verrina, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Detection of Hidden Gratings through Multilayer Nanostructures Using Light and Sound,” Phys. Rev. Appl. 14(1), 014015 (2020).
[Crossref]

S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Laser-induced ultrasonics for detection of low-amplitude grating through metal layers with finite roughness,” Opt. Express 28(16), 23374 (2020).
[Crossref]

V. Verrina, S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Photoacoustic detection of low duty cycle gratings through optically opaque layers,” Appl. Phys. Lett. 117(5), 051104 (2020).
[Crossref]

V. Verrina, S. Edward, H. Zhang, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Role of scattering by surface roughness in the photoacoustic detection of hidden micro-structures,” Appl. Opt. 59(30), 9499 (2020).
[Crossref]

A. Antoncecchi, H. Zhang, S. Edward, V. Verrina, P. C. M. Planken, and S. Witte, “High-resolution microscopy through optically opaque media using ultrafast photoacoustics,” Opt. Express 28(23), 33937 (2020).
[Crossref]

2018 (2)

2016 (1)

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser. Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

2015 (4)

P. J. van Zwol, D. F. Vles, W. P. Voorthuijzen, M. Péter, H. Vermeulen, W. J. van der Zande, J. M. Sturm, R. W. van de Kruijs, and F. Bijkerk, “Emissivity of freestanding membranes with thin metal coatings,” J. Appl. Phys. 118(21), 213107 (2015).
[Crossref]

O. Matsuda, M. C. Larciprete, R. Li Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
[Crossref]

A. Haase, V. Soltwisch, F. Scholze, and S. Braun, “Characterization of Mo/Si mirror interface roughness for different Mo layer thickness using resonant diffuse EUV scattering,” Proc. SPIE 9628, 962804 (2015).
[Crossref]

2012 (1)

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111(2), 024902 (2012).
[Crossref]

2010 (1)

2009 (1)

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5(4), 285–288 (2009).
[Crossref]

2008 (1)

J. L. Arlein, S. E. Palaich, B. C. Daly, P. Subramonium, and G. A. Antonelli, “Optical pump-probe measurements of sound velocity and thermal conductivity of hydrogenated amorphous carbon films,” J. Appl. Phys. 104(3), 033508 (2008).
[Crossref]

2007 (2)

J. Wang and C. Guo, “Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals,” Phys. Rev. B 75(18), 184304 (2007).
[Crossref]

I. Nedelcu, R. W. Van De Kruijs, A. E. Yakshin, and F. Bijkerk, “Temperature-dependent nanocrystal formation in Mo Si multilayers,” Phys. Rev. B 76(24), 245404 (2007).
[Crossref]

2006 (2)

H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
[Crossref]

R. I. Tobey, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, D. H. Torchinsky, and K. A. Nelson, “Transient grating measurement of surface acoustic waves in thin metal films with extreme ultraviolet radiation,” Appl. Phys. Lett. 89(9), 091108 (2006).
[Crossref]

2005 (2)

A. Devos, R. Cote, G. Caruyer, and A. Lefvre, “A different way of performing picosecond ultrasonic measurements in thin transparent films based on laser-wavelength effects,” Appl. Phys. Lett. 86(21), 211903 (2005).
[Crossref]

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

2004 (3)

B. C. Daly, N. C. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, “Imaging nanostructures with coherent phonon pulses,” Appl. Phys. Lett. 84(25), 5180–5182 (2004).
[Crossref]

A. Devos and R. Cote, “Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect,” Phys. Rev. B 70(12), 125208 (2004).
[Crossref]

R. I. Tobey, E. H. Gershgoren, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, T. Feurer, and K. A. Nelson, “Nanoscale photothermal and photoacoustic transients probed with extreme ultraviolet radiation,” Appl. Phys. Lett. 85(4), 564–566 (2004).
[Crossref]

2003 (3)

S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42(28), 5750 (2003).
[Crossref]

A. Devos and A. Le Louarn, “Strong effect of interband transitions in the picosecond ultrasonics response of metallic thin films,” Phys. Rev. B 68(4), 045405 (2003).
[Crossref]

T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B 67(20), 205421 (2003).
[Crossref]

2002 (1)

G. A. Antonelli, P. Zannitto, and H. J. Maris, “New method for the generation of surface acoustic waves of high frequency,” Phys. B 316-317, 377–379 (2002).
[Crossref]

2001 (2)

R. M. Slayton, K. A. Nelson, and A. A. Maznev, “Transient grating measurements of film thickness in multilayer metal films,” J. Appl. Phys. 90(9), 4392–4402 (2001).
[Crossref]

A. Devos and C. Lerouge, “Evidence of laser-wavelength effect in picosecond ultrasonics: Possible connection with interband transitions,” Phys. Rev. Lett. 86(12), 2669–2672 (2001).
[Crossref]

2000 (3)

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61(2), 1101–1105 (2000).
[Crossref]

D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Technol. 126(2-3), 136–141 (2000).
[Crossref]

M. Perner, S. Gresillon, J. März, G. Von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett. 85(4), 792–795 (2000).
[Crossref]

1999 (1)

T. F. Crimmins, A. A. Maznev, and K. A. Nelson, “Transient grating measurements of picosecond acoustic pulses in metal films,” Appl. Phys. Lett. 74(9), 1344–1346 (1999).
[Crossref]

1998 (1)

V. E. Gusev and O. B. Wright, “Ultrafast nonequilibrium dynamics of electrons in metals,” Phys. Rev. B 57(5), 2878–2888 (1998).
[Crossref]

1996 (1)

B. Perrin, B. Bonello, J. C. Jeannet, and E. Romatet, “Picosecond ultrasonics study of metallic multilayers,” Phys. B 219-220, 681–683 (1996).
[Crossref]

1995 (1)

J. Hrbek, D. G. van Campen, and I. J. Malik, “The early stages of ruthenium oxidation,” J. Vac. Sci. Technol., A 13(3), 1409–1412 (1995).
[Crossref]

1994 (2)

G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49(21), 15046–15054 (1994).
[Crossref]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

1992 (2)

V. E. Gusev, “On the duration of acoustic pulses excited by subpicosecond laser action on metals,” Opt. Commun. 94(1-3), 76–78 (1992).
[Crossref]

O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69(11), 1668–1671 (1992).
[Crossref]

1988 (1)

H. T. Grahn, H. J. Maris, and J. Tauc, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38(9), 6066–6074 (1988).
[Crossref]

1986 (1)

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34(6), 4129–4138 (1986).
[Crossref]

1974 (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” J. Exp. Theor. Phys. 39, 375–377 (1974).

1972 (1)

K. Uozumi, T. Nakada, and A. Kinbara, “Sound velocity and internal friction in vacuum deposited gold films,” Thin Solid Films 12(1), 67–70 (1972).
[Crossref]

1884 (1)

J. H. Poynting, “On the transfer of energy in the electromagnetic field,” Philos. Trans. R. Soc. London 175, 343–361 (1884).
[Crossref]

Acioli, L. H.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

Adam, A. J. L.

Alameda, J.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42(28), 5750 (2003).
[Crossref]

Anisimov, S. I.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” J. Exp. Theor. Phys. 39, 375–377 (1974).

Antoncecchi, A.

H. Zhang, A. Antoncecchi, S. Edward, P. Planken, and S. Witte, “Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane,” Phys. Rev. B 103(6), 064303 (2021).
[Crossref]

H. Zhang, A. Antoncecchi, S. Edward, I. Setija, P. Planken, and S. Witte, “Unravelling phononic, opto-acoustic and mechanical properties of metals with light-driven hypersound,” Phys. Rev. Appl. 10, 1–12 (2020).
[Crossref]

S. Edward, H. Zhang, I. Setija, V. Verrina, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Detection of Hidden Gratings through Multilayer Nanostructures Using Light and Sound,” Phys. Rev. Appl. 14(1), 014015 (2020).
[Crossref]

V. Verrina, S. Edward, H. Zhang, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Role of scattering by surface roughness in the photoacoustic detection of hidden micro-structures,” Appl. Opt. 59(30), 9499 (2020).
[Crossref]

A. Antoncecchi, H. Zhang, S. Edward, V. Verrina, P. C. M. Planken, and S. Witte, “High-resolution microscopy through optically opaque media using ultrafast photoacoustics,” Opt. Express 28(23), 33937 (2020).
[Crossref]

S. Edward, A. Antoncecchi, H. Zhang, H. Sielcken, S. Witte, and P. C. M. Planken, “Detection of periodic structures through opaque metal layers by optical measurements of ultrafast electron dynamics,” Opt. Express 26(18), 23380–23396 (2018).
[Crossref]

Antonelli, G. A.

