Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Resolution improvement of photothermal microscopy by the modulated difference method

Not Accessible

Your library or personal account may give you access

Abstract

Photothermal microscopy (PTM) was developed to image non-fluorescent objects. In the past two decades, PTM has reached single-particle and single-molecule sensitivity and has been used in the fields of material science and biology. However, PTM is a far-field imaging method whose resolution is restricted by the diffraction limits. This Letter reports a resolution improvement approach for photothermal microscopy called modulated difference PTM (MD-PTM), which utilizes Gaussian and doughnut formalism heating beams that are modulated at the same frequency but are of opposite phase to generate the photothermal signal. Furthermore, the opposite phase characteristics of the photothermal signals are applied to determine the objective profile from the PTM magnitude, and this helps to improve the lateral resolution of PTM. The lateral resolution is related to the difference coefficient between the Gaussian and doughnut heating beams; an increase in the difference coefficient causes a larger sidelobe of the MD-PTM amplitude, which readily forms an artifact. A pulse-coupled neural network (PCNN) is employed for phase image segmentations of MD-PTM. We experimentally study the micro-imaging of gold nanoclusters and crossed nanotubes using MD-PTM, and the results indicate that MD-PTM has merit in terms of improving the lateral resolution.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Deep learning empowers photothermal microscopy with super-resolution capabilities

Yonghui Wang, Zhuoyan Yue, Fei Wang, Peng Song, and Junyan Liu
Opt. Lett. 49(8) 1957-1960 (2024)

Improved lateral resolution with an annular vortex depletion beam in STED microscopy

Bin Wang, Jinmeng Shi, Tianyue Zhang, Xiaoxuan Xu, Yaoyu Cao, and Xiangping Li
Opt. Lett. 42(23) 4885-4888 (2017)

Photothermal modulation speckle optical coherence tomography of microvascular nondestructive imaging in vivo with high effective resolution

Yudan Hu, Nanshou Wu, Peijun Tang, Tingfeng Li, and Zhilie Tang
Opt. Lett. 48(7) 1878-1881 (2023)

Supplementary Material (1)

NameDescription
Supplement 1       doughnut beam polarization, MD-PTM image simulation, PCNN parameters and gamma chosen procedure

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.