J. L. Arlein, S. E. Palaich, B. C. Daly, P. Subramonium, and G. A. Antonelli, “Optical pump-probe measurements of sound velocity and thermal conductivity of hydrogenated amorphous carbon films,” J. Appl. Phys. 104(3), 033508 (2008).
[Crossref]

G. A. Antonelli, P. Zannitto, and H. J. Maris, “New method for the generation of surface acoustic waves of high frequency,” Phys. B 316-317, 377–379 (2002).
[Crossref]

Aoki, T.

H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
[Crossref]

Aquila, A.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42(28), 5750 (2003).
[Crossref]

Arlein, J. L.

J. L. Arlein, S. E. Palaich, B. C. Daly, P. Subramonium, and G. A. Antonelli, “Optical pump-probe measurements of sound velocity and thermal conductivity of hydrogenated amorphous carbon films,” J. Appl. Phys. 104(3), 033508 (2008).
[Crossref]

Armstrong, M. R.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5(4), 285–288 (2009).
[Crossref]

Audouard, E.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111(2), 024902 (2012).
[Crossref]

Bajt, S.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42(28), 5750 (2003).
[Crossref]

Baker, S.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

Baracu, A.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser. Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Berg, G.

M. Perner, S. Gresillon, J. März, G. Von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett. 85(4), 792–795 (2000).
[Crossref]

Berg, K. J.

M. Perner, S. Gresillon, J. März, G. Von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett. 85(4), 792–795 (2000).
[Crossref]

Bijkerk, F.

I. Milov, I. A. Makhotkin, R. Sobierajski, N. Medvedev, V. Lipp, J. Chalupský, J. M. Sturm, K. Tiedtke, G. de Vries, M. Störmer, F. Siewert, R. van de Kruijs, E. Louis, I. Jacyna, M. Jurek, L. Juha, V. Hájková, V. Vozda, T. Burian, K. Saksl, B. Faatz, B. Keitel, E. Plönjes, S. Schreiber, S. Toleikis, R. Loch, M. Hermann, S. Strobel, H.-K. Nienhuys, G. Gwalt, T. Mey, H. Enkisch, and F. Bijkerk, “Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser,” Opt. Express 26(15), 19665 (2018).
[Crossref]

P. J. van Zwol, D. F. Vles, W. P. Voorthuijzen, M. Péter, H. Vermeulen, W. J. van der Zande, J. M. Sturm, R. W. van de Kruijs, and F. Bijkerk, “Emissivity of freestanding membranes with thin metal coatings,” J. Appl. Phys. 118(21), 213107 (2015).
[Crossref]

I. Nedelcu, R. W. Van De Kruijs, A. E. Yakshin, and F. Bijkerk, “Temperature-dependent nanocrystal formation in Mo Si multilayers,” Phys. Rev. B 76(24), 245404 (2007).
[Crossref]

Birleanu, C.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser. Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Bonello, B.

B. Perrin, B. Bonello, J. C. Jeannet, and E. Romatet, “Picosecond ultrasonics study of metallic multilayers,” Phys. B 219-220, 681–683 (1996).
[Crossref]

Bonn, M.

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61(2), 1101–1105 (2000).
[Crossref]

Bounhalli, M.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111(2), 024902 (2012).
[Crossref]

Bower, J. E.

B. C. Daly, N. C. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, “Imaging nanostructures with coherent phonon pulses,” Appl. Phys. Lett. 84(25), 5180–5182 (2004).
[Crossref]

Branciard, C.

B. C. Daly, N. C. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, “Imaging nanostructures with coherent phonon pulses,” Appl. Phys. Lett. 84(25), 5180–5182 (2004).
[Crossref]

Braun, S.

A. Haase, V. Soltwisch, F. Scholze, and S. Braun, “Characterization of Mo/Si mirror interface roughness for different Mo layer thickness using resonant diffuse EUV scattering,” Proc. SPIE 9628, 962804 (2015).
[Crossref]

Buma, T.

B. C. Daly, N. C. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, “Imaging nanostructures with coherent phonon pulses,” Appl. Phys. Lett. 84(25), 5180–5182 (2004).
[Crossref]

Burian, T.

Caruyer, G.

A. Devos, R. Cote, G. Caruyer, and A. Lefvre, “A different way of performing picosecond ultrasonic measurements in thin transparent films based on laser-wavelength effects,” Appl. Phys. Lett. 86(21), 211903 (2005).
[Crossref]

Chalupský, J.

Chapman, H. N.

Chou, K. Y.

K. Y. Chou, C. L. Wu, C. C. Shen, J. K. Sheu, and C. K. Sun, “Terahertz Photoacoustic Generation Using Ultrathin Nickel Nanofilms,” J. Phys. Chem. C 125(5), 3134–3142 (2021).
[Crossref]

P. J. Wang, C. C. Shen, K. Y. Chou, M. H. Ho, J. K. Sheu, and C. K. Sun, “Studying time-dependent contribution of hot-electron versus lattice-induced thermal-expansion response in ultra-Thin Au-nanofilms,” Appl. Phys. Lett. 117(15), 154101 (2020).
[Crossref]

Clift, M.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

Colombier, J. P.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111(2), 024902 (2012).
[Crossref]

Cote, R.

A. Devos, R. Cote, G. Caruyer, and A. Lefvre, “A different way of performing picosecond ultrasonic measurements in thin transparent films based on laser-wavelength effects,” Appl. Phys. Lett. 86(21), 211903 (2005).
[Crossref]

A. Devos and R. Cote, “Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect,” Phys. Rev. B 70(12), 125208 (2004).
[Crossref]

Craciun, S.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser. Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Crimmins, T. F.

T. F. Crimmins, A. A. Maznev, and K. A. Nelson, “Transient grating measurements of picosecond acoustic pulses in metal films,” Appl. Phys. Lett. 74(9), 1344–1346 (1999).
[Crossref]

Dai, Z. R.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

Daly, B. C.

J. L. Arlein, S. E. Palaich, B. C. Daly, P. Subramonium, and G. A. Antonelli, “Optical pump-probe measurements of sound velocity and thermal conductivity of hydrogenated amorphous carbon films,” J. Appl. Phys. 104(3), 033508 (2008).
[Crossref]

B. C. Daly, N. C. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, “Imaging nanostructures with coherent phonon pulses,” Appl. Phys. Lett. 84(25), 5180–5182 (2004).
[Crossref]

de Haan, G.

de Vries, G.

Denzler, D. N.

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61(2), 1101–1105 (2000).
[Crossref]

Devos, A.

A. Devos, R. Cote, G. Caruyer, and A. Lefvre, “A different way of performing picosecond ultrasonic measurements in thin transparent films based on laser-wavelength effects,” Appl. Phys. Lett. 86(21), 211903 (2005).
[Crossref]

A. Devos and R. Cote, “Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect,” Phys. Rev. B 70(12), 125208 (2004).
[Crossref]

A. Devos and A. Le Louarn, “Strong effect of interband transitions in the picosecond ultrasonics response of metallic thin films,” Phys. Rev. B 68(4), 045405 (2003).
[Crossref]

A. Devos and C. Lerouge, “Evidence of laser-wavelength effect in picosecond ultrasonics: Possible connection with interband transitions,” Phys. Rev. Lett. 86(12), 2669–2672 (2001).
[Crossref]

Edward, S.

H. Zhang, A. Antoncecchi, S. Edward, P. Planken, and S. Witte, “Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane,” Phys. Rev. B 103(6), 064303 (2021).
[Crossref]

A. Antoncecchi, H. Zhang, S. Edward, V. Verrina, P. C. M. Planken, and S. Witte, “High-resolution microscopy through optically opaque media using ultrafast photoacoustics,” Opt. Express 28(23), 33937 (2020).
[Crossref]

V. Verrina, S. Edward, H. Zhang, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Role of scattering by surface roughness in the photoacoustic detection of hidden micro-structures,” Appl. Opt. 59(30), 9499 (2020).
[Crossref]

S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Laser-induced ultrasonics for detection of low-amplitude grating through metal layers with finite roughness,” Opt. Express 28(16), 23374 (2020).
[Crossref]

V. Verrina, S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Photoacoustic detection of low duty cycle gratings through optically opaque layers,” Appl. Phys. Lett. 117(5), 051104 (2020).
[Crossref]

S. Edward, H. Zhang, I. Setija, V. Verrina, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Detection of Hidden Gratings through Multilayer Nanostructures Using Light and Sound,” Phys. Rev. Appl. 14(1), 014015 (2020).
[Crossref]

H. Zhang, A. Antoncecchi, S. Edward, I. Setija, P. Planken, and S. Witte, “Unravelling phononic, opto-acoustic and mechanical properties of metals with light-driven hypersound,” Phys. Rev. Appl. 10, 1–12 (2020).
[Crossref]

S. Edward, A. Antoncecchi, H. Zhang, H. Sielcken, S. Witte, and P. C. M. Planken, “Detection of periodic structures through opaque metal layers by optical measurements of ultrafast electron dynamics,” Opt. Express 26(18), 23380–23396 (2018).
[Crossref]

Edwards, N. V. G.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

Eichler, H. J.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings, vol. 50 of Springer Series in Optical Sciences (Springer Berlin Heidelberg, Berlin, Heidelberg, 1986).

Enkisch, H.

Faatz, B.

Faure, N.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111(2), 024902 (2012).
[Crossref]

Feldmann, J.

M. Perner, S. Gresillon, J. März, G. Von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett. 85(4), 792–795 (2000).
[Crossref]

Feurer, T.

R. I. Tobey, E. H. Gershgoren, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, T. Feurer, and K. A. Nelson, “Nanoscale photothermal and photoacoustic transients probed with extreme ultraviolet radiation,” Appl. Phys. Lett. 85(4), 564–566 (2004).
[Crossref]

Fujimoto, J. G.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

Funk, S.

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61(2), 1101–1105 (2000).
[Crossref]

Garrelie, F.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111(2), 024902 (2012).
[Crossref]

Gershgoren, E. H.

R. I. Tobey, E. H. Gershgoren, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, T. Feurer, and K. A. Nelson, “Nanoscale photothermal and photoacoustic transients probed with extreme ultraviolet radiation,” Appl. Phys. Lett. 85(4), 564–566 (2004).
[Crossref]

Glownia, J. H.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5(4), 285–288 (2009).
[Crossref]

Gomei, Y.

H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
[Crossref]

Grahn, H. T.

H. T. Grahn, H. J. Maris, and J. Tauc, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38(9), 6066–6074 (1988).
[Crossref]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34(6), 4129–4138 (1986).
[Crossref]

Grantham, S.

Gresillon, S.

M. Perner, S. Gresillon, J. März, G. Von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett. 85(4), 792–795 (2000).
[Crossref]

Gullikson, E.

Gullikson, E. M.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

Günter, P.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings, vol. 50 of Springer Series in Optical Sciences (Springer Berlin Heidelberg, Berlin, Heidelberg, 1986).

Guo, C.

J. Wang and C. Guo, “Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals,” Phys. Rev. B 75(18), 184304 (2007).
[Crossref]

Gusev, V. E.

P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
[Crossref]

V. E. Gusev and O. B. Wright, “Ultrafast nonequilibrium dynamics of electrons in metals,” Phys. Rev. B 57(5), 2878–2888 (1998).
[Crossref]

V. E. Gusev, “On the duration of acoustic pulses excited by subpicosecond laser action on metals,” Opt. Commun. 94(1-3), 76–78 (1992).
[Crossref]

Gwalt, G.

Haase, A.

A. Haase, V. Soltwisch, F. Scholze, and S. Braun, “Characterization of Mo/Si mirror interface roughness for different Mo layer thickness using resonant diffuse EUV scattering,” Proc. SPIE 9628, 962804 (2015).
[Crossref]

Hájková, V.

Hermann, M.

Ho, M. H.

P. J. Wang, C. C. Shen, K. Y. Chou, M. H. Ho, J. K. Sheu, and C. K. Sun, “Studying time-dependent contribution of hot-electron versus lattice-induced thermal-expansion response in ultra-Thin Au-nanofilms,” Appl. Phys. Lett. 117(15), 154101 (2020).
[Crossref]

Hohlfeld, J.

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61(2), 1101–1105 (2000).
[Crossref]

Holme, N. C.

B. C. Daly, N. C. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, “Imaging nanostructures with coherent phonon pulses,” Appl. Phys. Lett. 84(25), 5180–5182 (2004).
[Crossref]

Howard, W. M.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5(4), 285–288 (2009).
[Crossref]

Hrbek, J.

J. Hrbek, D. G. van Campen, and I. J. Malik, “The early stages of ruthenium oxidation,” J. Vac. Sci. Technol., A 13(3), 1409–1412 (1995).
[Crossref]

Ilnitsky, D.

Y. Petrov, K. Migdal, N. Inogamov, V. Khokhlov, D. Ilnitsky, I. Milov, N. Medvedev, V. Lipp, and V. Zhakhovsky, “Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling,” Data Br. 28, 104980 (2020).
[Crossref]

Inogamov, N.

Y. Petrov, K. Migdal, N. Inogamov, V. Khokhlov, D. Ilnitsky, I. Milov, N. Medvedev, V. Lipp, and V. Zhakhovsky, “Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling,” Data Br. 28, 104980 (2020).
[Crossref]

Ippen, E. P.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

Jacyna, I.

Jeannet, J. C.

B. Perrin, B. Bonello, J. C. Jeannet, and E. Romatet, “Picosecond ultrasonics study of metallic multilayers,” Phys. B 219-220, 681–683 (1996).
[Crossref]

Juha, L.

Jurek, M.

Kakutani, Y.

H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
[Crossref]

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” J. Exp. Theor. Phys. 39, 375–377 (1974).

Kapteyn, H. C.

R. I. Tobey, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, D. H. Torchinsky, and K. A. Nelson, “Transient grating measurement of surface acoustic waves in thin metal films with extreme ultraviolet radiation,” Appl. Phys. Lett. 89(9), 091108 (2006).
[Crossref]

R. I. Tobey, E. H. Gershgoren, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, T. Feurer, and K. A. Nelson, “Nanoscale photothermal and photoacoustic transients probed with extreme ultraviolet radiation,” Appl. Phys. Lett. 85(4), 564–566 (2004).
[Crossref]

Kawashima, K.

O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69(11), 1668–1671 (1992).
[Crossref]

Keitel, B.

Khokhlov, V.

Y. Petrov, K. Migdal, N. Inogamov, V. Khokhlov, D. Ilnitsky, I. Milov, N. Medvedev, V. Lipp, and V. Zhakhovsky, “Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling,” Data Br. 28, 104980 (2020).
[Crossref]

Kim, K. Y.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5(4), 285–288 (2009).
[Crossref]

Kinbara, A.

K. Uozumi, T. Nakada, and A. Kinbara, “Sound velocity and internal friction in vacuum deposited gold films,” Thin Solid Films 12(1), 67–70 (1972).
[Crossref]

Larciprete, M. C.

O. Matsuda, M. C. Larciprete, R. Li Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

Le Louarn, A.

A. Devos and A. Le Louarn, “Strong effect of interband transitions in the picosecond ultrasonics response of metallic thin films,” Phys. Rev. B 68(4), 045405 (2003).
[Crossref]

Lefvre, A.

A. Devos, R. Cote, G. Caruyer, and A. Lefvre, “A different way of performing picosecond ultrasonic measurements in thin transparent films based on laser-wavelength effects,” Appl. Phys. Lett. 86(21), 211903 (2005).
[Crossref]

Lerouge, C.

A. Devos and C. Lerouge, “Evidence of laser-wavelength effect in picosecond ultrasonics: Possible connection with interband transitions,” Phys. Rev. Lett. 86(12), 2669–2672 (2001).
[Crossref]

Li Voti, R.

O. Matsuda, M. C. Larciprete, R. Li Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

Lipp, V.

Loch, R.

Louis, E.

Makhotkin, I. A.

Malik, I. J.

J. Hrbek, D. G. van Campen, and I. J. Malik, “The early stages of ruthenium oxidation,” J. Vac. Sci. Technol., A 13(3), 1409–1412 (1995).
[Crossref]

Malinowski, M.

Maris, H. J.

G. A. Antonelli, P. Zannitto, and H. J. Maris, “New method for the generation of surface acoustic waves of high frequency,” Phys. B 316-317, 377–379 (2002).
[Crossref]

G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49(21), 15046–15054 (1994).
[Crossref]

H. T. Grahn, H. J. Maris, and J. Tauc, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38(9), 6066–6074 (1988).
[Crossref]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34(6), 4129–4138 (1986).
[Crossref]

März, J.

M. Perner, S. Gresillon, J. März, G. Von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett. 85(4), 792–795 (2000).
[Crossref]

Matsuda, O.

O. Matsuda, M. C. Larciprete, R. Li Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

T. Saito, O. Matsuda, M. Tomoda, and O. B. Wright, “Imaging gigahertz surface acoustic waves through the photoelastic effect,” J. Opt. Soc. Am. B 27(12), 2632 (2010).
[Crossref]

T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B 67(20), 205421 (2003).
[Crossref]

Matsunari, S.

H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
[Crossref]

Maznev, A. A.

R. M. Slayton, K. A. Nelson, and A. A. Maznev, “Transient grating measurements of film thickness in multilayer metal films,” J. Appl. Phys. 90(9), 4392–4402 (2001).
[Crossref]

T. F. Crimmins, A. A. Maznev, and K. A. Nelson, “Transient grating measurements of picosecond acoustic pulses in metal films,” Appl. Phys. Lett. 74(9), 1344–1346 (1999).
[Crossref]

Medvedev, N.

N. Medvedev and I. Milov, “Electron-phonon coupling in metals at high electronic temperatures,” Phys. Rev. B 102(6), 064302 (2020).
[Crossref]

Y. Petrov, K. Migdal, N. Inogamov, V. Khokhlov, D. Ilnitsky, I. Milov, N. Medvedev, V. Lipp, and V. Zhakhovsky, “Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling,” Data Br. 28, 104980 (2020).
[Crossref]

I. Milov, I. A. Makhotkin, R. Sobierajski, N. Medvedev, V. Lipp, J. Chalupský, J. M. Sturm, K. Tiedtke, G. de Vries, M. Störmer, F. Siewert, R. van de Kruijs, E. Louis, I. Jacyna, M. Jurek, L. Juha, V. Hájková, V. Vozda, T. Burian, K. Saksl, B. Faatz, B. Keitel, E. Plönjes, S. Schreiber, S. Toleikis, R. Loch, M. Hermann, S. Strobel, H.-K. Nienhuys, G. Gwalt, T. Mey, H. Enkisch, and F. Bijkerk, “Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser,” Opt. Express 26(15), 19665 (2018).
[Crossref]

Merie, V.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser. Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Mey, T.

Migdal, K.

Y. Petrov, K. Migdal, N. Inogamov, V. Khokhlov, D. Ilnitsky, I. Milov, N. Medvedev, V. Lipp, and V. Zhakhovsky, “Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling,” Data Br. 28, 104980 (2020).
[Crossref]

Milov, I.

Y. Petrov, K. Migdal, N. Inogamov, V. Khokhlov, D. Ilnitsky, I. Milov, N. Medvedev, V. Lipp, and V. Zhakhovsky, “Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling,” Data Br. 28, 104980 (2020).
[Crossref]

N. Medvedev and I. Milov, “Electron-phonon coupling in metals at high electronic temperatures,” Phys. Rev. B 102(6), 064302 (2020).
[Crossref]

I. Milov, I. A. Makhotkin, R. Sobierajski, N. Medvedev, V. Lipp, J. Chalupský, J. M. Sturm, K. Tiedtke, G. de Vries, M. Störmer, F. Siewert, R. van de Kruijs, E. Louis, I. Jacyna, M. Jurek, L. Juha, V. Hájková, V. Vozda, T. Burian, K. Saksl, B. Faatz, B. Keitel, E. Plönjes, S. Schreiber, S. Toleikis, R. Loch, M. Hermann, S. Strobel, H.-K. Nienhuys, G. Gwalt, T. Mey, H. Enkisch, and F. Bijkerk, “Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser,” Opt. Express 26(15), 19665 (2018).
[Crossref]

Müller, R.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser. Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Murakami, K.

H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
[Crossref]

Murnane, M. M.

R. I. Tobey, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, D. H. Torchinsky, and K. A. Nelson, “Transient grating measurement of surface acoustic waves in thin metal films with extreme ultraviolet radiation,” Appl. Phys. Lett. 89(9), 091108 (2006).
[Crossref]

R. I. Tobey, E. H. Gershgoren, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, T. Feurer, and K. A. Nelson, “Nanoscale photothermal and photoacoustic transients probed with extreme ultraviolet radiation,” Appl. Phys. Lett. 85(4), 564–566 (2004).
[Crossref]

Nakada, T.

K. Uozumi, T. Nakada, and A. Kinbara, “Sound velocity and internal friction in vacuum deposited gold films,” Thin Solid Films 12(1), 67–70 (1972).
[Crossref]

Nedelcu, I.

I. Nedelcu, R. W. Van De Kruijs, A. E. Yakshin, and F. Bijkerk, “Temperature-dependent nanocrystal formation in Mo Si multilayers,” Phys. Rev. B 76(24), 245404 (2007).
[Crossref]

Nelson, E. J.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

Nelson, K. A.

R. I. Tobey, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, D. H. Torchinsky, and K. A. Nelson, “Transient grating measurement of surface acoustic waves in thin metal films with extreme ultraviolet radiation,” Appl. Phys. Lett. 89(9), 091108 (2006).
[Crossref]

R. I. Tobey, E. H. Gershgoren, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, T. Feurer, and K. A. Nelson, “Nanoscale photothermal and photoacoustic transients probed with extreme ultraviolet radiation,” Appl. Phys. Lett. 85(4), 564–566 (2004).
[Crossref]

R. M. Slayton, K. A. Nelson, and A. A. Maznev, “Transient grating measurements of film thickness in multilayer metal films,” J. Appl. Phys. 90(9), 4392–4402 (2001).
[Crossref]

T. F. Crimmins, A. A. Maznev, and K. A. Nelson, “Transient grating measurements of picosecond acoustic pulses in metal films,” Appl. Phys. Lett. 74(9), 1344–1346 (1999).
[Crossref]

Nguyen, N.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42(28), 5750 (2003).
[Crossref]

Nienhuys, H.-K.

Niibe, M.

H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
[Crossref]

Norris, T. B.

B. C. Daly, N. C. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, “Imaging nanostructures with coherent phonon pulses,” Appl. Phys. Lett. 84(25), 5180–5182 (2004).
[Crossref]

Palaich, S. E.

J. L. Arlein, S. E. Palaich, B. C. Daly, P. Subramonium, and G. A. Antonelli, “Optical pump-probe measurements of sound velocity and thermal conductivity of hydrogenated amorphous carbon films,” J. Appl. Phys. 104(3), 033508 (2008).
[Crossref]

Pau, S.

B. C. Daly, N. C. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, “Imaging nanostructures with coherent phonon pulses,” Appl. Phys. Lett. 84(25), 5180–5182 (2004).
[Crossref]

Perel’man, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” J. Exp. Theor. Phys. 39, 375–377 (1974).

Perner, M.

M. Perner, S. Gresillon, J. März, G. Von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett. 85(4), 792–795 (2000).
[Crossref]

Perrin, B.

B. Perrin, B. Bonello, J. C. Jeannet, and E. Romatet, “Picosecond ultrasonics study of metallic multilayers,” Phys. B 219-220, 681–683 (1996).
[Crossref]

Péter, M.

P. J. van Zwol, D. F. Vles, W. P. Voorthuijzen, M. Péter, H. Vermeulen, W. J. van der Zande, J. M. Sturm, R. W. van de Kruijs, and F. Bijkerk, “Emissivity of freestanding membranes with thin metal coatings,” J. Appl. Phys. 118(21), 213107 (2015).
[Crossref]

Petrov, Y.

Y. Petrov, K. Migdal, N. Inogamov, V. Khokhlov, D. Ilnitsky, I. Milov, N. Medvedev, V. Lipp, and V. Zhakhovsky, “Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling,” Data Br. 28, 104980 (2020).
[Crossref]

Pigeon, F.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111(2), 024902 (2012).
[Crossref]

Piner, E. L.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5(4), 285–288 (2009).
[Crossref]

Planken, P.

H. Zhang, A. Antoncecchi, S. Edward, P. Planken, and S. Witte, “Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane,” Phys. Rev. B 103(6), 064303 (2021).
[Crossref]

H. Zhang, A. Antoncecchi, S. Edward, I. Setija, P. Planken, and S. Witte, “Unravelling phononic, opto-acoustic and mechanical properties of metals with light-driven hypersound,” Phys. Rev. Appl. 10, 1–12 (2020).
[Crossref]

Planken, P. C. M.

G. de Haan, V. Verrina, A. J. L. Adam, H. Zhang, and P. C. M. Planken, “Plasmonic enhancement of photoacoustic-induced reflection changes,” Appl. Opt. 60(24), 7304–7313 (2021).
[Crossref]

S. Edward, H. Zhang, I. Setija, V. Verrina, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Detection of Hidden Gratings through Multilayer Nanostructures Using Light and Sound,” Phys. Rev. Appl. 14(1), 014015 (2020).
[Crossref]

S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Laser-induced ultrasonics for detection of low-amplitude grating through metal layers with finite roughness,” Opt. Express 28(16), 23374 (2020).
[Crossref]

V. Verrina, S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Photoacoustic detection of low duty cycle gratings through optically opaque layers,” Appl. Phys. Lett. 117(5), 051104 (2020).
[Crossref]

V. Verrina, S. Edward, H. Zhang, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Role of scattering by surface roughness in the photoacoustic detection of hidden micro-structures,” Appl. Opt. 59(30), 9499 (2020).
[Crossref]

A. Antoncecchi, H. Zhang, S. Edward, V. Verrina, P. C. M. Planken, and S. Witte, “High-resolution microscopy through optically opaque media using ultrafast photoacoustics,” Opt. Express 28(23), 33937 (2020).
[Crossref]

S. Edward, A. Antoncecchi, H. Zhang, H. Sielcken, S. Witte, and P. C. M. Planken, “Detection of periodic structures through opaque metal layers by optical measurements of ultrafast electron dynamics,” Opt. Express 26(18), 23380–23396 (2018).
[Crossref]

Plönjes, E.

Pohl, D. W.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings, vol. 50 of Springer Series in Optical Sciences (Springer Berlin Heidelberg, Berlin, Heidelberg, 1986).

Porstendorfer, J.

M. Perner, S. Gresillon, J. März, G. Von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett. 85(4), 792–795 (2000).
[Crossref]

Poynting, J. H.

J. H. Poynting, “On the transfer of energy in the electromagnetic field,” Philos. Trans. R. Soc. London 175, 343–361 (1884).
[Crossref]

Pustan, M.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser. Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Reed, E. J.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5(4), 285–288 (2009).
[Crossref]

Reynaud, S.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111(2), 024902 (2012).
[Crossref]

Roberts, J. C.

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5(4), 285–288 (2009).
[Crossref]

Robinson, J. C.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42(28), 5750 (2003).
[Crossref]

Romatet, E.

B. Perrin, B. Bonello, J. C. Jeannet, and E. Romatet, “Picosecond ultrasonics study of metallic multilayers,” Phys. B 219-220, 681–683 (1996).
[Crossref]

Ruello, P.

P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
[Crossref]

Saito, T.

T. Saito, O. Matsuda, M. Tomoda, and O. B. Wright, “Imaging gigahertz surface acoustic waves through the photoelastic effect,” J. Opt. Soc. Am. B 27(12), 2632 (2010).
[Crossref]

T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B 67(20), 205421 (2003).
[Crossref]

Saksl, K.

Samsonov, G.

G. Samsonov, Handbook of the physicochemical properties of the elements (IFI-Plenum, New York - Washington, 1968).

Schneider, D.

D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Technol. 126(2-3), 136–141 (2000).
[Crossref]

Scholze, F.

A. Haase, V. Soltwisch, F. Scholze, and S. Braun, “Characterization of Mo/Si mirror interface roughness for different Mo layer thickness using resonant diffuse EUV scattering,” Proc. SPIE 9628, 962804 (2015).
[Crossref]

Schoneich, B.

D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Technol. 126(2-3), 136–141 (2000).
[Crossref]

Schreiber, S.

Schultrich, B.

D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Technol. 126(2-3), 136–141 (2000).
[Crossref]

Schwarz, T.

D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Technol. 126(2-3), 136–141 (2000).
[Crossref]

Setija, I.

H. Zhang, A. Antoncecchi, S. Edward, I. Setija, P. Planken, and S. Witte, “Unravelling phononic, opto-acoustic and mechanical properties of metals with light-driven hypersound,” Phys. Rev. Appl. 10, 1–12 (2020).
[Crossref]

S. Edward, H. Zhang, I. Setija, V. Verrina, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Detection of Hidden Gratings through Multilayer Nanostructures Using Light and Sound,” Phys. Rev. Appl. 14(1), 014015 (2020).
[Crossref]

Shen, C. C.

K. Y. Chou, C. L. Wu, C. C. Shen, J. K. Sheu, and C. K. Sun, “Terahertz Photoacoustic Generation Using Ultrathin Nickel Nanofilms,” J. Phys. Chem. C 125(5), 3134–3142 (2021).
[Crossref]

P. J. Wang, C. C. Shen, K. Y. Chou, M. H. Ho, J. K. Sheu, and C. K. Sun, “Studying time-dependent contribution of hot-electron versus lattice-induced thermal-expansion response in ultra-Thin Au-nanofilms,” Appl. Phys. Lett. 117(15), 154101 (2020).
[Crossref]

Sheu, J. K.

K. Y. Chou, C. L. Wu, C. C. Shen, J. K. Sheu, and C. K. Sun, “Terahertz Photoacoustic Generation Using Ultrathin Nickel Nanofilms,” J. Phys. Chem. C 125(5), 3134–3142 (2021).
[Crossref]

P. J. Wang, C. C. Shen, K. Y. Chou, M. H. Ho, J. K. Sheu, and C. K. Sun, “Studying time-dependent contribution of hot-electron versus lattice-induced thermal-expansion response in ultra-Thin Au-nanofilms,” Appl. Phys. Lett. 117(15), 154101 (2020).
[Crossref]

Sielcken, H.

Siemens, M. E.

R. I. Tobey, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, D. H. Torchinsky, and K. A. Nelson, “Transient grating measurement of surface acoustic waves in thin metal films with extreme ultraviolet radiation,” Appl. Phys. Lett. 89(9), 091108 (2006).
[Crossref]

R. I. Tobey, E. H. Gershgoren, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, T. Feurer, and K. A. Nelson, “Nanoscale photothermal and photoacoustic transients probed with extreme ultraviolet radiation,” Appl. Phys. Lett. 85(4), 564–566 (2004).
[Crossref]

Siewert, F.

Slayton, R. M.

R. M. Slayton, K. A. Nelson, and A. A. Maznev, “Transient grating measurements of film thickness in multilayer metal films,” J. Appl. Phys. 90(9), 4392–4402 (2001).
[Crossref]

Sobierajski, R.

Soltwisch, V.

A. Haase, V. Soltwisch, F. Scholze, and S. Braun, “Characterization of Mo/Si mirror interface roughness for different Mo layer thickness using resonant diffuse EUV scattering,” Proc. SPIE 9628, 962804 (2015).
[Crossref]

Stoian, R.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111(2), 024902 (2012).
[Crossref]

Störmer, M.

Strobel, S.

Sturm, J. M.

Subramonium, P.

J. L. Arlein, S. E. Palaich, B. C. Daly, P. Subramonium, and G. A. Antonelli, “Optical pump-probe measurements of sound velocity and thermal conductivity of hydrogenated amorphous carbon films,” J. Appl. Phys. 104(3), 033508 (2008).
[Crossref]

Sun, C. K.

K. Y. Chou, C. L. Wu, C. C. Shen, J. K. Sheu, and C. K. Sun, “Terahertz Photoacoustic Generation Using Ultrathin Nickel Nanofilms,” J. Phys. Chem. C 125(5), 3134–3142 (2021).
[Crossref]

P. J. Wang, C. C. Shen, K. Y. Chou, M. H. Ho, J. K. Sheu, and C. K. Sun, “Studying time-dependent contribution of hot-electron versus lattice-induced thermal-expansion response in ultra-Thin Au-nanofilms,” Appl. Phys. Lett. 117(15), 154101 (2020).
[Crossref]

Sun, C.-K.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

Takase, H.

H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
[Crossref]

Tanabe, M.

H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
[Crossref]

Tarrio, C.

Tas, G.

G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49(21), 15046–15054 (1994).
[Crossref]

Tauc, J.

H. T. Grahn, H. J. Maris, and J. Tauc, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38(9), 6066–6074 (1988).
[Crossref]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34(6), 4129–4138 (1986).
[Crossref]

Taylor, J. A.

B. C. Daly, N. C. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, “Imaging nanostructures with coherent phonon pulses,” Appl. Phys. Lett. 84(25), 5180–5182 (2004).
[Crossref]

Taylor, J. S.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

Tennant, D. M.

B. C. Daly, N. C. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, “Imaging nanostructures with coherent phonon pulses,” Appl. Phys. Lett. 84(25), 5180–5182 (2004).
[Crossref]

Terashima, S.

H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
[Crossref]

Thomsen, C.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34(6), 4129–4138 (1986).
[Crossref]

Tiedtke, K.

Tobey, R. I.

R. I. Tobey, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, D. H. Torchinsky, and K. A. Nelson, “Transient grating measurement of surface acoustic waves in thin metal films with extreme ultraviolet radiation,” Appl. Phys. Lett. 89(9), 091108 (2006).
[Crossref]

R. I. Tobey, E. H. Gershgoren, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, T. Feurer, and K. A. Nelson, “Nanoscale photothermal and photoacoustic transients probed with extreme ultraviolet radiation,” Appl. Phys. Lett. 85(4), 564–566 (2004).
[Crossref]

Toleikis, S.

Tomoda, M.

Torchinsky, D. H.

R. I. Tobey, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, D. H. Torchinsky, and K. A. Nelson, “Transient grating measurement of surface acoustic waves in thin metal films with extreme ultraviolet radiation,” Appl. Phys. Lett. 89(9), 091108 (2006).
[Crossref]

Uozumi, K.

K. Uozumi, T. Nakada, and A. Kinbara, “Sound velocity and internal friction in vacuum deposited gold films,” Thin Solid Films 12(1), 67–70 (1972).
[Crossref]

Vallée, F.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

van Campen, D. G.

J. Hrbek, D. G. van Campen, and I. J. Malik, “The early stages of ruthenium oxidation,” J. Vac. Sci. Technol., A 13(3), 1409–1412 (1995).
[Crossref]

van de Kruijs, R.

van de Kruijs, R. W.

P. J. van Zwol, D. F. Vles, W. P. Voorthuijzen, M. Péter, H. Vermeulen, W. J. van der Zande, J. M. Sturm, R. W. van de Kruijs, and F. Bijkerk, “Emissivity of freestanding membranes with thin metal coatings,” J. Appl. Phys. 118(21), 213107 (2015).
[Crossref]

I. Nedelcu, R. W. Van De Kruijs, A. E. Yakshin, and F. Bijkerk, “Temperature-dependent nanocrystal formation in Mo Si multilayers,” Phys. Rev. B 76(24), 245404 (2007).
[Crossref]

van der Zande, W. J.

P. J. van Zwol, D. F. Vles, W. P. Voorthuijzen, M. Péter, H. Vermeulen, W. J. van der Zande, J. M. Sturm, R. W. van de Kruijs, and F. Bijkerk, “Emissivity of freestanding membranes with thin metal coatings,” J. Appl. Phys. 118(21), 213107 (2015).
[Crossref]

van Zwol, P. J.

P. J. van Zwol, D. F. Vles, W. P. Voorthuijzen, M. Péter, H. Vermeulen, W. J. van der Zande, J. M. Sturm, R. W. van de Kruijs, and F. Bijkerk, “Emissivity of freestanding membranes with thin metal coatings,” J. Appl. Phys. 118(21), 213107 (2015).
[Crossref]

Vermeulen, H.

P. J. van Zwol, D. F. Vles, W. P. Voorthuijzen, M. Péter, H. Vermeulen, W. J. van der Zande, J. M. Sturm, R. W. van de Kruijs, and F. Bijkerk, “Emissivity of freestanding membranes with thin metal coatings,” J. Appl. Phys. 118(21), 213107 (2015).
[Crossref]

Verrina, V.

Vles, D. F.

P. J. van Zwol, D. F. Vles, W. P. Voorthuijzen, M. Péter, H. Vermeulen, W. J. van der Zande, J. M. Sturm, R. W. van de Kruijs, and F. Bijkerk, “Emissivity of freestanding membranes with thin metal coatings,” J. Appl. Phys. 118(21), 213107 (2015).
[Crossref]

Voicu, R.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser. Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Von Plessen, G.

M. Perner, S. Gresillon, J. März, G. Von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett. 85(4), 792–795 (2000).
[Crossref]

Voorthuijzen, W. P.

P. J. van Zwol, D. F. Vles, W. P. Voorthuijzen, M. Péter, H. Vermeulen, W. J. van der Zande, J. M. Sturm, R. W. van de Kruijs, and F. Bijkerk, “Emissivity of freestanding membranes with thin metal coatings,” J. Appl. Phys. 118(21), 213107 (2015).
[Crossref]

Vozda, V.

Wall, M. A.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

Wang, J.

J. Wang and C. Guo, “Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals,” Phys. Rev. B 75(18), 184304 (2007).
[Crossref]

Wang, P. J.

P. J. Wang, C. C. Shen, K. Y. Chou, M. H. Ho, J. K. Sheu, and C. K. Sun, “Studying time-dependent contribution of hot-electron versus lattice-induced thermal-expansion response in ultra-Thin Au-nanofilms,” Appl. Phys. Lett. 117(15), 154101 (2020).
[Crossref]

Watanabe, Y.

H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
[Crossref]

Wellershoff, S. S.

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61(2), 1101–1105 (2000).
[Crossref]

Witke, T.

D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Technol. 126(2-3), 136–141 (2000).
[Crossref]

Witte, S.

H. Zhang, A. Antoncecchi, S. Edward, P. Planken, and S. Witte, “Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane,” Phys. Rev. B 103(6), 064303 (2021).
[Crossref]

A. Antoncecchi, H. Zhang, S. Edward, V. Verrina, P. C. M. Planken, and S. Witte, “High-resolution microscopy through optically opaque media using ultrafast photoacoustics,” Opt. Express 28(23), 33937 (2020).
[Crossref]

S. Edward, H. Zhang, I. Setija, V. Verrina, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Detection of Hidden Gratings through Multilayer Nanostructures Using Light and Sound,” Phys. Rev. Appl. 14(1), 014015 (2020).
[Crossref]

H. Zhang, A. Antoncecchi, S. Edward, I. Setija, P. Planken, and S. Witte, “Unravelling phononic, opto-acoustic and mechanical properties of metals with light-driven hypersound,” Phys. Rev. Appl. 10, 1–12 (2020).
[Crossref]

S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Laser-induced ultrasonics for detection of low-amplitude grating through metal layers with finite roughness,” Opt. Express 28(16), 23374 (2020).
[Crossref]

V. Verrina, S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Photoacoustic detection of low duty cycle gratings through optically opaque layers,” Appl. Phys. Lett. 117(5), 051104 (2020).
[Crossref]

V. Verrina, S. Edward, H. Zhang, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Role of scattering by surface roughness in the photoacoustic detection of hidden micro-structures,” Appl. Opt. 59(30), 9499 (2020).
[Crossref]

S. Edward, A. Antoncecchi, H. Zhang, H. Sielcken, S. Witte, and P. C. M. Planken, “Detection of periodic structures through opaque metal layers by optical measurements of ultrafast electron dynamics,” Opt. Express 26(18), 23380–23396 (2018).
[Crossref]

Wolf, M.

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61(2), 1101–1105 (2000).
[Crossref]

Wright, O. B.

O. Matsuda, M. C. Larciprete, R. Li Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

T. Saito, O. Matsuda, M. Tomoda, and O. B. Wright, “Imaging gigahertz surface acoustic waves through the photoelastic effect,” J. Opt. Soc. Am. B 27(12), 2632 (2010).
[Crossref]

T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B 67(20), 205421 (2003).
[Crossref]

V. E. Gusev and O. B. Wright, “Ultrafast nonequilibrium dynamics of electrons in metals,” Phys. Rev. B 57(5), 2878–2888 (1998).
[Crossref]

O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69(11), 1668–1671 (1992).
[Crossref]

Wu, C. L.

K. Y. Chou, C. L. Wu, C. C. Shen, J. K. Sheu, and C. K. Sun, “Terahertz Photoacoustic Generation Using Ultrathin Nickel Nanofilms,” J. Phys. Chem. C 125(5), 3134–3142 (2021).
[Crossref]

Yakshin, A. E.

I. Nedelcu, R. W. Van De Kruijs, A. E. Yakshin, and F. Bijkerk, “Temperature-dependent nanocrystal formation in Mo Si multilayers,” Phys. Rev. B 76(24), 245404 (2007).
[Crossref]

Zannitto, P.

G. A. Antonelli, P. Zannitto, and H. J. Maris, “New method for the generation of surface acoustic waves of high frequency,” Phys. B 316-317, 377–379 (2002).
[Crossref]

Zhakhovsky, V.

Y. Petrov, K. Migdal, N. Inogamov, V. Khokhlov, D. Ilnitsky, I. Milov, N. Medvedev, V. Lipp, and V. Zhakhovsky, “Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling,” Data Br. 28, 104980 (2020).
[Crossref]

Zhang, H.

H. Zhang, A. Antoncecchi, S. Edward, P. Planken, and S. Witte, “Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane,” Phys. Rev. B 103(6), 064303 (2021).
[Crossref]

G. de Haan, V. Verrina, A. J. L. Adam, H. Zhang, and P. C. M. Planken, “Plasmonic enhancement of photoacoustic-induced reflection changes,” Appl. Opt. 60(24), 7304–7313 (2021).
[Crossref]

A. Antoncecchi, H. Zhang, S. Edward, V. Verrina, P. C. M. Planken, and S. Witte, “High-resolution microscopy through optically opaque media using ultrafast photoacoustics,” Opt. Express 28(23), 33937 (2020).
[Crossref]

V. Verrina, S. Edward, H. Zhang, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Role of scattering by surface roughness in the photoacoustic detection of hidden micro-structures,” Appl. Opt. 59(30), 9499 (2020).
[Crossref]

V. Verrina, S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Photoacoustic detection of low duty cycle gratings through optically opaque layers,” Appl. Phys. Lett. 117(5), 051104 (2020).
[Crossref]

S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Laser-induced ultrasonics for detection of low-amplitude grating through metal layers with finite roughness,” Opt. Express 28(16), 23374 (2020).
[Crossref]

H. Zhang, A. Antoncecchi, S. Edward, I. Setija, P. Planken, and S. Witte, “Unravelling phononic, opto-acoustic and mechanical properties of metals with light-driven hypersound,” Phys. Rev. Appl. 10, 1–12 (2020).
[Crossref]

S. Edward, H. Zhang, I. Setija, V. Verrina, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Detection of Hidden Gratings through Multilayer Nanostructures Using Light and Sound,” Phys. Rev. Appl. 14(1), 014015 (2020).
[Crossref]

S. Edward, A. Antoncecchi, H. Zhang, H. Sielcken, S. Witte, and P. C. M. Planken, “Detection of periodic structures through opaque metal layers by optical measurements of ultrafast electron dynamics,” Opt. Express 26(18), 23380–23396 (2018).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (7)

T. F. Crimmins, A. A. Maznev, and K. A. Nelson, “Transient grating measurements of picosecond acoustic pulses in metal films,” Appl. Phys. Lett. 74(9), 1344–1346 (1999).
[Crossref]

P. J. Wang, C. C. Shen, K. Y. Chou, M. H. Ho, J. K. Sheu, and C. K. Sun, “Studying time-dependent contribution of hot-electron versus lattice-induced thermal-expansion response in ultra-Thin Au-nanofilms,” Appl. Phys. Lett. 117(15), 154101 (2020).
[Crossref]

R. I. Tobey, E. H. Gershgoren, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, T. Feurer, and K. A. Nelson, “Nanoscale photothermal and photoacoustic transients probed with extreme ultraviolet radiation,” Appl. Phys. Lett. 85(4), 564–566 (2004).
[Crossref]

R. I. Tobey, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, D. H. Torchinsky, and K. A. Nelson, “Transient grating measurement of surface acoustic waves in thin metal films with extreme ultraviolet radiation,” Appl. Phys. Lett. 89(9), 091108 (2006).
[Crossref]

V. Verrina, S. Edward, H. Zhang, S. Witte, and P. C. M. Planken, “Photoacoustic detection of low duty cycle gratings through optically opaque layers,” Appl. Phys. Lett. 117(5), 051104 (2020).
[Crossref]

B. C. Daly, N. C. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, “Imaging nanostructures with coherent phonon pulses,” Appl. Phys. Lett. 84(25), 5180–5182 (2004).
[Crossref]

A. Devos, R. Cote, G. Caruyer, and A. Lefvre, “A different way of performing picosecond ultrasonic measurements in thin transparent films based on laser-wavelength effects,” Appl. Phys. Lett. 86(21), 211903 (2005).
[Crossref]

Data Br. (1)

Y. Petrov, K. Migdal, N. Inogamov, V. Khokhlov, D. Ilnitsky, I. Milov, N. Medvedev, V. Lipp, and V. Zhakhovsky, “Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling,” Data Br. 28, 104980 (2020).
[Crossref]

Emerg. Lithogr. Technol. (1)

H. Takase, S. Terashima, Y. Gomei, M. Tanabe, Y. Watanabe, T. Aoki, K. Murakami, S. Matsunari, M. Niibe, and Y. Kakutani, “Study of ruthenium-capped multilayer mirror for EUV irradiation durability,” Emerg. Lithogr. Technol. 6151, 615135 (2006).
[Crossref]

Emerg. Lithogr. Technol. IX (1)

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. Alameda, N. Nguyen, S. Baker, J. C. Robinson, J. S. Taylor, M. Clift, A. Aquila, E. M. Gullikson, and N. V. G. Edwards, “Oxidation resistance of Ru-capped EUV multilayers,” Emerg. Lithogr. Technol. IX 5751, 118 (2005).
[Crossref]

IOP Conf. Ser. Mater. Sci. Eng. (1)

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser. Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

J. Appl. Phys. (4)

P. J. van Zwol, D. F. Vles, W. P. Voorthuijzen, M. Péter, H. Vermeulen, W. J. van der Zande, J. M. Sturm, R. W. van de Kruijs, and F. Bijkerk, “Emissivity of freestanding membranes with thin metal coatings,” J. Appl. Phys. 118(21), 213107 (2015).
[Crossref]

R. M. Slayton, K. A. Nelson, and A. A. Maznev, “Transient grating measurements of film thickness in multilayer metal films,” J. Appl. Phys. 90(9), 4392–4402 (2001).
[Crossref]

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111(2), 024902 (2012).
[Crossref]

J. L. Arlein, S. E. Palaich, B. C. Daly, P. Subramonium, and G. A. Antonelli, “Optical pump-probe measurements of sound velocity and thermal conductivity of hydrogenated amorphous carbon films,” J. Appl. Phys. 104(3), 033508 (2008).
[Crossref]

J. Exp. Theor. Phys. (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” J. Exp. Theor. Phys. 39, 375–377 (1974).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

K. Y. Chou, C. L. Wu, C. C. Shen, J. K. Sheu, and C. K. Sun, “Terahertz Photoacoustic Generation Using Ultrathin Nickel Nanofilms,” J. Phys. Chem. C 125(5), 3134–3142 (2021).
[Crossref]

J. Vac. Sci. Technol., A (1)

J. Hrbek, D. G. van Campen, and I. J. Malik, “The early stages of ruthenium oxidation,” J. Vac. Sci. Technol., A 13(3), 1409–1412 (1995).
[Crossref]

Nat. Phys. (1)

M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5(4), 285–288 (2009).
[Crossref]

Opt. Commun. (1)

V. E. Gusev, “On the duration of acoustic pulses excited by subpicosecond laser action on metals,” Opt. Commun. 94(1-3), 76–78 (1992).
[Crossref]

Opt. Express (4)

Philos. Trans. R. Soc. London (1)

J. H. Poynting, “On the transfer of energy in the electromagnetic field,” Philos. Trans. R. Soc. London 175, 343–361 (1884).
[Crossref]

Phys. B (2)

G. A. Antonelli, P. Zannitto, and H. J. Maris, “New method for the generation of surface acoustic waves of high frequency,” Phys. B 316-317, 377–379 (2002).
[Crossref]

B. Perrin, B. Bonello, J. C. Jeannet, and E. Romatet, “Picosecond ultrasonics study of metallic multilayers,” Phys. B 219-220, 681–683 (1996).
[Crossref]

Phys. Rev. Appl. (2)

H. Zhang, A. Antoncecchi, S. Edward, I. Setija, P. Planken, and S. Witte, “Unravelling phononic, opto-acoustic and mechanical properties of metals with light-driven hypersound,” Phys. Rev. Appl. 10, 1–12 (2020).
[Crossref]

S. Edward, H. Zhang, I. Setija, V. Verrina, A. Antoncecchi, S. Witte, and P. C. M. Planken, “Detection of Hidden Gratings through Multilayer Nanostructures Using Light and Sound,” Phys. Rev. Appl. 14(1), 014015 (2020).
[Crossref]

Phys. Rev. B (13)

J. Wang and C. Guo, “Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals,” Phys. Rev. B 75(18), 184304 (2007).
[Crossref]

G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49(21), 15046–15054 (1994).
[Crossref]

V. E. Gusev and O. B. Wright, “Ultrafast nonequilibrium dynamics of electrons in metals,” Phys. Rev. B 57(5), 2878–2888 (1998).
[Crossref]

T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B 67(20), 205421 (2003).
[Crossref]

A. Devos and A. Le Louarn, “Strong effect of interband transitions in the picosecond ultrasonics response of metallic thin films,” Phys. Rev. B 68(4), 045405 (2003).
[Crossref]

A. Devos and R. Cote, “Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect,” Phys. Rev. B 70(12), 125208 (2004).
[Crossref]

M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61(2), 1101–1105 (2000).
[Crossref]

I. Nedelcu, R. W. Van De Kruijs, A. E. Yakshin, and F. Bijkerk, “Temperature-dependent nanocrystal formation in Mo Si multilayers,” Phys. Rev. B 76(24), 245404 (2007).
[Crossref]

H. T. Grahn, H. J. Maris, and J. Tauc, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38(9), 6066–6074 (1988).
[Crossref]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50(20), 15337–15348 (1994).
[Crossref]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34(6), 4129–4138 (1986).
[Crossref]

H. Zhang, A. Antoncecchi, S. Edward, P. Planken, and S. Witte, “Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane,” Phys. Rev. B 103(6), 064303 (2021).
[Crossref]

N. Medvedev and I. Milov, “Electron-phonon coupling in metals at high electronic temperatures,” Phys. Rev. B 102(6), 064302 (2020).
[Crossref]

Phys. Rev. Lett. (3)

M. Perner, S. Gresillon, J. März, G. Von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett. 85(4), 792–795 (2000).
[Crossref]

O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69(11), 1668–1671 (1992).
[Crossref]

A. Devos and C. Lerouge, “Evidence of laser-wavelength effect in picosecond ultrasonics: Possible connection with interband transitions,” Phys. Rev. Lett. 86(12), 2669–2672 (2001).
[Crossref]

Proc. SPIE (1)

A. Haase, V. Soltwisch, F. Scholze, and S. Braun, “Characterization of Mo/Si mirror interface roughness for different Mo layer thickness using resonant diffuse EUV scattering,” Proc. SPIE 9628, 962804 (2015).
[Crossref]

Surf. Coat. Technol. (1)

D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Technol. 126(2-3), 136–141 (2000).
[Crossref]

Thin Solid Films (1)

K. Uozumi, T. Nakada, and A. Kinbara, “Sound velocity and internal friction in vacuum deposited gold films,” Thin Solid Films 12(1), 67–70 (1972).
[Crossref]

Ultrasonics (2)

O. Matsuda, M. C. Larciprete, R. Li Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
[Crossref]

Other (2)

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings, vol. 50 of Springer Series in Optical Sciences (Springer Berlin Heidelberg, Berlin, Heidelberg, 1986).

G. Samsonov, Handbook of the physicochemical properties of the elements (IFI-Plenum, New York - Washington, 1968).

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic drawing of the setup used in our experiments. The output of a 1 kHz repetition rate regenerative amplified Ti:Sapphire laser is split into a pump beam and a probe beam. The pump first travels through an optical delay line after which the optical frequency is doubled using a BBO crystal. Afterward, the pump is optically chopped to reduce the repetition rate by 50%. The pump is split into two beams. These two pump beams overlap in time and, noncollinearly, in space to form an intensity grating on the Ru surface. The probe is sent to an optical parametric amplifier (OPA) set to generate a signal beam with a wavelength of 1300 nm. This beam is subsequently frequency-doubled to create a beam with a central wavelength of 650 nm. Afterward, the probe beam is focused onto the sample in the same spot as the pump pair.
Fig. 2.
Fig. 2. AFM images of three Ru layers on glass with thicknesses of 20 nm (a), 5.0 nm (b), and 2.3 nm (c). The RMS surface roughness for these thicknesses is 520 pm, 580 pm, and 460 pm, respectively.
Fig. 3.
Fig. 3. Transient-grating pump-induced diffraction efficiency of the 650 nm central wavelength probe beam on a 107 nm Ru layer deposited on glass, as a function of time. The black dashed line is a calculation of the diffraction efficiency induced by a combination of the strain- and thermo-optic effect. This calculation does not include damping of the acoustic wave or partial transmission of the wave into the glass substrate.
Fig. 4.
Fig. 4. Calculated diffraction efficiency of only the strain-optic, only the thermo-optic and only the displacement effects. All contributions have been normalized to their respective maximum.
Fig. 5.
Fig. 5. Transient-grating pump-induced changes to the diffraction efficiency. (a) The measured diffraction efficiency for 20 nm and 5 nm thick Ru layers on a long timescale. (b) The measured diffraction for multiple layer thicknesses, here the curves have been normalized to their respective electronic peaks and have been given an offset for clarity.
Fig. 6.
Fig. 6. (a) Measured diffraction efficiency of multiple layer thicknesses, also shown in Fig. 5(b) but with the thermal background removed. The dashed lines correspond to a fit of a single-frequency, damped sine to the data. (b) The speed of sound extracted from the fit as a function of layer thickness.
Fig. 7.
Fig. 7. The red dots show the damping rate versus the frequency of the acoustic wave. The blue dot corresponds to the damping rate acquired for the 1.2 nm thick Ru layer, for which an accurate oscillation frequency could not be determined. The yellow crosses represent the calculated damping rate caused by interface roughness and the dashed line going through the crosses acts as a guide to the eye. The blue triangles represent the calculated damping rate caused by transmission of acoustic energy into the substrate, and again, the dashed line going through the triangles acts as a guide to the eye.
Fig. 8.
Fig. 8. Measured pump-power dependence of the diffraction for a 5 nm (a) Ru layer and a 2.3 nm (b) Ru layer. The black dashed lines are single frequency dampened sinusoidal fits to the data, starting from the dashed vertical red line and extrapolated backwards to t = 0.
Fig. 9.
Fig. 9. The starting phase and the frequency of the generated acoustic wave, extracted from the fits shown in Fig. 8(a) and (b). Note that for both thicknesses the frequency and phase remain almost constant as a function of pump pulse energy and that the phase equals -$\pi /2$ for all pump powers.
Fig. 10.
Fig. 10. The different steps undertaken to remove the slowly decaying thermal background from the measured signal on the 3.3 nm thick Ru layer. In green, we show the nearest neighbor average of the normalized acoustic-wave-induced diffracted probe signal as a function of pump-probe delay. The red curve shows the exponential fit to the data truncated at the time t = 0.7 ps, indicated by the vertical dashed line. After subtraction of the exponential fit, we end up with the acoustic signal shown in yellow.
Fig. 11.
Fig. 11. Electron (a) and lattice (b) temperature as a function of time in the center of a 5 nm thick Ru layer in a bright fringe of the transient grating. The legend shows the total energy of the two incident pump beams which form the transient grating.

Tables (2)

Tables Icon

Table 1. Calculated acoustic impedance of Ru at the different measured acoustic frequencies.

Tables Icon

Table 2. ruthenium material parameters used in the TTM calculations, taken from Ref. [28].

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

C e ( T e ) T e t = z ( k e ( T e , T l ) T e z ) g ( T e T l ) + S ( z , t ) , C l T l t = g ( T e T l ) ,
σ z t h ( z , t ) = 3 B β Δ T l ( z , t ) ,
s z ( z , t ) = u ( z , t ) z , σ z ( z , t ) = σ s t r + σ z t h = ( λ + 2 μ ) s z ( z , t ) 3 B β Δ T l ( z , t ) , ρ 2 u ( z , t ) t 2 = σ z ( z , t ) z ,
η d i s p = | i r k z h 0 ( t ) | 2 | k z 0 L s z ( z , t )   d z | 2 ,
η s t r = | δ r s t r | 2 | k s t r 0 L exp ( 2 i k z n z 2 z d p ) s ( z , t )   d z | 2 ,
η t h = | δ r t h | 2 | k t h 0 L exp ( 2 i k z n z 2 z d p ) Δ T ( z , t )   d z | 2 ,
η t o t | i r k z h 0 ( t ) + δ r s t r + δ r t h | 2 ,
R ( f ) = ( Z R u ( f ) Z s u b Z R u ( f ) + Z s u b ) 2 ,
σ e = γ e Δ E e ,
f ( t ) = a e b ( t c ) + d ,

Metrics

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved